000010458 001__ 10458
000010458 005__ 20210129210521.0
000010458 0247_ $$2pmid$$apmid:20205248
000010458 0247_ $$2DOI$$a10.1002/hbm.20965
000010458 0247_ $$2WOS$$aWOS:000283641100005
000010458 0247_ $$2altmetric$$aaltmetric:2155267
000010458 037__ $$aPreJuSER-10458
000010458 041__ $$aeng
000010458 082__ $$a610
000010458 084__ $$2WoS$$aNeurosciences
000010458 084__ $$2WoS$$aNeuroimaging
000010458 084__ $$2WoS$$aRadiology, Nuclear Medicine & Medical Imaging
000010458 1001_ $$0P:(DE-Juel1)VDB53016$$aNeuner, I.$$b0$$uFZJ
000010458 245__ $$aElectrophysiology meets fMRI: Neural correlates of the startle reflex assessed by simultaneous EMG-fMRI data acquisition
000010458 260__ $$aNew York, NY$$bWiley-Liss$$c2010
000010458 300__ $$a1675 - 1685
000010458 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000010458 3367_ $$2DataCite$$aOutput Types/Journal article
000010458 3367_ $$00$$2EndNote$$aJournal Article
000010458 3367_ $$2BibTeX$$aARTICLE
000010458 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000010458 3367_ $$2DRIVER$$aarticle
000010458 440_0 $$02398$$aHuman Brain Mapping$$v31$$x1065-9471$$y11
000010458 500__ $$aContract grant sponsor Bundesministerium fur Bildung und Forschung (BMBF), Contract grant numbers. BMBF 01GO0104 (to N.J S and Karl Zilles), BMBF 01GO0204 (to Brain Imaging Centre West); Contract grant sponsors Medical Faculty of the RWTH Aachen University ("Rotationsprogramm"; to IN)
000010458 520__ $$aThe startle reflex provides a unique tool for the investigation of sensorimotor gating and information processing. Simultaneous EMG-fMRI acquisition (i.e., online stimulation and recording in the MR environment) allows for the quantitative assessment of the neuronal correlates of the startle reflex and its modulations on a single trial level. This serves as the backbone for a startle response informed fMRI analysis, which is fed by data acquired in the same brain at the same time. We here present the first MR study using a single trial approach with simultaneous acquired EMG and fMRI data on the human startle response in 15 healthy young men. It investigates the neural correlates for isolated air puff startle pulses (PA), prepulse-pulse inhibition (PPI), and prepulse facilitation (PPF). We identified a common core network engaged by all three conditions (PA, PPI, and PPF), consisting of bilateral primary and secondary somatosensory cortices, right insula, right thalamus, right temporal pole, middle cingulate cortex, and cerebellum. The cerebellar vermis exhibits distinct activation patterns between the startle modifications. It is differentially activated with the highest amplitude for PPF, a lower activation for PA, and lowest for PPI. The orbital frontal cortex exhibits a differential activation pattern, not for the type of startle response but for the amplitude modification. For pulse alone it is close to zero; for PPI it is activated. This is in contrast to PPF where it shows deactivation. In addition, the thalamus, the cerebellum, and the anterior cingulate cortex add to the modulation of the startle reflex.
000010458 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems (FUEK409)$$cFUEK409$$x0
000010458 536__ $$0G:(DE-HGF)POF2-89573$$a89573 - Neuroimaging (POF2-89573)$$cPOF2-89573$$fPOF II T$$x1
000010458 588__ $$aDataset connected to Web of Science, Pubmed
000010458 65320 $$2Author$$aneurophysiology, fMRI
000010458 65320 $$2Author$$astartle reflex
000010458 65320 $$2Author$$aMR artifact correction, prepulse inhibition
000010458 65320 $$2Author$$aprepulse facilitation
000010458 650_2 $$2MeSH$$aAdult
000010458 650_2 $$2MeSH$$aBrain: physiology
000010458 650_2 $$2MeSH$$aBrain Mapping
000010458 650_2 $$2MeSH$$aElectromyography: methods
000010458 650_2 $$2MeSH$$aHumans
000010458 650_2 $$2MeSH$$aImage Processing, Computer-Assisted
000010458 650_2 $$2MeSH$$aMagnetic Resonance Imaging: methods
000010458 650_2 $$2MeSH$$aMale
000010458 650_2 $$2MeSH$$aPhysical Stimulation
000010458 650_2 $$2MeSH$$aStartle Reaction: physiology
000010458 650_7 $$2WoSType$$aJ
000010458 7001_ $$0P:(DE-Juel1)VDB18939$$aStöcker, T.$$b1$$uFZJ
000010458 7001_ $$0P:(DE-HGF)0$$aKellermann, T.$$b2
000010458 7001_ $$0P:(DE-Juel1)VDB46358$$aErmer, V.$$b3$$uFZJ
000010458 7001_ $$0P:(DE-HGF)0$$aWegener, H.P.$$b4
000010458 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, S. B.$$b5$$uFZJ
000010458 7001_ $$0P:(DE-HGF)0$$aSchneider, F.$$b6
000010458 7001_ $$0P:(DE-Juel1)131794$$aShah, J. N.$$b7$$uFZJ
000010458 773__ $$0PERI:(DE-600)1492703-2$$a10.1002/hbm.20965$$gp. 1675 - 1685$$p1675 - 1685$$q1675 - 1685$$tHuman brain mapping$$x1065-9471$$y2010
000010458 8567_ $$uhttp://dx.doi.org/10.1002/hbm.20965
000010458 909CO $$ooai:juser.fz-juelich.de:10458$$pVDB
000010458 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000010458 9141_ $$y2010
000010458 9132_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000010458 9131_ $$0G:(DE-HGF)POF2-89573$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vNeuroimaging$$x1
000010458 9201_ $$0I:(DE-Juel1)INM-2-20090406$$gINM$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000010458 9201_ $$0I:(DE-Juel1)INM-4-20090406$$gINM$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000010458 9201_ $$0I:(DE-82)080010_20140620$$gJARA$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x2
000010458 970__ $$aVDB:(DE-Juel1)120786
000010458 980__ $$aVDB
000010458 980__ $$aConvertedRecord
000010458 980__ $$ajournal
000010458 980__ $$aI:(DE-Juel1)INM-2-20090406
000010458 980__ $$aI:(DE-Juel1)INM-4-20090406
000010458 980__ $$aI:(DE-82)080010_20140620
000010458 980__ $$aUNRESTRICTED
000010458 981__ $$aI:(DE-Juel1)INM-4-20090406
000010458 981__ $$aI:(DE-Juel1)VDB1046