001     10458
005     20210129210521.0
024 7 _ |2 pmid
|a pmid:20205248
024 7 _ |2 DOI
|a 10.1002/hbm.20965
024 7 _ |2 WOS
|a WOS:000283641100005
024 7 _ |a altmetric:2155267
|2 altmetric
037 _ _ |a PreJuSER-10458
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Neurosciences
084 _ _ |2 WoS
|a Neuroimaging
084 _ _ |2 WoS
|a Radiology, Nuclear Medicine & Medical Imaging
100 1 _ |0 P:(DE-Juel1)VDB53016
|a Neuner, I.
|b 0
|u FZJ
245 _ _ |a Electrophysiology meets fMRI: Neural correlates of the startle reflex assessed by simultaneous EMG-fMRI data acquisition
260 _ _ |a New York, NY
|b Wiley-Liss
|c 2010
300 _ _ |a 1675 - 1685
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 2398
|a Human Brain Mapping
|v 31
|x 1065-9471
|y 11
500 _ _ |a Contract grant sponsor Bundesministerium fur Bildung und Forschung (BMBF), Contract grant numbers. BMBF 01GO0104 (to N.J S and Karl Zilles), BMBF 01GO0204 (to Brain Imaging Centre West); Contract grant sponsors Medical Faculty of the RWTH Aachen University ("Rotationsprogramm"; to IN)
520 _ _ |a The startle reflex provides a unique tool for the investigation of sensorimotor gating and information processing. Simultaneous EMG-fMRI acquisition (i.e., online stimulation and recording in the MR environment) allows for the quantitative assessment of the neuronal correlates of the startle reflex and its modulations on a single trial level. This serves as the backbone for a startle response informed fMRI analysis, which is fed by data acquired in the same brain at the same time. We here present the first MR study using a single trial approach with simultaneous acquired EMG and fMRI data on the human startle response in 15 healthy young men. It investigates the neural correlates for isolated air puff startle pulses (PA), prepulse-pulse inhibition (PPI), and prepulse facilitation (PPF). We identified a common core network engaged by all three conditions (PA, PPI, and PPF), consisting of bilateral primary and secondary somatosensory cortices, right insula, right thalamus, right temporal pole, middle cingulate cortex, and cerebellum. The cerebellar vermis exhibits distinct activation patterns between the startle modifications. It is differentially activated with the highest amplitude for PPF, a lower activation for PA, and lowest for PPI. The orbital frontal cortex exhibits a differential activation pattern, not for the type of startle response but for the amplitude modification. For pulse alone it is close to zero; for PPI it is activated. This is in contrast to PPF where it shows deactivation. In addition, the thalamus, the cerebellum, and the anterior cingulate cortex add to the modulation of the startle reflex.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|x 0
|c FUEK409
|a Funktion und Dysfunktion des Nervensystems (FUEK409)
536 _ _ |0 G:(DE-HGF)POF2-89573
|a 89573 - Neuroimaging (POF2-89573)
|c POF2-89573
|f POF II T
|x 1
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Adult
650 _ 2 |2 MeSH
|a Brain: physiology
650 _ 2 |2 MeSH
|a Brain Mapping
650 _ 2 |2 MeSH
|a Electromyography: methods
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Image Processing, Computer-Assisted
650 _ 2 |2 MeSH
|a Magnetic Resonance Imaging: methods
650 _ 2 |2 MeSH
|a Male
650 _ 2 |2 MeSH
|a Physical Stimulation
650 _ 2 |2 MeSH
|a Startle Reaction: physiology
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a neurophysiology, fMRI
653 2 0 |2 Author
|a startle reflex
653 2 0 |2 Author
|a MR artifact correction, prepulse inhibition
653 2 0 |2 Author
|a prepulse facilitation
700 1 _ |0 P:(DE-Juel1)VDB18939
|a Stöcker, T.
|b 1
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Kellermann, T.
|b 2
700 1 _ |0 P:(DE-Juel1)VDB46358
|a Ermer, V.
|b 3
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Wegener, H.P.
|b 4
700 1 _ |0 P:(DE-Juel1)131678
|a Eickhoff, S. B.
|b 5
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Schneider, F.
|b 6
700 1 _ |0 P:(DE-Juel1)131794
|a Shah, J. N.
|b 7
|u FZJ
773 _ _ |0 PERI:(DE-600)1492703-2
|a 10.1002/hbm.20965
|g p. 1675 - 1685
|p 1675 - 1685
|q 1675 - 1685
|t Human brain mapping
|x 1065-9471
|y 2010
856 7 _ |u http://dx.doi.org/10.1002/hbm.20965
909 C O |o oai:juser.fz-juelich.de:10458
|p VDB
913 2 _ |0 G:(DE-HGF)POF3-573
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Neuroimaging
|x 0
913 1 _ |0 G:(DE-HGF)POF2-89573
|a DE-HGF
|v Neuroimaging
|x 1
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|g INM
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|g INM
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 1
920 1 _ |0 I:(DE-82)080010_20140620
|g JARA
|k JARA-BRAIN
|l Jülich-Aachen Research Alliance - Translational Brain Medicine
|x 2
970 _ _ |a VDB:(DE-Juel1)120786
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INM-4-20090406
981 _ _ |a I:(DE-Juel1)VDB1046


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21