001     1045757
005     20260122125254.0
024 7 _ |a 10.3934/ipi.2025038
|2 doi
024 7 _ |a 1930-8337
|2 ISSN
024 7 _ |a 1930-8345
|2 ISSN
024 7 _ |a WOS:001562637800001
|2 WOS
037 _ _ |a FZJ-2025-03588
041 _ _ |a English
082 _ _ |a 510
100 1 _ |a Harris, Isaac
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a On the transmission eigenvalues for scattering by a clamped planar region
260 _ _ |c 2026
|b AIMS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1765355043_24877
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this paper, we consider a new transmission eigenvalue problem derived from the scattering by a clamped cavity in a thin elastic material. Scattering in a thin elastic material can be modeled by the Kirchhoff–Love infinite plate problem. This results in a biharmonic scattering problem that can be handled by operator splitting. The main novelty of this transmission eigenvalue problem is that it is posed in all of $\mathbb{R}^2$. This adds analytical and computational difficulties in studying this eigenvalue problem. Here, we prove that the eigenvalues can be recovered from the far field data as well as discreteness of the transmission eigenvalues. We provide some numerical experiments via boundary integral equations to demonstrate the theoretical results. We also conjecture monotonicity with respect to the measure of the scatterer from our numerical experiments.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kleefeld, Andreas
|0 P:(DE-Juel1)169421
|b 1
700 1 _ |a Lee, Heejin
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.3934/ipi.2025038
|g Vol. 0, no. 0, p. 0 - 0
|0 PERI:(DE-600)2304184-5
|n 0
|p 152-172
|t Inverse problems and imaging
|v 21
|y 2026
|x 1930-8337
856 4 _ |u https://juser.fz-juelich.de/record/1045757/files/10.3934_ipi.2025038-1.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1045757
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)169421
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INVERSE PROBL IMAG : 2022
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21