001     1045778
005     20251124095635.0
024 7 _ |a 10.1039/D5SM00617A
|2 doi
024 7 _ |a 1744-683X
|2 ISSN
024 7 _ |a 1744-6848
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-03592
|2 datacite_doi
024 7 _ |a 40813755
|2 pmid
037 _ _ |a FZJ-2025-03592
082 _ _ |a 530
100 1 _ |a Xu, R.
|0 P:(DE-Juel1)201319
|b 0
245 _ _ |a Friction dynamics: displacement fluctuations during sliding friction
260 _ _ |a London
|c 2025
|b Royal Soc. of Chemistry
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1762865607_27971
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We have investigated the fluctuations (noise) in the positions of rectangular blocks, made from rubber or polymethyl methacrylate (PMMA), sliding on various substrates under constant driving forces. For all systems the power spectra of the noise exhibit large low-frequency regions with power laws, ω−γ, with the exponents γ between 4 and 5. The experimental results are compared to simulations and analytical predictions using three models of interfacial interaction: a spring-block model, an asperity-force model, and a wear-particle model. In the spring-block model, small sub-blocks (representing asperity contact regions) are connected to a larger block via viscoelastic springs and interact with the substrate through forces that fluctuate randomly in both time and magnitude. This model gives a power law with γ = 4, as also observed in experiments when no wear particles can be observed. The asperity-force model assumes a smooth block sliding over a randomly rough substrate, where the force acting on the block fluctuates in time because of fluctuations in the number and size of contact regions. This model predicts a power law with the exponent γ = 6, which disagrees with the experiments. We attribute this discrepancy to the neglect of load redistribution among asperity contacts as they form or disappear. The wear-particle model considers the irregular dynamics of wear particles of varying sizes moving at the interface. This model also predicts power-law power spectra but the exponent depends on two trapping-release probability distributions. If chosen suitably it can reproduce the exponent γ = 5 (which corresponds to 1/f noise in the friction force) observed in some cases.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zhou, F.
|0 0000-0001-7136-9233
|b 1
700 1 _ |a Persson, B. N. J.
|0 P:(DE-Juel1)130885
|b 2
|e Corresponding author
773 _ _ |a 10.1039/D5SM00617A
|g p. 10.1039.D5SM00617A
|0 PERI:(DE-600)2191476-X
|p 10.1039.D5SM00617A
|t Soft matter
|v
|y 2025
|x 1744-683X
856 4 _ |u https://juser.fz-juelich.de/record/1045778/files/d5sm00617a.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1045778
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)201319
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130885
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a TIB: Royal Society of Chemistry 2021
|0 PC:(DE-HGF)0110
|2 APC
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-07
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOFT MATTER : 2022
|d 2025-01-07
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2025-01-07
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21