001045778 001__ 1045778
001045778 005__ 20251124095635.0
001045778 0247_ $$2doi$$a10.1039/D5SM00617A
001045778 0247_ $$2ISSN$$a1744-683X
001045778 0247_ $$2ISSN$$a1744-6848
001045778 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03592
001045778 0247_ $$2pmid$$a40813755
001045778 037__ $$aFZJ-2025-03592
001045778 082__ $$a530
001045778 1001_ $$0P:(DE-Juel1)201319$$aXu, R.$$b0
001045778 245__ $$aFriction dynamics: displacement fluctuations during sliding friction
001045778 260__ $$aLondon$$bRoyal Soc. of Chemistry$$c2025
001045778 3367_ $$2DRIVER$$aarticle
001045778 3367_ $$2DataCite$$aOutput Types/Journal article
001045778 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1762865607_27971
001045778 3367_ $$2BibTeX$$aARTICLE
001045778 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001045778 3367_ $$00$$2EndNote$$aJournal Article
001045778 520__ $$aWe have investigated the fluctuations (noise) in the positions of rectangular blocks, made from rubber or polymethyl methacrylate (PMMA), sliding on various substrates under constant driving forces. For all systems the power spectra of the noise exhibit large low-frequency regions with power laws, ω−γ, with the exponents γ between 4 and 5. The experimental results are compared to simulations and analytical predictions using three models of interfacial interaction: a spring-block model, an asperity-force model, and a wear-particle model. In the spring-block model, small sub-blocks (representing asperity contact regions) are connected to a larger block via viscoelastic springs and interact with the substrate through forces that fluctuate randomly in both time and magnitude. This model gives a power law with γ = 4, as also observed in experiments when no wear particles can be observed. The asperity-force model assumes a smooth block sliding over a randomly rough substrate, where the force acting on the block fluctuates in time because of fluctuations in the number and size of contact regions. This model predicts a power law with the exponent γ = 6, which disagrees with the experiments. We attribute this discrepancy to the neglect of load redistribution among asperity contacts as they form or disappear. The wear-particle model considers the irregular dynamics of wear particles of varying sizes moving at the interface. This model also predicts power-law power spectra but the exponent depends on two trapping-release probability distributions. If chosen suitably it can reproduce the exponent γ = 5 (which corresponds to 1/f noise in the friction force) observed in some cases.
001045778 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001045778 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001045778 7001_ $$00000-0001-7136-9233$$aZhou, F.$$b1
001045778 7001_ $$0P:(DE-Juel1)130885$$aPersson, B. N. J.$$b2$$eCorresponding author
001045778 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/D5SM00617A$$gp. 10.1039.D5SM00617A$$p10.1039.D5SM00617A$$tSoft matter$$v $$x1744-683X$$y2025
001045778 8564_ $$uhttps://juser.fz-juelich.de/record/1045778/files/d5sm00617a.pdf$$yOpenAccess
001045778 8767_ $$d2025-08-28$$eHybrid-OA$$jPublish and Read
001045778 909CO $$ooai:juser.fz-juelich.de:1045778$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001045778 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201319$$aForschungszentrum Jülich$$b0$$kFZJ
001045778 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130885$$aForschungszentrum Jülich$$b2$$kFZJ
001045778 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001045778 9141_ $$y2025
001045778 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001045778 915pc $$0PC:(DE-HGF)0110$$2APC$$aTIB: Royal Society of Chemistry 2021
001045778 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
001045778 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
001045778 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
001045778 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-07
001045778 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
001045778 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
001045778 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-07
001045778 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001045778 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOFT MATTER : 2022$$d2025-01-07
001045778 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2025-01-07$$wger
001045778 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001045778 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
001045778 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001045778 980__ $$ajournal
001045778 980__ $$aVDB
001045778 980__ $$aUNRESTRICTED
001045778 980__ $$aI:(DE-Juel1)PGI-1-20110106
001045778 980__ $$aAPC
001045778 9801_ $$aAPC
001045778 9801_ $$aFullTexts