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Abstract

This work focuses on improving the coupled MD-MC simulation framework by enhancing
the MC++ code by H. Ganesan that is used to model strain aging processes in e.g. steel.
Key improvements include the addition of a LAMMPS (Large-scale Atomic/Molecular
Massively Parallel Simulator) interface to replace the discontinued IMD (ITAP Molecu-
lar Dynamics) library, the conversion of the EAM-potential (Embedded Atom Method),
and the translation of the concept of ’virtual atoms’ to LAMMPS which represent dis-
location sites in body-centered cubic (bee) ferrite. To further accelerate simulations, a
novel multi-pole coefficient based algorithm for predicting the potential energy of atom
configurations is proposed, based on database searches for similar configurations. This
approximation aims to reduce the computational cost of energy calculations, although
its accuracy and reliability are critically evaluated. Additionally, to address the assumed
increased data throughput required by the new algorithm, a modification of a parallel
replica method is introduced to the MC++ code, aimed at reducing communication
overhead while maintaining the accuracy of simulation results. These advancements are
expected to significantly enhance the efficiency and scalability of the MDMC simula-
tion framework for modeling strain aging processes in steel. Steel has long been a vital
material in engineering, with recent advancements in high-strength steels addressing
the automotive industry’s need for enhanced fuel efficiency and reduced environmental
impact. One key strengthening mechanism in steel, particularly low-carbon steel, is
strain aging, where carbon atoms segregate at dislocation sites, impeding dislocation
motion and enhancing yield strength. However, simulating strain aging processes—such
as carbon diffusion and dislocation evolution—presents significant challenges due to the
disparity in timescales involved. Molecular Dynamics (MD) and Monte Carlo (MC)
simulations offer complementary approaches to model these processes, but limitations
in computational efficiency persist. Thus the coupled MDMC framework was developed
which is further improved and accelerated in the course of this work.
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1 Introduction

Since the Industrial Revolution, steel has become a fundamental engineering material
with widespread applications in infrastructure, machinery and consumer goods. Recent
decades have seen significant advancements in high strength steels, particularly to ad-
dress the demands of the automotive industry for improved fuel efficiency in response to
increasing environmental concerns.

One critical strengthening mechanism in steels is strain aging, theoretically described by
Cottrell and Bilby in the year 1949 [2],[1]. They proposed that in low carbon steels, car-
bon atoms in solid solution migrate to dislocation sites, forming 'Cottrell atmospheres’,
which impede dislocation motion. In low carbon steels (= 0.002% C), strain aging is
exploited through a process known as bake hardening. Automotive components formed
from thin steel sheets undergo plastic deformation during press forming, followed by
thermal treatment during the paint-baking cycle (= 170°C' for 20 min), which results
in an increase in yield strength due to the immobilization of dislocations by segregated
carbon atoms.

The mechanical properties of alloys such as steel are often studied through atomistic
simulations, with classical Molecular Dynamics (MD) and Monte Carlo (MC) methods
being widely employed for this purpose [5]. Molecular Dynamics simulations calculate
atomic trajectories by solving Newton’s equations of motion and utilizing empirical force
fields like the Embedded Atom Method (EAM). While MD offers accurate modeling of
defects and their evolution in crystalline materials, its time step is typically on the order
of femtoseconds, limiting the simulation duration to nanoseconds. This makes simu-
lating rare events, such as carbon diffusion, particularly challenging, as these processes
occur over much longer timescales (seconds to hours).

In contrast, Monte Carlo (MC) methods adopt a stochastic approach, exploring system
configurations via random perturbations. The Metropolis algorithm [20] is commonly
used in Monte Carlo applications, which is not constrained by physical time, making it
ideal for simulating diffusion processes like carbon migration. By coupling MD and MC,
researchers can model both dislocation evolution and carbon segregation in a unified
framework. This coupling is achieved using ’virtual atoms’ [10, p.27f], which serve as
placeholders for all octahedral sites in body-centered cubic (bcc) iron. However, the ef-
ficiency of this coupling requires parallelization, as simulating large volumes of material
and their deformation or segregation mechanisms would be computationally prohibitive
without it.

This work is mainly dedicated to the improvement of the MC++ code by H.Ganesan,
which implements such an MDMC framework [10],[11],[12] for the simulation of strain
aging processes. These improvements include not only technical aspects such as the
implementation of a LAMMPS [16] interface in addition to the existing IMD [14] inter-
face for MD simulations, but also methodological additions to accelerate the execution
of MDMC simulations. The need to add a LAMMPS interface is due to the fact that
active support for IMD has been discontinued and therefore an alternative is needed in
the long term. In addition to adaptations in the code, this changeover also requires the



conversion of the EAM potential and the implementation of the concept of virtual atoms
in LAMMPS.

To accelerate the MDMC simulations, an algorithm will be introduced that can approx-
imately predict the potential energy of local atom configurations without the need for a
full computation of the atom interactions. This will be realized by a similarity search
in a database [3] in which all local configurations that have occurred in the course of
a Monte Carlo atom exchange are stored. The approximation of the potential energy
of a new configuration is done by searching for a similar configuration in this database.
If such a configuration can be identified, its energy is used as a prediction for that of
the current configuration. In order to significantly reduce the amount of data stored in
the database and to simplify the determination of similarity, multipole coefficients [6] of
several orders and moments are used as descriptors for these configurations. This also
introduces a certain degree of uncertainty when comparing two configurations, as the
information content is also drastically reduced by the alternative representation. It is
therefore also necessary to investigate the reliability and accuracy with which the poten-
tial energy can be predicted. If this can be guaranteed, the introduction of the energy
prediction can be expected to significantly speed up the MDMC simulation, as this can
also eliminate a large proportion of the time-consuming MD simulations.

Since the search in the database is an important part of the prediction algorithm, two
other models are considered in this thesis in addition to the simplest model and their
search performance is compared.

As already mentioned, parallelization is an essential component for increasing the perfor-
mance of MDMC simulation. Since the introduction of the energy prediction algorithm
is expected to require a significantly increased throughput of atom data, it is assumed
that the current master-worker approach may reach its limits for many processors, or
at least that the communication overhead will increase significantly. For this reason,
a modification of the parallel replica method [7] will be implemented in the course of
this work. This should reduce the necessary communication, especially for long simula-
tion runtimes, while achieving comparable results in terms of system energy as with the
master-worker scheme. It is to be determined if this method represents a valid alterna-
tive, or at least addition, for the master-worker approach.



2 Theoretical Preliminaries

2.1 Particle Simulations

Particle simulations are applied to explore the properties of varied materials like mechan-
ical, thermal, magnetic, optical and electric behavior. They are most commonly found in
the field of solid state physics, theoretical chemistry and material science. While meth-
ods like e.g. Density Functional Theory (DFT) are accurate, they are computationally
expensive [21]. Therefore other methods like Molecular Mechanics and Monte Carlo are
often preferred as they can handle systems of bigger size.

2.1.1 Molecular Mechanics

Molecular Mechanics focus on the classical laws of mechanics. It considers the interaction
of the many-body system as well as different external and environmental conditions like
added temperature or pressure. To perform a simulation with Molecular Mechanics there
are specific requirements that can be divided into three categories:

1. Initial Configuration:
An initial system must be given which is in a physically correct state in order to be
able to carry out the simulation from there. In this work, iron-carbon systems that
form a homogeneous lattice structure are considered in particular. The correctness
of material parameters such as the crystal structure, lattice constant and potential
energy of the atoms must therefore match as well as the elementary properties of
the individual atoms such as mass.

2. Potential:

If there is an initial system for the material under investigation, atomic move-
ments and thus structural changes are caused by an imbalance of forces between
individual particles. To calculate these forces, a potential function is used which,
depending on e.g. distance, density and atomic species, provides the resulting force
for each atom and thus not only specifies a direction of movement, but can also
provide a total energy of the system.

One of the simplest potentials is the pair potential. Here, the force F; ; between
two atoms ¢ and j depends solely on the distance r; ; between those two. Another
parameter varies the distance at which the atoms exert neutral force on each other.
If two particles are closer to each other, they are repelled, otherwise attracted. In
order to calculate the resulting force for a particle, the sum of the individual forces
to all particles must be calculated. Since this step would have a complexity of
O(%) under the assumption of symmetrical forces, only all particles within a



cutoff radius 7. are usually considered, since the forces are very small for larger
distances.

As such a pair potential is not sufficient to mimic the properties of a metal lattice,
more complex potentials are necessary. One such potential is the Embedded Atom
Model (EAM) of Daw and Baskes, which is based on DFT [23]. The total energy
of a system can be calculated as follows:

Etor = ZFi(ph,i) +% > 24(Ry) (1)

1,451 7]

n
Phyi = Z P (Rij) (2)
Jig#i

Thereby ®;; is the pair potential between atoms i and j with euclidean distance R;;.
The local electron density py; is the combined sum of densities of the neighboring
atoms pj with distances R;; which is then evaluated by the cohesive function F;. In
practice this function is determined empirically based on the type of material used
and its properties (e.g. lattice-type, lattice constant,..). By adding the electron
density this many-body potential is able to handle crystal structures even if they
have cracks or impurities [9, p.14f, p.30f]. Therefore an EAM potential for FeC
interactions was chosen to compute the necessary energies in this work.

. Evolution algorithm:

The evolution of atom coordinates in a Molecular Mechanics simulation depends
on the choice of the potential but also on the applied evolution algorithm. Those
can be classified in two categories: Molecular Statics (MS) and Molecular Dynam-
ics (MD).

Molecular Statics focuses on finding the minimal energy state of an initial config-
uration. The system is therefore observed at a temperature of 7= 0K eliminat-
ing particle velocities and thus momentum. The minimization consists solely of
structural changes of the configuration. Applying the potential-function yields a
force along the potential gradient for each particle. This can be used for common
minimization algorithms like Steepest Descent, Conjugate Gradient or FIRE [13].
Molecular Statics algorithms are often applied to generate initial configurations for
Molecular Dynamics [9, p.16].

The main difference of Molecular Dynamics to Statics is that each particle may
have a non zero velocity in addition to its position. For each time step &t the forces
on all atoms are calculated. Applying Newtons equation of motion F' = m-a yields
the acceleration on each atom and thus the change in velocity that is to be applied.
Multiple integration schemes exist to achieve the position update. Those provide
different benefits like accuracy, reversibility, stability, speed or conservation of en-
ergy. Usually the time step has to be chosen quite small (1fs) for the Molecular
Dynamics algorithm to work. This is also a huge limiting factor as it is not feasible
to run Molecular Dynamics on greater timescales [9, p.18].



Figure 1: Example for an initial configuration for an iron-carbon system that the MDMC
simulation was exerted on. The system has a nano-indentation on the top
which should provide enough lattice distortions so that Cottrell atmospheres
can form.

2.1.2 Monte Carlo

Monte Carlo (MC) methods represent a stochastic approach to exploring the phase
space of a system. In this work the Metropolis algorithm [20] was employed. Instead
of evolving the system continuously like MD, the method undergoes a sequence of trial
moves where particles are randomly displaced. For each such move the energy change
AF of the system is observed which leads to acceptance or rejection of it. One possible
probabilistic criterion for acceptance is given by the following equation where kg is the
Boltzmann constant and T' the temperature.

_AE
Paccept = min (17 e HBT) (3)

If the systems temperature is T'= 0K the configuration with the lower energy is always
accepted. This mimics the Molecular Statics behavior. While Monte Carlo offers the
advantage of potentially faster and less computational expensive convergence for certain
properties, its brute-force nature may lead to high rejection rates in the long run. To



address this, biased Monte Carlo methods can be applied which weight the sampling
towards the regions that where more rewarding in the past.

2.2 Introduction to MDMC-Simulations

One possible application of MDMC Simulations is to model the formation of Cottrell
atmospheres [2], which result from the segregation of interstitial solutes like carbon in
metallic alloys (e.g. iron-grid). In this context, segregation refers to the inhomogeneous
distribution of solute atoms in a crystalline solid, often driven by the presence of lattice
defects that modify local energies and promote solute accumulation in specific regions.
As the name implies MDMC Simulations combine the benefits of the Monte Carlo
Method with the accuracy of Molecular Dynamics/Statics to accomplish this task. The
Cottrell atmospheres form over a long time period from several minutes up to multiple
hours which makes a Molecular Dynamics based approach not feasible concerning the
computational cost. As the diffusion process is thermally activated a Molecular Statics
simulation would usually not work.

These problems can be overcome by the Monte Carlo method, since it is not dependent
on simulating the whole diffusion process for each carbon atom. In the course of an MC
trial move a random carbon atom is determined whose position is changed locally or
globally. If the repositioned carbon atom is located close to a lattice defect or a forming
Cottrell atmosphere, there is a higher probability that the configuration resulting from
the swap will lead to a lower system energy. To increase the accuracy of this process, a
local relaxation is performed before the system energy is evaluated so that the carbon
atom is in the most favorable position and the iron grid is aligned. In combination with
the Monte Carlo method a relaxation with Molecular Statics becomes feasible again as
the atoms are able to overcome the thermal barrier as they simply change positions.
Such a local relaxation in comparison to simulating the whole configuration has several
advantages. Firstly, it greatly reduces the number of atoms to be relaxed, which sig-
nificantly shortens the determination of the position and energy changes of the atoms.
Meanwhile, the final result is not very different from that of a global relaxation, since
the pair interaction forces are subject to a cutoff distance that sets all forces on particles
beyond this barrier to zero and the distortion of the lattice is strongly damped due to
the strong iron-iron interaction. On the other hand, this allows parallel processing of
several trial moves, provided that their relaxation regions do not overlap.



Figure 2: The figure shows the local spheres of particles around the current and future
positions of a carbon atom. The future position may be anywhere in the
system and so the local relaxation areas are usually independent of each other,
as shown in the picture. These local spherical configurations are extracted
from the whole particle configuration. The inner zone contains the virtual
atoms (blue) in addition to the iron (red) and carbon (purple) atoms. As the
outer zone only serves as stable mantle around the inner one that is relaxed,
it does not need to contain the virtual atoms.

To allow a seamless integration of a locally relaxed configuration back in the system, the
relaxation space is made up of three zones. In the core zone, which makes up the largest
part, all particles are relaxed and the potential energies are calculated. The particles
can move freely according to the EAM potential. In the surrounding transition zone,
the potential energies are also determined, but all particles are held in place so that
this zone limits the internal particles in their expansion. In the outermost zone, the
mantle zone, no energy determination takes place and all particles are also fixed. The
sole purpose of this zone is to ensure that the energies of the particles in the transition
zone are calculated correctly and that these particles experience both pressure from the
inside and a counter-pressure from the outer particles.

In bcc iron lattices, the carbon atoms preferentially occupy octahedral interstitial sites
due to their small size compared to the host iron atoms. One problem that arises from
this for the Monte Carlo method is the effective localization of these interstitial sites.
Especially if the lattice gets distorted during the simulation, the interstitial sites also
move which makes finding valid sampling sites more complex.



2.2.1 Virtual Atoms

To overcome these limitations, the concept of virtual atoms was introduced. These
pseudo-atoms are positioned at all octahedral sites in a defect-free bee iron lattice. The
role of virtual atoms is to represent potential sampling sites for the carbon atoms with-
out introducing physical interference with the simulated material. This is accomplished
by restricting the interacting forces between virtual and non-virtual atoms to be asym-
metrical so that the virtual atoms exert no forces on non-virtual ones. Thereby the
virtual atoms behave like carbon atoms as they share the same mass and potential func-
tion. After minimizing the system energy, the virtual atoms are present in their local
minimum without affecting the system itself. If the position of a carbon atom is to be
varied in the course of a Monte Carlo trial move, the position of a random virtual atom
is determined instead of a random position. If the carbon atom is then swapped with
this virtual atom, it is already in an almost optimal position, so that the effort for the
subsequent relaxation of the MDMC simulation is also reduced. Another benefit from
using virtual atoms as sampling sites is that under normal circumstances sampling sites
never lie within other existing atoms which would make them invalid.

2.2.2 Improved Sampling Algorithms

The sampling of interstitial sites can be further improved than just with virtual atoms.
The simulated systems is therefore divided into multiple cells. For each of those the rate
of accepted and rejected trial moves is tracked. Based on this data a most promising
cell is determined, where the next virtual atom for the trial move is to be picked from.
This procedure is especially valuable to simulate the formation of Cottrell atmospheres
as this sampling algorithm is able to actively react to changes in the system. If for
example such an Atmosphere gets saturated, the algorithm is able to choose another,
perhaps formerly less favorable, location to form a second Cottrell atmosphere in. A
more detailed description of this biased sampling algorithm and its various parameters
can be found in the work of M. Longsworth [18].

2.3 Multipole Coefficients

2.3.1 Legendre Polynomials

Legendre polynomials are a special kind of function that have the property to be or-
thogonal to each other. Furthermore integrating the polynomial in the interval [—1,1]



should yield 1 as solution. These restrictions lead to the following definition:

[ Bn@ B @ar=0 vnmeN ngm @
-1

Together with the additional condition P, (1) = 1 all Legendre polynomials of the first
kind can be determined. An alternative definition is given by the solutions to the Leg-
endre differential equation [24, 14.2(i)].

d? d

@PH () —2x—P, (x) +n(n+1)P,(x) =0 (5)

(1 — :172) dz

This equation arises naturally in a physical context, if the Laplace equation is solved in
spherical coordinates. The polynomial solution is not the only solution to this second-
order differential equation as there is also a non-polynomial one called Legendre functions
of second kind.

As the given approaches to retrieve the polynomials can be tedious for higher orders of
n an explicit way to get those is given by Rodrigues formula [17, p.334].

]. dn n
Pul@) = g gar =) ®)

2.3.2 Associated Legendre Polynomials

The associated Legendre polynomials are the solution to the general Legendre equation
which is related to the Legendre differential equation in Eq. (5). The general Legen-
dre equation is a two parameter generalization of this formula which is given by [24,
14.2(ii)]:

(1 — m2) d—QPm (x) — 2miPm (x) + (E (L+1)— m2> P (x)=0 (7)
da?"* da™* 1—22)° ¢

The two indices £ and m stand for the degree and order of the polynomial, respectively.

This equation only has solutions on [—1,1] if £ and m are integers and 0 > m > /¢ or

—¢ > m > 0. For m = 0 this equation describes the ordinary Legendre polynomials.

For m > 0 the associated Legendre polynomials can also be written as derivatives of

ordinary Legendre polynomials Py(z) [24, 14.6(i)].

PP = ()" (1-a2) % P ®)

Using Rodrigues formula from Eq. (6) P;"(x) can also be expressed in the form [24,

p. 14.7.10]:
- —1)m m dﬂ-l—m ,
B (z) = (W)! (1=2%)7 g (1-27)

9)



This way of expressing the formula allows m to be —¢ > m > £. It can be shown that P;"
and P, ™ are proportional to each other with proportionality factor ¢;,,, which results in
the following representation.

Eom) pm () (10)

Py (z) = (=)™ 5 m)!

The associated Legendre polynomials can be calculated recursively which is advanta-
geous if they are used in context of computational science. The most helpful recurrence
formulas are given by:

Piil(x) = —(20+ 1) V1 —22P/ (x) (11)

4
2

Pf(x) = (—1)" 20— 1)1 (1 —2?) (12)
Ploy (@) =2 (20+1) Pt () (13)
Thereby the double factorial n!! is not equal to (n!)! but:
[51-1
nll= T[] (n-2k) (14)
k=0

2.3.3 Reparameterization

The associated Legendre polynomials can be reparameterized with x = cos () resulting
in the following representation of the formula:

dm

P (cos (0)) = (=1)™ (sin (9))™ d(cos (0))

Py (cos (0)) (15)
Given this alternative representation the definitions of orthogonality also have to be
adjusted. For fixed m two polynomials are orthogonal if they satisfy [24, p. 14.17]:

/Oﬂ P (cos (6)) PY" (cos () sin (6) 40 = o, i(i )+( Zl_)’m)'(;k,g (16)

where 0y, ¢ is the Kronecker delta function. For fixed ¢ two polynomials have to meet the
following equations to be orthogonal.

. 0 m#£n
/0 Py" (cos (6)) P} (cos (6)) csc (0)d6 = { A&l £ (17)
00 m=n=20

The underlying differential equation that is solved by this reparameterized function can
be written as:
d2

y dy m? _
o ot (0) ) + (z(u - (9)2> y=0 (18)
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2.3.4 Spherical Harmonics

Spherical harmonics play an important role in many theoretical and practical applica-
tions. One of those is the spherical multipole expansion where the basic Laplace spherical
harmonics Y;" (6, ¢) are used. Those functions are closely connected to the associated
Legendre polynomials as they also form an orthogonal system. When the Laplace equa-
tion is solved in spherical domains, the obtained solution is called a spherical harmonic.
Given 0 as colatitude and ¢ as longitude the Laplacian in spherical coordinates is:
2, d*f df d*f

VfZ@—FCOt@@-FCSCQ@ (19)
Solving the partial differential equation V2f+\f = 0 yields a ¢-dependent part sin (me)
or cos (m@) for m > 0 and a f-dependent part:

d?y dy m?
S — = 2
d92+cot0d6+<x\ sin(0)2>y 0 (20)

The solution for this equation is already known from Eq. (18) and is given by the
associated Legendre polynomial P;"(cos (0)) for £ > m and A = £(£ 4 1). It can be
shown that the equation V2f 4+ Af = 0 only has solutions if A = ¢(¢ 4 1) and those
solutions are proportional to the following two functions:

P;" (cos (0))cos(m-¢) 0<m<{

P" (cos (0))sin(m-¢) 0<m</{

Therefore, the spherical harmonics Y," (6, ¢) are often expressed as complex exponen-
tials. ‘
Y;(0,¢) = N - ™ P (cos (0)) —£<m </ (21)

Thereby N is a normalization factor which is chosen based on the application of the
spherical harmonics. In the field of quantum mechanics for example this is often chosen

oo (D

2.3.5 Multipole Expansion

Multipole Expansions are often used to describe potential fields in three dimensional
space. This is done by constructing a mathematical series based on the charges ¢; and
positions of the atoms. In this work those positions are denoted in spherical coordinates
instead of carthesian to simplify the expansion for higher orders. This leads to an atom

11



been described by the angles 6 for colatitude and ¢ for longitude and r for the distance
to the origin 7 of the evolution. The expansion series ®; can be written as sum of
spherical harmonics O} [8].

s J4

e (T) =) > wi'(P) (23)

{=0 m=—¢

N
wi' (P) = Z%’OT (ri) ri=pi— Tl (24)
=1

Thereby s is the maximum order of the expansion. For each order ¢ and moment m
the spherical harmonic Oy" is evaluated and multiplied by the charge of the atom at the
position p;. The single results are then summed to the series ®; which is getting more
detailed the higher s is chosen.

!

OF (rs) = G ¥ (eos (Br)) e (25)

The spherical harmonic has the same base form as in Eq. (21). The prefactor N is
chosen so that multipole moments of higher order have less impact on the final value of
the series. Further the atoms in greater distance to the origin p of the expansion have
higher impact. The associated Legendre polynomial P;" is once recursively constructed
for the current m and ¢ and then evaluated for all the 6,, of the atoms.

In this work the multipole expansion is used to get a less complex descriptor for a con-
figuration of atoms. Usually for each atom three values have to be stored to describe its
position which gets computationally expensive if two groups of atoms have to be com-
pared in terms of position differences. As this is the main idea behind the performance
increase the multipole expansion is used to lower the number of computations while still
describing the atom distribution in acceptable detail. This is done by calculating the
different multipole moments apart from each other for all atoms to get e.g. 15 values
for s = 5 which are usually summed but instead can be compared to the mutipole coef-
ficients of other atom groups.

In this context one change was done to the formula for the spherical harmonics in Eq.
(25). As a change in atom position close to the origin of the expansion should be of
more importance than one that lies further out the parameter rf in the prefactor N was
swapped from the nominator to the denominator. Further the exponent ¢ vanishes to
assure that the low order multipole coefficients give the same weight to r; as the high
order ones. This prevents the coefficients to change non-linearly for rising orders ¢ for
the same change Ar in distance to the origin of expansion.

These changes lead to the following version of the formula to compute the multipole
coefficients.

OF (1) = s P c0s (61,)) ™ (20)
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2.4 Parallel Replica Method

The Parallel Replica Method is a technique that can be applied to speed up finding rare
events, energy minimization or Molecular Dynamics simulations of systems that very
rarely change their state [7], [22], [25]. It significantly improves the performance of those
systems by parallelizing the wait time for new state transitions. The discussed variation
of the Method can be divided into three main steps that are continuously repeated [7].

e Decorrelation:
A single process runs a regular MD simulation starting from the current system
state until the correlation time s. is reached. Afterwards a copy of the current
configuration is broadcast to all other processes.

e Dephasing:
Each receiving processor also executes an MD simulation of the received config-
uration. Thereby the velocities are randomized to ensure that the replicas are
statistically independent. If there is no state transfer happening over a time span
on s. the replica is considered 'dephased’ else the MD simulation is repeated until
this condition is met.

o Parallel search:
If all replicas are ’dephased’ they initiate yet another MD run. The first replica
running into a state transfer during this simulation stops all other replicas. The
current configuration is then accepted as new state and the total simulation time
is advances by the time the replica took. Afterwards the cycle is repeated starting
from the updated state.

There are various ways to determine the correlation time s.. One of the simpler methods
monitors statistics like residence time and transition rates. If the results are inconsistent,
because the state transitions happen in quick succession before the configuration has
settled, s, is too short. On the other hand if very few transitions occur or the dephasing
step has to be repeated multiple times the correlation time might be to long.

In this work the idea of the Parallel Replica Method is applied in a slightly deviated form
to measure its performance gain compared to the former master-worker approach. With
increasing number of Monte Carlo sampling steps the probability to accept a random
trial move decreases as the diffusion sites get more saturated. This leads to fewer state
changes and longer wait times in between accepted states. The idea of introducing the
Parallel Replica Method is that instead of the master generating and distributing the
trial moves to the workers each worker has an exact replica of the whole configuration
and performs trial moves by itself. After one worker has accepted N valid states, it
informs all other processes that are then synchronizing their systems to the one with
the lowest total energy. Afterwards the workers continue performing trial moves on the
updated configuration.
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3 Implementation

3.1 MC+4++ Lammps interface

In the course of this work, the existing MC++ code was extended by a LAMMPS in-
terface. Since the currently used program for the execution of MD simulations (IMD) is
no longer maintained, a replacement had to be found so that the MC++ code remains
usable in the future. The choice fell on LAMMPS (Large-scale Atomic/Molecular Mas-
sively Parallel Simulator) because it is not only an alternative to IMD, but also offers
many additional functions and an active community. In addition, it is possible to in-
tegrate LAMMPS as a library, which opens up many more possibilities. The following
section explains some of the obstacles encountered during implementation and gives a
brief overview of the functionality of the implemented LAMMPS interface.

3.1.1 Mimic Virtual Atoms

The use of virtual atoms in combination with the Monte Carlo method offers an enor-
mous advantage when finding sampling sites. Since the virtual atoms are included in
the relaxation process just like all others, the MD program must support asymmetric
forces. This modification was subsequently added to IMD. In LAMMPS however, the
basic assumption is that all forces between particles act symmetrically. The loops for
e.g. determining the neighbor lists or the pair interactions are adapted accordingly in
order to increase the performance. An integration of asymmetric particle interactions
in LAMMPS would therefore require a complete restructuring of the code. Since this
would not only have meant an immense amount of work, but would also have required
subsequent maintenance of the custom LAMMPS code in the event of version changes
to the main version, this step was not taken in the course of this work.

Instead, a workaround was found that does not require any changes to the LAMMPS
implementation and delivers correct results as long as the simulated system is not too
volatile, such as liquids or gases. As a first step the EAM potential file containing all the
sampled pair-interaction- and density-functions was translated into a LAMMPS read-
able format. For this purpose, many of the existing sampling points of the functions
had to be interpolated, and half of the pair interaction functions were omitted since all
interactions are implicitly considered symmetric. A few of those functions are shown in
the following figure.
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Figure 3: To be compatible with LAMMPS, the EAM-potential file had to be rewritten
in a different format. This format requires, that the sampling starts at a
distance of R;; = 0A and applies the same sampling range and interval to
all functions. The plot shows three of the electron density functions p(R;;).
Thereby the 'new’ resampled functions are laid behind the ’old’ ones.

To carry out the relaxation step of a trial move, the previous and future positions of the
carbon atom to be swapped are first determined. All particles within a sphere around
these two points are extracted from the whole configuration and assigned to the cen-
tral, transition or mantle zone depending on their distance from the center. The carbon
atom is replaced by a virtual atom and inserted at the new position. These atoms are
then added to the LAMMPS simulation with the command "lammps__create_atoms(...)’
and assigned to a corresponding group according to their zone. The particles of the
transition and mantle zones are fixed at their respective positions with the help of the
LAMMPS command ’fix setforce 0 0 0. The subsequent relaxation can be divided into
three sub-steps.

The first step involves canceling the pair interactions between the virtual and non-virtual
atoms. This is done by modifying the neighbor lists by deleting the other particles from
these lists. In addition, the virtual atoms are also kept in place. Subsequently, an en-
ergy minimization with 'minimize’ takes place, which uses the 'FIRE’ algorithm as the
minimization procedure.

Afterwards the iron and carbon atoms should be in the local energy minimum. There-
fore, in the second step, they are held in position and the virtual atoms can move freely
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again. The neighbor lists are also completed so that the iron and carbon atoms interact
with the virtual ones. The energy is then minimized a second time. This time only the
virtual atoms move to their energetic minimum.

In the third and final step, the potential energy of the extracted particles is determined.
To do this, the virtual particles are removed from the neighbor lists. Then the energy is
calculated for each atom using the compute command ‘compute pe/atom’. These ener-
gies can then be summed up to determine whether the performed trial move is accepted
if the resulting energy is lower than that in the beginning.

If this is the case, the particles of the base configuration are replaced by the relaxed ones.
This seamless integration is possible because neither the particles from the transition
zone nor the mantle zone have changed their position and can therefore be exchanged
without creating stresses in the surrounding system as the zone sizes are chosen accord-
ingly to the cutoff radii.

3.1.2 Acceleration Techniques

The MDMC algorithm can be accelerated in several ways. With the present master-
worker approach, several trial moves can be processed simultaneously. This includes the
relaxation step, since the extracted spheres are mostly independent of each other. In case
of an overlap of these volumes, the master must resolve this conflict and discard all but
the best configuration. These problems as well as the resulting job queue management
is further discussed in the work of H. Ganesan [9]. The expected speedup corresponds
to the maximum number of simultaneously active worker processes. Since the master
generates all trial moves and distributes them to the workers, including the extraction
of the particles in the spherical areas, it reaches its limits with high processor numbers.
For this reason, a parallel replica method was introduced to the MC++ code in addition
to the master worker scheme. Its functionality and further details are covered in a later
section.

Together with the implementation of the LAMMPS interface, the possibility of multiple
processes working on the same trial move has also been added. This has the advantage
that the relaxation step is accelerated for very dense particle packings or larger extracted
spheres, as this is the most computationally intensive step.

3.2 Energy Prediction

Due to the relaxation step being so computationally expensive, this work addresses the
question of whether it is possible to completely omit the relaxation step in some cases.
The underlying idea is to use a method that can predict the expected energy changes of
a trial move with a high degree of confidence. If the prediction is that a positive energy
delta is to be expected, the relaxation step can be omitted and the next trial move can be
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processed. The predicted energy for a configuration is based on the similarity to previous
configurations. If two configurations are identical except for minimal differences, a sim-
ilar potential energy can usually be expected. This comparison with past configurations
requires the use of a database and an efficient similarity search to keep the overhead as
low as possible. Another aspect that helps to minimize the additional overhead is that
instead of the actual configurations, their multipole coefficients are compared, refer to
2.3.5. With a sphere radius of 20 for the extracted configurations, this means a difference
of about 15,000 particles with 3 coordinates each to a total of 15 coefficients used for
describing the configuration. In the following sections, the operation of the prediction
algorithm and the sampling for the coefficients database will be discussed in more detail.
Furthermore, different database models are discussed to make adding and searching for
coefficients more efficient.

3.2.1 Prediction Algorithm

The process of predicting an energy difference for a given trial move can be divided into
multiple steps:

1. After the worker has obtained the trial move configuration containing the two
spheres of particles, consisting of center, transition and mantle particles, a further
extraction step is performed. All IDs of the atoms within a distance 7.y, from
one of the centers are determined. This is done in order to further reduce the
computational effort for the prediction step. Since the prediction algorithm relies
solely on positional criteria and the displacement of the particles is greatest near
the carbon insertion or extraction site, the region near these points is the most
important. The extraction radius 7., has to be chosen as high as necessary
to still describe the configuration in detail but also as low as possible to reduce
computing cost and therefore overhead as well as noise induced by describing too
many particles with too few coefficients.

2. In the second step, the multipole coefficients of the extracted particles are deter-
mined. This is done by calculating the distance to the corresponding center of the
sphere as well as the longitudinal and latitudinal angles for each particle. Then,
as described in Section 2.3.5, the multipole coefficients are determined for each
sphere center, but not summed up and kept separate from each other instead.

3. This is followed by a search for a similar sample in the coefficient bank. During this
process, all samples with a deviation of less than 1% per coefficient are identified.
However, it is essential that the first coefficient, the number of particles, matches
exactly. If no corresponding sample can be found, the sample with the highest
match is selected. In this context, “highest match” implies that, starting with
the first coefficient, as many successive coefficients as possible must match thus
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in the worst case only the first two match. If a larger number of similar samples
are found, the one with the highest weight is prioritized. The weighting of the
individual coefficients is discussed in a later section. If a sample with the highest
match is identified at the end of the procedure, a predicted energy is also stored
with it. Dedicated databases exist for the insertion and removal of carbon atoms.
If no matching coefficients can be found in at least one of these databases, no
energy prediction can be carried out.

4. The energy difference is determined by adding the energy predictions for the in-
sertion and removal of the carbon atom and comparing it to the current potential
energy of the trial move configuration. The quality of the prediction depends on a
large number of parameters. It is essential that the database has been adequately
trained. Furthermore, it should be noted that the required matching accuracy of
the coefficients and the extraction radius 7.yt have a significant influence on the
result. In addition, it is possible to regulate the level of detail of the configuration
descriptions by means of the order ¢ of the multipole expansion (see Section 2.3.5).

3.2.2 Configuration Sampling

The previous section described how the energy prediction works. What happens to the
result of this prediction will now be explained in more detail.

If no similar sample could be found in the database for the current configuration, the
usual relaxation step is carried out. The potential energy of the particles located within
the corresponding sphere with radius 7., is then determined. This energy is used in
combination with the determined multipole coefficients to add new samples to both
databases.

If a lower resulting energy is predicted for the current trial move, the relaxation step is
carried out in each case as this is the desired result of a trial move. An additional sample
is then added to each database. As part of the evaluation, the validity of the prediction
is analyzed and the extent to which it deviates from the actual result. The credits of the
corresponding sample in the database are adjusted depending on the correctness of the
prediction. A detailed explanation of these sample-credits is provided in a later chapter.
If the algorithm predicts an increase in potential energy, the relaxation can be omitted
and the trial move rejected. One problem that arises from this is that in this case no
new samples can be generated for the database, as no energy is calculated. As a result,
the configurations with a positive energy delta are also less frequently represented in
the database in the long term. Since it is necessary that these cases can be reliably
recognized and thus must be represented sufficiently often, a criterion should be found
according to which a relaxation nevertheless takes place.

One such criterion is the probability peo-» with which correct energy predictions are made.
At the beginning, this probability is 0% and increases with each correctly estimated
energy change. If a higher energy is predicted as the result of a trial move, a cross-
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check is initiated with a probability of 1 — peorr by carrying out a relaxation anyway.
This procedure ensures that, with sufficient reliability, more and more relaxations are
omitted, but still a sufficient number are carried out to fill the database accordingly and
make predictions.

3.3 Coefficient Database model

As previously mentioned, the choice of database structure plays an important role in
minimizing the overhead required for energy prediction. The search for similar coeffi-
cients in the database takes the most time, but the insertion of new samples into the
database should not be neglected either. In the following, three database structures are
examined in more detail and their advantages, disadvantages and implementation are
briefly discussed.

3.3.1 Linear Database

The linear database is the first and simplest implementation of such a structure. All
samples are stored one after the other in a large list. The coefficients are not sorted.
Assuming the default parameters, a sample has 21 individual values. Of these, 15 are
multipole coefficients, one contains the predicted energy and the other 5 contain the
weight and credits of the sample as well as 3 placeholders for future parameters. Adding
an entry to this list has a negligible overhead of O(1), since only one more entry is
appended to the end. Searching for similar coefficients, on the other hand, requires
considerably more effort. All entries in the database list have to be iterated. In addition,
the coefficients of each entry must be iterated again to determine the degree of similarity,
as described in Section 3.2.1. The total effort to find a similar coefficient therefore should
have a complexity of O(n), where n is the number of samples in the database.

In order to confirm the expected scaling behavior, several test runs were carried out.
For this purpose, random multipole coefficients were generated, each assuming equally
distributed values between —10 and 10. A total of 40,000 of these randomly generated
coefficients were entered into a linear database. After each insertion process, a random
sample was searched for from the database and the time required for this was determined.
These times are shown in figure 4 together with the function f(x) = x and confirm the
assumed scaling behavior of O(n).
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Figure 4: Necessary time in microseconds to search a random sample in a linear database
with size N. The samples consist of randomly generated multipole coefficients,
where each value is drawn from an equal distribution from —10 to 10.

3.3.2 Sorted Database

The first approach to speed up the database search is to sort the coefficients. For this
purpose, a new database structure was created that maintains a separate list for each
of the 21 entries of a sample. The first 15 lists containing the coefficients are sorted by
size. The individual values are stored together with an index to enable the individual
coefficients to be clearly assigned to a common database entry.

The sorting of the coefficients makes it possible to search for similar samples using binary
search. For each of the 15 searched coefficients, the values in the 15 lists that are closest
to it are searched for. Based on these values, all other values that lie within the tolerance
are determined. Due to the sorting, these are immediately before or after the most similar
value in the list. For the next step, the indices of these entries determined in this way
are summarized in a list, so that in this case there are 15 separate index lists. Then,
starting from the index list for the first coefficient, the largest possible intersection of all
indices is determined. If the same index is represented in k lists, the first k coefficients
of this entry are within the similarity tolerance. To subsequently obtain the predicted
energy, the list of energies is searched for the entry with the corresponding index.

One problem with this database model is the insertion of new samples. This requires a
re-sorting of all coefficient lists, which has a complexity of O(n -log(n)). Although the
addition of new samples can be buffered so that the lists are sorted every n added entries,
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the scaling behavior is still significantly worse than that of the linear database model.
Further the Overhead introduced by the required additional indices and the algorithm
for finding the biggest intersection make this approach undesirable for larger Databases
which also can be seen in figure 5.

1x10© -
linear database
search sorted database
100000 L expand sorted database
O(n)
O(nlog(n))

10000 ¢

1000 |

100 ¢

microseconds

10

0.1 : - :
1 10 100 1000 10000

number of samples

Figure 5: Necessary time in microseconds to search a similar sample in a sorted database
of size N using binary search and index-intersection. While faster for database
sizes of about N = 1000 the Sorted-Database model has worse scaling than the
linear approach. Furthermore the addition of samples to the sorted database
requires a resorting of the coefficient lists. The necessary time for sorting is
much higher than the search times as it scales with O(nlog(n))

3.3.3 Multidimensional Database

The multidimensional database is a modification of the linear database model. The
underlying idea is to replace the single large sample list with several smaller ones in
order to speed up the search by reducing the length of each list. For this purpose,
a binning procedure is applied, which roughly sorts the multipole coefficients so that
similar coefficients are located next to each other in the database.

Assuming a three-dimensional database with A = 5 bins in each dimension is to be
generated, the first three coefficients ¢y, c; and cs of each sample ¢ in the database are
used for binning. The bin sizes b, for each dimension d are calculated from the smallest
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and largest occurring values for the d-th coefficient across all samples as follows:

_ [[max (cq) || + [[min (cq) |
h—2

Thereby two bins in each dimension are exclusive to those samples whose coefficients lie
outside the former lowest or highest value and could not be into an existing bin. There-
fore the discussed example database effectively has only three bins in each dimension.
In three dimensions, the database structure can be imagined as a cube consisting of h3
small cubes. Each of these small cubes represents a list of samples. If a new sample is
to be added to the database, the spatial coordinates of the corresponding cube or list is
determined by assigning the first three coefficients to a bin. The sample is then added
to the corresponding list. If a similar entry is to be found in the database for given
coefficients, the list index is determined on the same way. Then it is iterated just over
all samples of this list and all 3% — 1 = 26 neighboring lists in the database. This saves
a considerable number of comparisons that would have had to be made using the linear
database model.
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Figure 6: Search times for the linear database model compared to the multidimensional
database. The basic three-dimensional database with five bins is about ten
times faster than the linear one. An increase in dimension reduces the nec-
essary search time further. Meanwhile the scaling behavior of O(n) stays the
same for high number of samples. Also the multidimensional database model
introduces an overhead for determining the bin indices, which can be seen well
for low database sizes.

As shown in figure 6, the database with three dimensions and five bins used as an exam-



ple already shows a significant reduction in search times by a factor of about 10 compared
to the linear database model. It can also be seen that for large amounts of data the
multidimensional database has the same scaling behavior of O(n) as the linear database.
This can be explained by the fact that no changes were made to the search procedure
itself, but only the list length was significantly reduced by binning. The binning of the
coefficients also introduces an overhead, which can be seen in the plot for small amounts
of data.

Furthermore, an increase in the dimension of the database has a positive effect on the
search times. For the four- and five-dimensional database, correspondingly more coef-
ficients are used for binning, so that the five-dimensional database has 5° = 3125 lists
instead of 5% = 125. As can be seen from the plot, this additionally shortens the search
time by a factor of up to 10.
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Figure 7: Increasing the bin count while keeping the dimension of the database the same
shortens the search times as well. As the green and blue curve show similar
times, the universal measure to estimate performance seems to be the number
of lists the database contains that can be calculated by N; = h¢ where h is the
number of bins and d the number of dimensions.

Increasing the number of bins also shortens the search time required. The figure above
shows the search times for the three- and five-dimensional database with five and ten bins
in each dimension. In addition to the obvious time savings, it is also noticeable that the
search times for the three-dimensional database with ten bins and the five-dimensional
database with five bins are similar. A comparison of the number of lists shows that
the three-dimensional database with 10 = 3000 has almost as many lists as the five-

23



dimensional database with 5° = 3125. This therefore appears to be a valid comparison
criterion for estimating the performance for different combinations of dimension and bin
numbers. The number of lists in such a database can be calculated by N; = h? where h
is the number of bins and d the number of dimensions.
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Figure 8: If the dimensions or number of bins are increased further for the multidimen-
sional databases the search time can be reduced to be nearly constant in theory.
As long as the number of samples in the database is low enough this holds true.

If the number of bins for the five-dimensional database is further increased to 25, the
typical O(n) scaling behavior is no longer recognizable for up to 10° entries. Provided
that all lists are filled equally, this database has to contain 9,765, 625 entries before one
list got more then one sample. The determination of the list index is therefore sufficient
in theory to find the most similar coefficient in the database, which guarantees an almost
constant search time.

One problem with this division of the bins is that the bins could become too narrow,
so that it is also necessary to search the second-nearest neighbors of the particular list,
as they are also within the similarity tolerance. Another problem occurs when many
new coeflicients with values beyond the bin boundaries are added to the database. As
already mentioned, these coefficients are stored in the bins at the edge. As there are only
two edge bins per dimension, there are 2° = 32 lists in this database to accommodate
these outlier coefficients.

An alternative is therefore to use a database with d = 10 dimensions and A = 5 bins
each. It contains the identical number of lists but has 2! = 1024 bins to accommodate
the mentioned outlier coefficients. In addition, the bins are five times wider, so the first
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problem mentioned should be less of an issue. As one can see in figure 8 the search
times for this database are also comparable except the greater overhead introduced by
the increased amount of dimensions.

The storage space required for such a high-dimensional database is also limited. As-
suming space is reserved for one entry per list and such an entry contains 21 values. If
these values are stored as floats, the required memory is 9765625 - 21 - 4byte ~ 820Mb. It
should be noted that 100,000 samples are often more than sufficient for energy prediction
in practice.

3.3.4 Synchronization

In order to relieve the master process of additional work, the procedure for predicting
the energy was outsourced to the worker processes. This makes it necessary for each
worker to have a copy of the coefficient database, as no shared memory can usually be
assumed between the processes. One problem that arises from this is that the workers
add new samples to the database independently of each other and these therefore con-
tinue to develop independently of each other. In order to improve the quality of the
energy prediction, the databases should be synchronized. The workflow should not be
disturbed and therefore synchronization should not take place with every change in the
database. Thus the worker waits until a defined number of new entries are added. A
synchronization request is then sent to the master process, which forwards it to all other
workers.

The synchronization itself can be carried out in two different ways. In the first vari-
ant, only the changes or new entries are communicated. This approach is particularly
suitable for the linear database model, as the new entries are bundled at the end of the
list. All changes communicated in this way are collected and merged by a worker. This
worker then sends the merged changes back to the other workers, which include then in
their databases.

The second approach is to exchange the entire database between the workers. When
using a multidimensional database, this procedure is in fact not necessary, but it makes
sense to use the synchronization to reselect the bin boundaries. The aim is to ensure
that the lists in the database are filled as evenly as possible and that there are no more
entries in the marginal bins. This requires a re-binning of all entries. If one worker has
rebuilt the entire database this way, it is send back to all other workers, who exchange
their database to the new one. This step seems costly in terms of communication. In
practice though not more than 40, 000 samples with 21 values each are usually send. In
comparison to that a common trial move contains 20,000 atoms that require 7 values
each.

25



3.3.5 Optimization

To improve the prediction quality, the database is optimized at regular intervals, usually
in the course of synchronization. This means a reduction of the database content while
maintaining the information content. In the course of optimization, duplicates or quite
similar entries are searched for. These duplicate entries are removed from the database
as they do not contain any additional information and fill the corresponding bin unnec-
essarily. It is also possible, for example, to remove the oldest samples from the database
as they may be irrelevant to the current state of the simulation. In addition, the entries
in the database that have often led to incorrect predictions can be determined. As these
are most likely to be outliers, they will also be removed.

3.3.6 Sample Weight

The sample weight was introduced in order to recognize that one coefficient configuration
is sampled more frequently than others. When searching for duplicates in the database,
their sample weights are averaged and 1 is added afterwards. This weight is then assigned
to the remaining entry. If several coefficients within the tolerance are found during the
similarity search, the one with the highest sample weight is selected for the prediction.

3.3.7 Sample Credits

The sample credits are a measure of the predictive reliability of an individual sample.
They are made up of two values. One is the number of energy predictions for which this
sample was used. The second is a running counter, which is increased by one for each
correct prediction and subtracted by one for each incorrect prediction. If this counter
is 0 after N predictions, an incorrect prediction was made in 50% of the cases. When
optimizing the database, a threshold can be set below which all samples with a lower
value are removed from the database. As a prerequisite for this, a minimum number
of predictions can be defined so that individual samples are not removed due to a few
outliers.

3.4 Parallel Replica Method

As already mentioned in Section 2.4, the Parallel Replica method was implemented in
the MC++ code to increase parallel performance. This requires each process to have a
copy of the entire particle configuration. In addition, some steps such as the generation
and evaluation of a trial move also had to be relocated from the master to each worker.
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A further adjustment was made so that the replicas are no longer compared at regular
intervals, but as soon as a worker has accepted a certain number of trial moves. This
number can be adjusted during the course of the simulation so that not too many sys-
tem comparisons are made at the beginning and not too few as the number of iterations
increases.

Main Worker Sub-Worker

Init trial move

Compare Replicas Next trial move

Figure 9: The flow-chart shows the crucial steps of the implemented parallel replica
method. Thereby each worker fulfills the task of generating and evaluatingtrial
moves while also providing its ’Sub-Workers’ with the particle configurations
necessary for the relaxation. Those 'Sub-Workers’ are only present, if more
than one processor should handle the LAMMPS relaxation step. The 'Main
Worker’ has an additional task as it should handle the interruptions for com-
paring replicas. If any worker accepted a specified number of trial moves, an
interruption message is send to the coordinating worker, who then forwards
this message which leads to all workers invoke a replica compare. Afterwards
the independent evaluation of trial moves is continued.

The workers can be divided into three groups (see figure 9). The first group consists
of the "Workers’ who are handling the important steps for the simulation. Those work-
ers are closely connected with their 'Sub Workers’, whose only purpose it is to run the
LAMMPS relaxation step in parallel after being provided with the particle configuration
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from their respective worker. The third group consists of just one ’Main Worker’ who
has the additional task to handle the interruptions for the comparison of the replicas.
The simulation cycle starts by each worker initializing the next trial move independent
of each other. This includes choosing a carbon and a virtual atom by random or biased
sampling. After that the two spherical configurations are extracted from the main sys-
tem. Based on this trial move configuration the energy prediction algorithm is performed
by the worker. Depending on the result the current trial move is either dismissed or the
relaxation is executed if a lower energy tendency is predicted, a crosscheck is performed
or no prediction could be made. In the case of execution the trial move configuration
is broadcast to the sub-workers if there are any present. Afterwards the relaxation step
with LAMMPS is executed in parallel with the sub-workers and the results are evalu-
ated. In case of a successful trial move the base system is updated through integration
of the trial move configuration. If no relaxation is to be performed a flag is broadcast
signaling the sub-worker to not wait for a trial move configuration within this iteration
step. Given that a worker has accepted the specified number of trial moves, it sends
a message containing its rank together with the tag SYNC = 2 to the main worker at
rank 0. As the send operation in non-blocking the worker continues to evaluate further
trial moves while a flag prevents multiple interruption requests from this worker. Ter-
mination requests due to reaching the total amount of evaluated trial moves are also
handled within this section of the code. Those messages use the tag TERM = 4 to be
distinguishable from other messages.

The code section following the evaluation and the interruption invoking handles the for-
warding of the worker interruption signal, which is shown in a greatly simplified form in
figure 9. The main worker uses an ‘Iprobe’ to retrieve the next pending message from
any source with any tag. If this message has a SYNC tag, it is received via an ‘Irecv’
followed by a ‘MPI_Wait’ Since the main worker participates in the replica compare
like any other worker, its ‘compareConfigs’ flag is set to true. The main worker then
forwards the message content to all other workers. To do this, it uses a non-blocking
‘Isend’ with the tag COMP = 3. However, if the received message has the TERM tag,
the ‘finished’ flag is set to true to end the simulation and a message with the same tag
is forwarded to all other workers via a non-blocking send. Afterwards the same tag is
forwarded via broadcast to the sub workers if a message was received. In all other cases
the NEXT tag is used to notify the sub workers that the next trial move is processed.
All other workers handle this section similarly, with the exception that they wait exclu-
sively for messages from the main worker. Instead of the SYNC tag, the messages are
checked for the COMP and TERM tags and the corresponding flags are set when they
occur. The sub workers are notified via a broadcast in the same way as it is the case for
the main worker.

The sub workers on the other hand wait exclusively for the broadcast signal from their
associated workers. Since sending a termination signal at this point in the code was
considered essential for the correct termination of the program, this broadcast is also
used to inform the sub workers that a replica compare has been initiated, even if they
are not participating in it in the current state of the program. For further clarification
of the interruption handling an excerpt of the code can be seen in figure 10.
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while (!finished){

[...]
//Handle interrupt

if (worldRank==0){ //Main Worker

MPI_Iprobe (MPI_ANY_SOURCE ,MPI_ANY_TAG ,mTComm ,&flagSYNC,&Stat);

if (syncReqSend || (flagSYNC==1&&Stat.MPI_TAG==SYNC)){
bcTAG=COMP;
if (! syncReqSend){

MPI_Irecv (&rank,1,MPI_INT,Stat.MPI_SOURCE,SYNC,mTComm,&req) ;

MPI_Wait (&req,&status);
}else{rank=0;}
compareConfigs=true;
for (auto i=1; i<mTSize; ++i){
MPI_Send(&rank ,1,MPI_INT,i,COMP ,mTComm) ;
}

}else if(terminationReqSend||(flagSYNC==1&&Stat.MPI_TAG==TERM)){

bcTAG=TERM;
if (!terminationReqSend){

MPI_Irecv (&rank,1,MPI_INT,Stat.MPI_SOURCE,TERM,mTComm,&req) ;

MPI_Wait (&req,&status);
}else{rank=0;}
finished=true;
for(auto i=1; i<mTSize; ++i){
MPI_Send (&rank ,1,MPI_INT,i,TERM,mTComm) ;
}
}else{bcTAG=NEXT;}
MPI_Bcast (&bcTAG,1,MPI_INT,O0,tComm) ;
flagSYNC=0;
}else if(threadRank==0){ //Worker
MPI_Iprobe(0,MPI_ANY_TAG,mTComm,&flagCOMPARE , &Stat);
if (flagCOMPARE==1&&Stat.MPI_TAG==COMP) {
bcTAG=COMP;
MPI_Recv(&rank,1,MPI_INT,0,COMP,mTComm,&status) ;
compareConfigs=true;

Yelse if (flagCOMPARE==1&&Stat.MPI_TAG==TERM){
bcTAG=TERM;
MPI_Recv (&rank,1,MPI_INT,0,TERM,mTComm,&status) ;
finished=true;

}else{bcTAG=NEXT;}

MPI_Bcast (&bcTAG,1,MPI_INT,0,tComm) ;

flagCOMPARE=0;

}else{ //Sub Worker
MPI_Bcast (&bcTAG,1,MPI_INT,0,tComm) ;
if (bcTAG==COMP) {

compareConfigs=true;
}else if (bcTAG==TERM){finished=true;}

}

//Replica compare

if (compareConfigs){MPI_Barrier(sComm_); [...]}

Figure 10: Shortened version of the code section that is responsible to forward interrupts

and coordinate the initiation of the replica compare.
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Within the replica compare procedure the worker with the lowest potential energy in its
system is determined by executing an ’Allreduce’. Afterwards the worker containing the
minimum energy state transfers its whole particle configuration into a buffer, which is
then broadcast to all other workers but not sub-workers. The broadcasting procedure
is then repeated for several sampling parameters needed for the biased sampling as well
as for various tracking variables and counters. After comparing and exchanging replicas
each worker continues to process trial move independently.

The main advantage of the parallel replica method over the master-worker approach is
that it does not require at least two communication steps to process each trial move.
Without the energy prediction algorithm, this does not pose a problem, as each relax-
ation takes an average of 6 seconds. This way, the master process is able to supply more
workers with jobs at the same throughput of sent trial move configurations. The intro-
duction of energy prediction has drastically reduced this time, as only the trial move
configurations that lead to a lower system energy are relaxed. Assuming an optimal
prediction algorithm, the proportion of relaxations performed approximates the average
acceptance probability of the trial moves. Depending on the particle configuration under
investigation, this is initially around 1% and decreases sharply at the beginning of the
simulation and then more slowly thereafter. Compared to the relaxation step, the energy
prediction takes only a few milliseconds. Due to this fact, the master-worker approach
quickly reaches its limits, as the master is fully occupied with sending new trial moves,
most of which are rejected after a very short time.

Apart from the replica compare, the parallel replica method has virtually no communi-
cation overhead. Since the processors do not interact with each other apart from this,
this method should offer a near-optimal speedup. However, for high processor counts,
another phenomenon becomes apparent that appears to reduce the algorithmic efficiency.
Although there is only a low probability of acceptance for the trial moves, most of the
execution time is spent relaxing the few supposedly accepted trial move configurations.
When a processor invokes a replica compare, it takes some time for this message to
reach all other processors, as the current trial move is processed to completion before
the ‘Iprobe’ is reached. Due to the distribution of execution time, there is a high prob-
ability that other processes will also have performed a relaxation and accepted a trial
move during the same time period. This means that at the time of the replica compare,
there are several accepted trial moves, but only one of these systems is retained for
the continuation of the simulation and all others are discarded. Due to the fact that
more accepted trial moves are found than are adopted into the main configuration, the
effective acceptance probability for the parallel replica method with many processors is
expected to be lower than for the serial variant.
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4 Evaluation

4.1 Energy Prediction

This section focuses on the energy prediction algorithm that has been introduced to the
MC+H+ code. First there are discussed some basics regarding the behavior of multipole
coefficients. Afterwards a closer look is taken at how well and how fast the configuration
space can be sampled and stored in the database. Besides evaluating the reliability of
predicting the correct energy trend it is also analyzed how accurate the energy amount
can be predicted and which parameters can be changed for further improvement.

4.1.1 Sensitivity of Multipole Coefficients

In order to enable a quicker comparison of two particle configurations, these are trans-
ferred to an alternative representation. For this purpose, the first 15 multipole coeffi-
cients are calculated based on approximately 200 particle coordinates. These are then
used to search the database for similar configurations. Due to the drastic information
reduction from about 600 floating point numbers to 15, it is of great importance that
both coarse and fine differences between two configurations can be identified using the
multipole coefficients.

The following section will therefore take a closer look at how the displacement of in-
dividual particles affects the multipole coefficients. Small changes in the configuration
of the particles should also cause small changes in the multipole coefficients to ensure
better comparability. At the same time, changes in position near the center of the sphere
should have a greater effect on the coefficients, since this is where the greatest change
occurs due to the insertion or removal of the carbon atom see Eq. (26).

In order to demonstrate the desired properties using an example, a multipole coefficient
of the second order, in particular the first moment, is considered in more detail. The
formulas for calculating the multipole coefficients of second order for different moments
m are listed below.

(0.75005 (0)? — 0.25) (cos (¢) + 1 -sin (¢))

. m=20 (28)
0.5c0s (8) v/cos (6) — 1y/cos (0) +1(cos (¢) +i-sin(9)) (29)
—0.125sin (0)” (cos (¢) + i - sin () o (30)

r

To illustrate the behavior of this multipole coefficient with respect to position changes,
a configuration with only one particle was generated. This is located at a fixed position

with distance 7 = 1 to the center and the angles ¢ = § and 6 = £. These values were
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chosen arbitrarily with the exception that none of them sets the coefficient to 0.

In the following figure, the distance r was increased by dr and the resulting change of
the multipole coefficient was plotted. The same procedure was repeated for all distances
r = 1...10, whereby the particle distance dr to the center was varied between 0 and
10.

Figure 11: Deviation of the multipole coefficient of 2nd order and 1st moment if varying
the distance r of the considered particle to the origin. The angles ¢ and 6
are fixed at § and I respectively. The starting distance of the particle to
the center is r which is then moved outwards by d,. In that sense the graph

shows the derivative in respect to r for the specified point.

As can be seen in figure 11, moving the particle away from the center causes a decrease in
the multipole coefficient. The decrease is greater the closer the particle is to the center.
For distances from about 8A a shift only has a marginal effect on the coefficient. Thus
it might only be worth it to compute the multipole coefficients for all atoms that lie
within this range. As the functions of the multipole coefficients behave similar to % close
to r = 0, during the trial moves that insert a carbon atom at the center, this carbon is
excluded from the coefficient computation.

In addition to the variation of the distance, changes in the two angles ¢ and 6 were also
considered. For this purpose, the particle was fixed at a small distance of »r = 1 and
¢ = . The angle ¢ was then varied from 0 to 27 and the change in the coefficient was
plotted.

As can be seen from figure 12, the decrease or increase of the coefficient depends on
the starting position and the direction of rotation. Furthermore, the deviation of the
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coefficient is radially symmetrical and has a maximum. Consequently, it is possible for
two particles to have the same multipole coefficient at different locations or after an
opposite rotation.

Figure 12: Deviation of the multipole coefficient of 2nd order and 1st moment if varying
the angle ¢ of the considered particle to the origin by d,. The radius r is
fixed at 1 the angle 6 at Z. From its starting position the angle ¢ is varied
up to 27.

For this reason, it is necessary to use several coefficients, including those of higher order,
to describe the position of a particle as clearly as possible. These coefficients have
a higher frequency of coefficient deviation in the scenario under consideration, which
is why they eliminate many of the problematic symmetries in combination with the
lower-frequency coefficients. On their own, the higher order multipole coefficients could
describe the configuration in greater detail. However, these coefficients have even more
symmetries than the lower order ones, which is why they are only advantageous in
combination with each other.

The behavior of the multipole coefficient to changes in 6 are similar to that for altering
¢. While ¢ is fixed at §, 6 is varied between 0 and 7 as 6 is the elevation angle. This
elevation is then changed by up to 7 so even beyond the usual maximum angle to see
if the coefficients also behave symmetrically in . The corresponding graph can be seen
in figure 13. Note that in practice only the coefficient changes in the further half of the
graph occur.
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Figure 13: Deviation of the multipole coefficient of 2nd order and 1st moment if varying
the angle 0 of the considered particle to the origin by d;. The radius r is fixed
at 1 the angle ¢ at §. From its starting position the angle ¢ is varied up to
.

4.1.2 Sampling configuration space

A possible measure of the coverage of the configuration space by the coefficients database
is the prediction chance. It is calculated from the probability that for any given valid
trial move configuration multipole coefficients are found in the database that are sim-
ilar. This probability depends not only on the number of samples in the database or
the number of coefficients per sample, but also on the required maximum percentage
deviation of the coefficients from each other, as described in Section 3.2.1.

In figure 14 the development of the prediction chance is plotted for the simulation start-
ing from an empty database. The four graphs are distinguished by applying different
combinations of high or low deviation and slow or fast learning. Low deviation in this
context means that the maximum allowed percentual deviation of two coefficients is
lower for them to count as similar. A high deviation is thereby more tolerant and allows
a wider range of samples to count as similar which improves the chance to find a fitting
sample in the database. It should be noted, that choosing a higher deviation possibly
has bad influence on the quality or accuracy of the prediction, which is discussed in a
later section.
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Figure 14: Development of the prediction chance if each of the four workers starts from
an empty database. The prediction chance is the probability to find a similar
sample in the database for a given trial move configuration. If the maximum
allowed deviation for two coefficients to count as similar is lower, the pre-
diction should get more precise, but it takes more samples in the database
to fill the gaps. Increasing the allowed deviation accelerates the sampling of
configuration space. If ’fast learning’ is active the databases of all workers are
synchronized, which potentially quadruples the number of samples in each of
them.

Each worker has its own instance of a coefficient database, which is filled with samples
from the database initialization file. If this file is empty, each worker starts developing
its database from zero independent of each other. To improve each database faster, a
synchronization method was introduced which merges all scattered databases and pro-
vide each worker with the combined version. This procedure was denoted as ’fast learn’
in comparison to the ’slow learn’ where each worker independently grows its database.
For just four workers this already provides a significant acceleration of configuration
space sampling as can be seen in figure 14. It even has a bigger impact on the prediction
chance than choosing a higher coefficient deviation. Therefore to speed up the prediction
chance gain the focus should lie on adding additional workers instead of increasing the
allowed deviation, which might also harm the prediction quality itself.

The easiest way to determine the prediction quality is to determine the probability of a
correct prediction being made. Correct in this context means that only the trend has to
be predicted correctly, i.e. whether the system energy decreases or increases as a result
of a trial move. In figure 15 this probability was calculated and plotted for the simu-
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lations in figure 14. There are no significant differences in the predictive quality of the
four variants. After 200 trial moves, all four have a probability of correctly predicting
the energy trend of about 90%. This rapid increase can be explained by the fact that
in most cases the system energy increases and only in the rarest cases does a trial move
lead to success. During an average MDMC simulation without weighted sampling with
16000 trial moves, only 25 were accepted. This corresponds to a success rate of approxi-
mately 0.15%. Since only the coefficients that occurred during the simulation end up in
the coefficient database, the configurations that lead to a lower system energy are highly
underrepresented. In the ’initial’ phase the database and energy prediction are therefore
mainly used to recognize the trial moves that lead to a higher system energy.
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Figure 15: The prediction quality is the probability that the trend of the system energy
after a trial move is predicted correctly, i.e. whether the system energy de-
creases or increases as a result of a trial move. In contrast to the prediction
chance there is no significant difference between the four plotted variants. As
lower system energies resulting out of a trial move are quiet rare, the predic-
tion quality is mainly tracking the rate at which higher system energies are
correctly predicted.

These results seems sobering at first, but there are several ways to identify a successful

trial move.

e Predicting a lower energy
If there are enough samples in the database, it is also possible to reliably predict
events that occur only rarely. However, this requires a considerable number of
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sampled configurations, as these events are not only rare, but their phase space is
also larger. This can be explained by the fact that the system under investigation is
for the most part almost exclusively homogeneous and significant lattice distortions
only occur in the vicinity of the forming Cottrell atmospheres. This makes it even
more difficult to increase the prediction chance for these rare cases.

e Erroneous prediction with crosscheck
If a positive energy trend is predicted for a trial move, a cross-check is carried out
with a certain probability, as described in Section 3.2.2. The probability with which
the relaxation is nevertheless executed is calculated from the counter probability
of the prediction quality. In the example above, this is 1 — 0.94 = 6%. If a
lower system energy is detected when this cross-check is carried out, this leads to
acceptance of the trial move. However, the probability of this is very low.

e No similar sample in the database

The most likely case to identify a trial move that leads to a lower system energy is
that no similar sample could be found in the database. As already mentioned, the
phase space for the unsuccessful trial moves is smaller and can be sampled much
faster. If no similar coefficients can be found in the database and the database
can recognize higher energy tendencies quite successful, the probability that a
lower system energy will be detected during a relaxation is higher, since it is a
configuration that has not yet occurred during the current or previous simulations,
which makes it to a rare event.

With increasing prediction chance and quality, a correct prediction of the change in
system energy can be made for more and more trial move configurations. As a result,
an increasing number of relaxations can be omitted. This is also reflected in the time
required to perform N trial moves. In figure 16 these times are plotted for the sampling
approaches discussed in this section. For comparison, the required time if no energy
prediction takes place and therefore all relaxations are carried out is also plotted.

It can be clearly seen that the energy prediction itself, but also an accelerated learning
phase of the database, has a strong time-reducing effect on the runtime of the simula-
tion. An important aspect is the extent to which favorable trial moves are overlooked
by omitting relaxations. Therefore multiple simulations were run both with and with-
out energy prediction. Each simulation included 16,000 trial moves that were divided
between four workers. For every worker parameters like the number of relaxations and
the number of predictions were tracked.

During the simulations without energy prediction all of the 16,000 relaxations were run
which took a bit more than 9 hours to complete. Of all trial moves just 22 to 36 were
accepted. In contrast to that the simulations with active energy prediction finished in
1.5 hours. The average prediction chance at the end of the simulation lied at around
85% and the prediction quality at 93%. The database contained about 35,000 samples
in total. Approximately 14, 000-times an energy could be predicted whereby about 40 of
them predicted a lower energy. The prediction of a lower energy was wrong approx. 50%
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of the time, whereas all of the about 320 crosschecked higher predictions were correct. In
total about 2600 relaxations were run and approximately 27 trial moves were accepted
during the simulation.

While those findings do not guarantee that no successful trial moves are omitted they
strongly suggest, that it might be not a significant part.
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Figure 16: The graphs shows the development of the cumulative runtime for the four pre-
diction based approaches compared to the version without energy prediction.
The simulations are initialized with a empty coefficient database. While the
former approach runs all relaxation steps, the simulations that apply energy
prediction are neglecting more and more relaxations in favor of a significantly
shorter runtime. The runtime development is thereby closely connected to
the prediction chance as mentioned in Section 3.2.2 and which can be seen in
figure 14.

4.1.3 Prediction accuracy

While the correct prediction of the energy trend has been used as a quality feature so far,
this section takes a closer look at the accuracy with which the exact amount of energy
can be determined. To accomplish this, the percentual deviation from the actual energy
is calculated for each prediction made. A deviation of 100% means that the predicted
energy is twice as high as the predicted energy. As long as this deviation is positive, the
energy tendencies of the underlying trial move match. As soon as it falls below zero, the
prediction is incorrect in terms of the previously discussed prediction quality. The aim
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of this section is to identify various parameters that have a positive or negative effect on
the prediction accuracy and, if necessary, to estimate optimal parameters.
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Figure 17: Percentual deviation of the predicted energy based on the multipole coeffi-
cients compared to the actual energy of the configuration after the relaxation
step. To calculate the multipole coefficients a spherical configuration with
radius r = 8 was extracted from the system. While a few predictions are

far off the actual value the median of the percentual deviation lies at around
17%.

In figure 17 the percentual deviation of the prediction to the actual energy is plotted.
The radius of the extracted sphere for calculating the multipole coefficients is 8A. Apart
from a few outliers that predicted a much too high energy, most values are in the range
between 0% and 60%. Among the 300 predictions there are only a few incorrect ones
with a deviation below zero. The median of the considered values is 17%, which is an
unexpectedly low deviation considering that the whole trial move configuration is rep-
resented by just 15 multipole coefficients.

It is therefore reasonable to assume that the energies in the database also vary little
and that there are only a few deviations. This would mean that the accuracy of the
prediction can be almost independent of the prediction parameters and still give results
similar to the above. This assumption can be refuted by repeating the above analysis for
a smaller sphere for the multipole coefficients. The area in which the energies are calcu-
lated remains the same. If there is a different distribution of deviations, the prediction
accuracy is not independent of the parameters and optimal ones can be found.
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Figure 18: Percentual deviation of the predicted energy based on the multipole coeffi-
cients compared to the actual energy of the configuration after the relaxation
step. To calculate the multipole coefficients a spherical configuration with
radius r = 4 was extracted from the system. Compared to the previous figure
there are much more outliers. The median of the percentual deviation lies at
65%, which is significantly higher.

In figure 18 the corresponding percentual deviation for a sphere radius of r = 4A is plot-
ted. It can be seen that there are many more outliers compared to the previous example.
The overall distribution of the deviations between 0% and 100% seems to have slightly
shifted upwards. This observation is supported by the fact that the median deviation of
all 300 trial moves increased to 65%.

As the radius of the extracted sphere to compute the multipole coefficients has a mea-
surable impact on the overall prediction accuracy, the experiment is repeated for various
radii. For better visibility the measured data is represented as boxplot as can be seen
in figure 19. The purple and blue box are the ones discussed beforehand. In addition to
that the radii 6,10 and 12 were also tested. The worst result is achieved for the small
extraction radii. The reason for this is assumed to be that there are not enough particles
and thus information in the smaller sphere to be able to sufficiently capture the overall
configuration. Since the lattice constant of a regular iron lattice is about 2.8A, only the
two neighboring cells are considered with an extraction radius of r = 4.

In contrast, the best result could be achieved for a radius of » = 8. The median deviation
is 17% and the lower and upper quartiles are at approximately 9% and 41% respectively.
If the outliers are not taken into account, the maximum deviation is 82%.
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Figure 19: The plot shows the distribution of the percentual deviation of the predicted
energy to the actual one. The distributions are represented in the form of
boxplots for different radii of the extracted sphere, for which the multipole
coeflicients are calculated for. On average the most precise predictions are
made for a radius of 8A.

If the extraction radius is increased further the results stay similar except the upper
quartile as well as the maximum deviation are increasing again. The medians for radii
of 10 and 12 are roughly the same while the lower quartile even decreased a bit to
about 7%. This behavior which shows for larger extraction sphere radii might be closely
connected to the increasing number of particles. If more particles are used to calculate
the multipole coefficients, the absolute value of the individual coefficients increases, as
more individual contributions are added up. While maintaining the relative deviation
of two coeflicients so that they are still considered similar, the absolute deviation that
the coefficients may have also increases. Another factor for the reduced accuracy is
the blurring of the higher order coefficients. As these react very sensitively to particle
displacements and in particular to additional particles, a higher number of particles
means that these coefficients are more difficult to assign. Another point is that with a
larger radius, more particles are represented by only 15 coefficients. For a more accurate
description, more multipole coefficients might be necessary. In addition to an increased
computational effort to determine the coefficients, this would also mean more storage
space and a longer search time.

Due to these facts, the number of coefficients is not increased and the ’optimal’ radius of
r = 8 for 15 coefficients is retained, as satisfying results could already be achieved using
this radius.
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Figure 20: The plot shows the distribution of the percentual deviation of the predicted
energy to the actual one. The distributions are represented in the form of
boxplots for different similarity thresholds. For two coefficients to count as
similar during the database search their difference has to lie within this rela-
tive threshold. Thereby the biggest threshold is 1% percentual deviation and
the lowest 0.00001%.

Another aspect to consider is the variation of the allowed percentual deviation between
two coeflicients so that they are still considered similar. In figure 20 the deviation of the
predicted energy for different allowed coefficient errors in plotted. The highest relative
deviation was chosen with 1%. The deviation was reduced down to 0.00001% in mul-
tiples of 10. If can be seen that the lower the relative deviation the more accurate the
energy prediction gets. Thereby the median does not change as much. But especially
the upper quartile lowers down from above 100% to approximately 40%. Also the lower
quartile stays at around 10% for all tested deviations.

If the allowed deviation is chosen too low, another problem arises which is connected to
the way similar samples are found inside the database. The prediction algorithm just
finds the closest match starting from the first coefficient onward (see Section 3.2.1). This
means that if only the first two coefficients can be matched, all coefficients that have
matching first two coefficients are considered for the energy prediction. This drastically
increases the number of found coefficients in the database and therefore the multitude of
predicted energies as well as search times. Furthermore the prediction quality also suf-
fers from this effect in the way that lower energies cannot be predicted as well anymore.
Configurations that lead to a lower system energy originate from a bigger phase space
and therefore demand more coefficients to be described well. While their coefficients
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might also be found in the case where just two matching coefficients are considered for
the database search, the chance that the correct coefficient is selected is very low as
the sample with the higher sample weight and sample credits is preferred. Because the
occurrence of lower energies for a trial move is very rare, their sample weights and cred-
its are low as well if there is any. Therefore, a poorer prediction accuracy should be
accepted for an improved prediction quality of low system energies.

250000 — - .
C insertion +
C deletion X ot
200000 | f(x)=x L e +
g(x)=x+100000 + H oA,
t ol H
oy
= 150000 t
L))
£
[}]
5 100000 4 y
=
[=N
wy
£ 50000 |
-
[=1]
@
=
[H] 0 L
-50000 t
-100000

-50000 0 50000 100000 150000

energy small sphere in eV

Figure 21: The plot shows the energy, if its calculated for a sphere radius of r = 8
compared to the energy of the whole trial move configuration with a radius
of about r = 20. The points are thereby divided into two groups, one for
the insertion and one for the deletion of carbon. Besides the fact that the
energies for the full configuration are higher there seems to be a correlation
between those two energies. While the energies for the full configuration are
always positive it should be noted that some of the energies calculated in the
small sphere are negative due to single atoms interacting with others outside
the extracted sphere.

An obvious aspect that plays a role in investigating the accuracy of the energy prediction
is the determination of the energy itself. In the previous studies, the resulting energy
of a trial move was determined by summing the energy of the particles in the sphere
with radius r = 8 extracted for the multipole coefficients. Also for the measurements
in figure 19 this radius was retained. Since for the final energy evaluation of a trial
move not only the energies within the smaller sphere with radius » = 8 but of the entire
configuration with a radius of about r = 20 are considered, the extent to which these
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two energies correlate with each other is examined below. Furthermore, the extent to
which it is advantageous to use the energy of the entire configuration as a prediction is
also considered. For the following research the simulation was started with a pretrained
database with around 10,000 samples. This was done to assure that the predictions
already are of acceptable quality so that correlations are easier to recognize.

In figure 21 the energies calculated for the smaller sphere with radius » = 8 are plotted
in comparison to the energy of the entire trial move configuration. The energies were
determined after the relaxation step. It can be seen that the energies for the overall
configuration are always positive whereas the others can also assume negative values.
This has to do with the fact that before the relaxation, all particles located within
the extracted sphere are determined in order to have an initial energy for the decision
criterion. In the energy evaluation following the relaxation, the identical particles are
considered in order to ensure comparability. If this were not the case, it is possible that
the energy is only lower because a particle has run out of the extracted sphere during
the relaxation. Considering the same particles both before and after relaxation also has
similar disadvantages, such as negative energies, but this approach has proven to be
more reliable in practice.
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Figure 22: The plot shows the predicted energy in contrast to the actual energy of the
configuration after the relaxation. As the energy for the prediction is com-
puted over the whole configuration all points of the graph should lie on the
blue straight if there is pinpoint prediction accuracy. Each prediction is di-
vided into two sub predictions, one for the insertion and one for the deletion
of the carbon atom each happening in the same trial move configuration but
inside different spheres.
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Furthermore there seems to be a weak correlation between the two energies. Although
the data points are highly scattered, the deviation of most of them can be limited
to an interval of about 70,000eV around the function h(z) = z + 55,000. In addi-
tion, the majority of the data points cluster in a radius of 10,000eV around the point
(10,000; 100,000). To find out if the prediction accuracy or even quality can be improved
by increasing the radius of the sphere that the energy is computed from, the energy of
the entire configuration was taken as the predicting energy. The predicted energy was
then compared with the actual energy of the configuration as plotted in figure 22.

In most cases, the predicted energy almost matches the actual energy. The deviations
are usually only a little over 10,000eV or for higher energy amounts about 25%, which
means a significant increase in accuracy. As in the previous example, the data points
accumulate at around 100, 000eV. The only striking point is that the predictions for the
insertion of carbon are sometimes much lower than the actual system energy. In other
cases, the predictions for the insertion but also the removal of carbon from the config-
uration are too high. But even then, the relative deviation does not exceed a value of
about 60%.
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Figure 23: Using the energy of the whole trial move configuration for prediction sig-
nificantly increases the prediction accuracy. The figure shows the relative
deviations of the predictions from the actual energy of the configuration.
The allowed percentual error at which two coefficients count as similar lies at
1%, which is quiet high compared to the previous findings in figure 20 for the
smaller energy computation sphere.
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This drastic increase in the accuracy of the prediction can also be seen in the percentual
deviation. In figure 23 this is plotted for 600 predictions. It should be noted that the
simulation was not started with an empty database, but that approximately 15,000
samples were already available. The average deviation is 8% and the median is 4%. The
maximum deviation is approximately 52%. The upper and lower quartiles are 10% and
2% respectively. The maximum allowed error between two coefficients to count as similar
was set to 1%, which is quiet high compared to the previous suggested values (see figure
20). But as already stated this value should be chosen as low as necessary to achieve
accurate predictions but as high as possible to still be able to identify all configurations
in higher detail using more of the available coefficients.

4.2 Improving Performance

After analyzing the prediction method and its reliability in detail, the following section
focuses on increasing the performance of the MC++ code. Whether it is by paralleliza-
tion of the relaxation step, comparing the speedup introduced by the energy prediction
or a decrease in search time by reorganizing the samples in the database.

4.2.1 Relaxation Parallelization

Several processors can be used to speed up the relaxation process in the event of a suc-
cessful trial move. Since such a procedure also entails a parallel overhead, the extent
to which parallelization of the relaxation is worthwhile is examined below. Since under
usual conditions the a relaxation step for a radius of about r = 20 takes about 8 seconds,
the radius of the trial move configurations extracted from the system was increased to
r = 30 in order to be able to recognize the scaling behavior more easily. The configu-
rations therefore consist around 50,000 particles instead of the usual 15,000. In figure
24 the relaxation times for different numbers of processors are plotted. For 1,2,4 and
8 processors, four runs with 20 relaxations each were performed. The relaxation times
were averaged.

A single processor takes between 18 and 22 seconds for a relaxation. The times vary
widely, as the time required for relaxation depends heavily on the configuration to be pro-
cessed. This time reduces to 15 to 18 seconds if two processors run in parallel. Using four
processors this can be cut down further to just 12 to 13 second. For even higher numbers
of processors there is no performance gain noticeable. This implies that the overhead
of the relaxation in combination with the serial part lies at around 10 to 11 seconds.
The observed relaxation step includes receiving the particles, generating all particles in
an instance of LAMMPS, the relaxation step itself as well as the back-transformation
to MC++ atoms and sending them back to the master process. All steps except the
relaxation run in serial because due to the lack of shared memory all processors have
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to handle the receiving and generating of he particles. As these steps only make up for
about 400ms of the time they are negligible. The other part of the time is consumed for
the relaxation itself. As the relaxation does not consist of one singular minimization but
of a combination of three separate steps, the large serial part might originate from this.
If virtual atoms could be handled in LAMMPS the workaround as described in Section
3.1.1 would not be necessary anymore, which could speed up the relaxation step. So
apart from a seemingly optimal speedup of the relaxation itself, due to the large serial
part the time taken to run the whole relaxation process can just be halved. For further
improvement it would be optimal to make use of shared memory so that there is less
traffic for sending and receiving the configurations as well as generating the particles in
LAMMPS.
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Figure 24: The plot shows the average time needed to relax one trial move. Plotted are
16 distinct runs for different numbers of threads with 20 relaxations each.
The tracked time includes receiving, creating and submitting the particle-
configuration. The such induced overhead can be estimated to be around
10 seconds. By introducing up to 4 threads the pure relaxation time can
be reduced from 12 to about 3 seconds. Further increasing the number of
threads does not provide any significant improvement.

4.2.2 Prediction Speedup

Assuming that it was known before running the simulation which trial moves would
lead to success, all other relaxations could be omitted, which would drastically reduce
the execution time. The algorithm used to predict the energy is an attempt to be
able to predict the result of a trial move, at least to a certain degree. This section
covers the extent to which the use of the energy prediction algorithm can speed up
the execution time of a simulation. The time saving is achieved by not performing
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selected relaxations, as the result of the trial move is predicted to be unsuccessful with
a high probability. Since with the parameters currently used, including a relaxation
radius of around r = 20A, a single relaxation takes an average of about 8 seconds on
a single processor, which is the most time-consuming part of processing a trial move.
Furthermore, due to the characteristics of the considered iron-carbon system, only very
few trial moves overall lead to success and minimize the system energy, which means
that a large part of them can be omitted.
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Figure 25: In the plot the cumulative times for N trial moves are plotted. Thereby four
variants are compared. The first one is the simulation without using the en-
ergy prediction algorithm that executes all relaxations. The other variants
apply energy prediction while one starts with an empty database and the oth-
ers with one already containing 10,000 samples. The two remaining variants
can be differentiated by one reusing the probability statistics from a previous
simulation while the other resets those statistics. As the first variant takes
significantly longer it was just executed for the first 750 trial moves

In figure 25 the execution times required to process N trial moves is shown. A distinction
is made between four variants. The first variant is used solely for comparison with the
other variants, as it does not use the energy prediction method. Therefore, all relaxations
are carried out, which means a runtime of approximately 8.25 seconds per trial move.
The total runtime for 750 trial moves is therefore around 6200 seconds and for 9000
trial moves it would be around 74400 seconds. The second variant applies the prediction
algorithm, but the simulation starts with an empty database, which means that the
algorithm has to be trained starting from zero. The prediction chance therefore starts
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with a probability of 0% and increases depending on the number of samples in the
database. Since the majority of all trial move configurations are almost identical, the
prediction chance initially increases sharply and flattens out as the simulation progresses.
The shape of this curve is shown in figure 26 for further illustration. The number of
samples in the database amounts to just under 600 after the completion of 9000 trial
moves as only this number of relaxations was performed.
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Figure 26: The plot shows the development of the prediction chance and quality for
simulations that start with an empty database as well as with one containing
about 10,000 samples. All previously mentioned techniques like fast learning,
an 'optimal’ extraction radius as well as the improved accuracy for the energy
prediction have been applied. Additionally the simulation is carried out over
a higher number of trial moves than before.

The reason for this low number of relaxations is, in addition to the increasing prediction
chance, the equally rapidly increasing prediction quality for the configurations that lead
to a positive trend of system energy. This already amounts to a value of over 95% after
around 1000 trial moves. Therefore, when a higher energy is predicted, a cross-check
is only initiated in around 5% of cases. In the course of the simulation, a total of 150
of such cross-checks were carried out with the result that each of those predictions was
correct. In comparison, relaxations were performed far more frequently due to the fact
that no matching sample could be found in the database. This was the case around
450 times, of which on average 4 trial moves were accepted. For all other 8550 trial
moves a prediction could be made. A lower system energy was predicted only about 17
times, whereby this prediction was incorrect in about 40% of the cases (see figure 26).
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In conclusion on average 14 trial moves of a total of 9000 were found and accepted using
this variant, which took 6400 seconds.

The third variant differs from the second in that the database is pre-trained with around
10, 000 samples. However, all runtime statistics, including the prediction chance, are ini-
tialized with 0%, as would also be the case with an empty database. Since the configu-
ration space is already well covered by the database, the prediction probability increases
almost immediately to over 98%. The prediction quality for higher energy tendencies
also rises very quickly to over 95%, whereby this is similar to that of the second variant
(see figure 26).

While a comparable number of cross-checks are undertaken, the number of configura-
tions for which no prediction could be made has fallen significantly to a value of around
80. The total number of relaxations is therefore only around 250 of which 20 is due
to prediction of a lower energy trend. The prediction quality for these cases is slightly
higher than for the second variant at around 70%, which can be attributed to the ad-
vanced training of the database. However, the main speedup lies in the reduced number
of relaxations, which makes this variant perform 9000 trial moves faster than performing
750 of them without energy prediction (see figure 25). Despite this low relaxation rate,
around 14 trial moves were found and accepted during a total execution time of just
2700 seconds.

The fourth variant corresponds to the third with the exception that the prediction statis-
tics are taken from several previous program runs. This means that, among other things,
both the prediction chance and the quality are at a high level right from the start. The
prediction chance is 99.1% and the prediction quality for higher and lower energy trends
is 99.9% and 60% respectively. For this reason, only about 11 cross-checks are per-
formed and only 75 times no prediction was made. This is also reflected in the number
of relaxations, which is about 110 The remaining high number of predictions for a lower
energy trend is striking. This amounts to around 23 compared to 17 and 20 for the
other variants. On average, 14 of these were accepted. The total execution time of
the simulation for this variant with 9000 trial moves is around 1480 seconds. With an
average relaxation time of 9 seconds, 445 seconds are spent on reading and writing the
simulation configuration of about 500Mb, initializing the database and other overhead
in addition to communication. Nevertheless the speedup of this fourth variant compared
to the one without energy prediction lies at approximately 50. Even the slower variants
starting from an empty database shows a speedup of about 11.

The remaining question is whether using the energy prediction method overlooks trial
moves that would have been accepted under normal circumstances. In the simulations
without energy prediction, an average of 6 trial moves out of a total of 750 were ac-
cepted. Using the second option, starting from an empty database, around 5.5 trial
moves were accepted out of the first 750 whereby it should be noted that with 20 times
this variant was not tested as often as the fourth variant. With the third variant about
the same but slightly better results could be achieved. For 750 trial moves the fourth
variant took about 900 seconds to perform 100 relaxations on average. With 120 times
it was repeated most often out of all variants. During each run about 6 trial moves were
accepted which suggests that not a significant number of trial moves is omitted due to
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the energy prediction method.

4.2.3 Database sample distribution

The performance of individual database models was compared in Section 3.3.3. Thereby
the multidimensional database performed by far the best. A fundamental assumption
to ensure short search times was that all lists in the database are populated more or
less equally, by the generated coefficients following a uniform distribution. But in the
practical use case the coefficients are not uniformly distributed. Some figures already
suggested that a large part of all samples are quiet similar coefficient- and energy-wise
and in comparison just a few are different. Therefore this section focuses on the actual
distribution of the samples in the database and the problems that arise from this cir-
cumstance. Additionally the advantages of using different parameters for the number of
dimensions and bins is discussed.
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Figure 27: The plot shows the distribution of samples in a 5-dimensional database with
10 bins in each dimension. The heat map can be interpreted as how many
samples got assigned the specified bin index in the respective dimension. It
can be seen that the sample distribution is not even and a large part of the
samples got assigned the same bin indices due to being similar.
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The database used for the analysis contains about 8,000 entries. To illustrate the dis-
tribution of the samples in the database, heat maps were generated as shown in figure
27. The heat maps were generated by counting the occurrences of bins indices in each
dimension for all entries in the database. What is immediately apparent is the very
uneven distribution of the entries. In figure 27 about 90% of all samples are assigned to
a single bin per dimension. This not only means that coefficients of the same order of
magnitude are predominantly searched for in the database, but that the corresponding
lists in which the search is carried out contain a very large number of entries. This
results in linear scaling behavior, which should initially be avoided or at least postponed
by using the multidimensional database. On average a single search in the database
takes 1000 microseconds compared to about 1500 microseconds for the linear database
model. Even an increase in the number of bins per dimension does not lead to a signifi-
cant improvement in the sample distribution, which can be seen in figure 28. Although
there is a split in the second dimension (index 1), the individual bin indices are still
assigned around 2000 and 5000 times.
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Figure 28: The plot shows the distribution of samples in a 5-dimensional database with
25 bins in each dimension. The heat map can be interpreted as how many
samples got assigned the specified bin index in the respective dimension.
Through the increase in the number of bins the samples get distributed over
a slightly larger range of bins.

In addition to increasing the number of bins per dimension, the number of dimensions
was also increased in order to check whether the distribution problem could be equalized.
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For this purpose, a database with 10 dimensions and 5 bins per dimension was created
and a heat map was also generated (see figure 29). However, this shows a similar picture
to the databases before. Although this database might be better suited for changes in
the obtained coefficients due to the higher number of edge bins (see 3.3.3) it has no
advantage regarding the sample distribution.
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Figure 29: The plot shows the distribution of samples in a 10-dimensional database with
5 bins in each dimension. The heat map can be interpreted as how many
samples got assigned the specified bin index in the respective dimension. The
samples are quite evenly distributed, but over a smaller number of lists as the
number of edge bins is much higher than in the other database variants.

To solve this problem, the concept of the multidimensional database was extended by
one aspect. When using equidistant bins, a uniform distribution of the coefficients
is necessary in order to have the entries in the database evenly distributed. If this
is not guaranteed, the number of entries per list can be equalized by non-equidistant
binning. The determination of the bin index then additionally requires the iteration
of a list in the length of the number of bins. Furthermore, the database search also
searches all neighboring lists of the specified list, since the non-equidistant binning does
not guarantee a minimum bin width. The similarity search also works without this
adjustment, but in practice it has proven to be beneficial for the hit rate for lower
energy tendencies.

In figure 30 the result of these changes to the database model can be seen. On loading
the database into the memory the bin sizes were chosen appropriately to that all lists
have the same number of entries in them at the start of the simulation. This leads
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to the search times being significantly faster with only 700 microseconds compared to
around 3000 microseconds previously. In contrast to this, a linear database model would
have taken about 15,000 microseconds to find a similar sample in a database containing

40,000 samples.
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Figure 30: The plot shows the distribution of samples in a 5-dimensional database with
25 bins of variable size in each dimension. The heat map can be interpreted
as how many samples got assigned the specified bin index in the respective di-
mension. Applying non uniform bin sizes leads to the samples in the database
being nearly evenly distributed apart from the first coefficient.
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4.3 Parallel Replica Method

This chapter takes a closer look at the performance of the implemented parallel replica
method. In particular, the extent to which it can accelerate the runtime of the MDMC
simulation is examined. A direct comparison is made with the existing master-worker
approach. In addition to possible accelerating effects, the development of the potential
energy of the system is also examined if it undergoes any change due to variation of
the applied method. In addition, the extent to which the choice of a longer replica
comparison interval has a positive influence on the simulation and what trade offs had
to be accepted, is considered.

4.3.1 Runtime comparison
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Figure 31: The graph shows the cumulative runtime required to execute N trial moves.
In particular, the master-worker approach for 90,000 trial moves distributed
on one master and 3 workers and the parallel replica method for 30, 000 trial
moves on each of 3 processors are compared. As the processors run in parallel,
the values on the z-axis for the master-worker scheme were scaled to 30,000
from originally 90,000. While both methods show a similar scaling behavior
in the beginning, the higher the number of trial moves the faster the parallel
replica method becomes in comparison.
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In order to compare the runtime of the parallel replica method and the master-worker
approach, several simulations were run for a larger number of trial moves to ensure easier
comparability. In addition, the energy prediction algorithm was applied to speed up the
process. Thereby the prediction statistics from previous simulations were taken over,
similar as for the fourth variant in figure 25. The multidimensional database consists of
approximately 60,000 samples. Applying the master-worker approach, a simulation for
90, 000 trial moves was performed. Thereby a single master and three worker processes
were used. This is compared with the parallel replica method, for which a simulation
was carried out on three processes with 30,000 trial moves each.
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Figure 32: The graph shows the development of the total system energy for the master-
worker approach in comparison to the parallel replica method for a total of
90, 000 trial moves. It can be seen that there is not much difference between
the curves which supports the assumption that there is no direct disadvantage
in using this new method.

In figure 31 the cumulative runtime for those two variants is plotted. It can be seen
that while the parallel replica method is slightly slower in the beginning, it performs the
simulation in about 6500 seconds and thus around 1000 seconds faster than the master-
worker approach. The overhead of the parallel replica approach is closely connected to
the rate at which accepted trial moves are found. The less trial moves are accepted
the less replica compares have to be performed, which take about 4 seconds on average.
In the current example 89 replica compares were performed which took about 356 sec-
onds. More than half of those occurred during the first 7000 trial moves and the rest

o6



during the 23000 remaining ones. This explains why this method took longer than the
master-worker approach in the beginning. In comparison the master worker approach
just accepted 57 trial moves while taking longer for the whole simulation. Nevertheless
the resulting potential energy of the system developed similar for both method, which
can be seen in figure 32.

Furthermore the master-worker approach scales less and less well for higher processor
counts than 4. The decisive factor is the communication overhead for sending jobs to the
workers. If the master is overloaded, individual workers have to wait for a correspond-
ing message, which is detrimental to parallel efficiency. To measure this effect of high
processor counts and set it in comparison to the parallel replica method the simulation
was performed on the Jusuf [15] supercomputer for various processor counts. Overall
the average relaxation time shortened to about 5 seconds as well as the database search
time that decreased to 430 microseconds, which sped up the simulation in general. Using
the master-worker scheme 6400 trial moves were performed on 64 processors as well as
9600 on 96 processors so in theory 100 trial moves are handled on each processor. The
simulations finished in 54 and 73 second respectively whereby the initialization as well
as the cleanup step are excluded.
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Figure 33: The graph shows the runtime of the simulation for the master-worker ap-
proach as well as the parallel replica method for 100 trial moves for each
processor. The simulations were performed for processor counts of 16, 32, 64
and 96. The communication overhead of the master-worker scheme leads to
noticeably longer execution times as well as a worse scaling behavior for larger
number of processors.

o7



Already with 64 processors the effect of the master overload was noticeable as the average
wait time of a processor per trial move was approximately 0.2 seconds. For 96 processors
this number was even higher with around 0.5 seconds. Thereby on average 0.71 seconds
were necessary to perform a single trial move. This means that per processor a total
time of about 50 of 71 seconds was wasted on waiting for messages of the master process.
This includes the wait times for receiving the trial move configuration, transmitting the
result as well as the relaxed trial move configuration, if the trial move was successful.
The same number of trial moves was performed using the parallel replica method for 64
and 96 processors. Each of those was tasked to run 100 trial moves resulting in a total
of 6400 and 9600 respectively. The first configuration finished the simulation in only 16
seconds and the second one in 20 seconds. In figure 33 the discussed configurations as
well as ones for 16 and 32 processors are plotted. It can be clearly seen, that the parallel
replica method is not only faster but also shows better weak-scaling behavior for high
processor counts. It should be noted that due to the weak scaling approach additional
trial moves are introduced, that might lead to additional replica compares and therefore
an increased amount of time to run the simulation.
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Figure 34: The graph shows the parallel efficiency of the master-worker scheme in com-
parison to the parallel replica method. While the efficiency of the master-
worker approach quickly drops to under 50% the efficiency of the parallel
replica method stays above 65% for processor counts up to 96.
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Regarding the parallel efficiency the parallel replica method shows a similar advantageous
behavior compared to the master-worker approach (see figure 34). While its efficiency
quickly drops off to values far below 50% the efficiency of the parallel replica method
stays at above 65% for high processor counts applying weak- as well as strong-scaling.

4.3.2 Memory consumption

In addition to the obvious advantages, the parallel replica method also has disadvantages
that cannot be ignored. One of these is the significantly higher memory consumption,
as shown in figure 35. This is due to the fact that each processor must have its own copy
of the entire configuration, as the changes made are initially local and exclusive for the
processor until the replica compare is performed.
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Figure 35: The plot shows the required memory to run the simulation. When using the
parallel replica method each process is required to keep its own version of the
entire configuration. In addition to that the replica compare itself is quiet
memory intensive which leads to the even higher peak memory consumption.
In contrast to this the master-worker approach only depends on one copy of
the system and communicates the much smaller trial move configurations. As

the minimal configuration consists of one master and one worker the graph
begins at 2.
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The available data was generated for an initial configuration with around 9,000,000
atoms. At runtime, a single processor requires about 1.7Gb of memory to store this con-
figuration. A similar value can be seen for the master-worker approach with one master
and one worker. If the number of processors for the parallel replica method is increased,
the average amount of memory required increases linearly. Another aspect that occurs
for 2 processors and more is the additional memory requirement for the replica compare,
which again results in a significant increase. Due to the memory structure of the atoms,
which is not suitable for sending via MPT [19], it is necessary to create a separate buffer
for sending and receiving the configuration. In theory, this would mean a doubling of the
required memory. By making some adjustments to the way the data is transmitted, this
value could be reduced to about 50% increased consumption. Since the generation of
the configuration replica on the receiving processor requires the simultaneous presence
of all particles, the increased memory requirement cannot fall below this threshold as
long as the replicas are generated in parallel via MPI-broadcast and not serially.

4.3.3 Omitted Trial Moves

Another possibly limiting perk of the parallel replica method is the possible omission
of accepted trial moves. This occurs especially when the acceptance rate of trial moves
is still quite high at the beginning of the simulation. Due to the way in which the
replica comparison is initiated (see Section 3.4), where all processors are finishing their
currently processed trial move, it can happen that further trial moves are accepted
between initialization and execution of the replica compare. Since only the system with
the minimum energy is retained, this leads to the rejection of all other systems, including
those that already contain accepted trial moves. In figure 36 the cumulative count of all
discarded trial moves per processor in plotted. The simulation was run on 96 processors
that each processed 1000 trial moves.

On average, each processor accepted 9 trial moves. As can also be seen from the graph
most of these trial moves were discarded, so that at the end of the simulation only
20 replica compares were carried out, in each of which one or more trial moves were
accepted. For some processors, even all of the 14 accepted trial moves were discarded
because another system always had the lower energy. This poses a problem in that it
reduces the algorithmic efficiency of the parallel replica method. The goal of minimizing
the energy of the simulated system is also not achieved at the desired speed. Since trial
moves are discarded simply because they belong to a system with non-minimal energy,
possibilities to further minimize the energy in the replicated system are also discarded.
This is because many trial moves do not conflict with each other and a combination of
these would theoretically be possible.
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total omitted successful trial moves

Figure 36: The graph shows the total number of omitted successful trial moves after
performing N trial moves for each of the 96 processors for the parallel replica
method. The omitting happens due to multiple processors finding an accepted
trial move and initializing a replica compare within the same interval between
two replica compares. As just the system with the lowest energy remains after
the replica compare, all other systems, also those with accepted trial moves,
are omitted. In the initial phase of the simulation the probability of multiple
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processors simultaneously accepting a trial move is high.

At the same time, the graph, which becomes shallower towards the upper right, also
shows that the observed problem is not permanent, as the acceptance rate of the trial
This reduces the probability that several processors will
accept a trial move within the same replica compare time-frame and thus also reduces
the number of discarded trial moves. This behavior can also be seen in figure 37 were
the equivalent graph is shown for the trial moves 1000 to 2000 for each processor. Note

moves decreases over time.

that the cumulative sum starts over at 0 for this simulation.
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Figure 37: The graph shows the number of omitted successful trial moves after perform-
ing N trial moves for each of the 96 processsors for the parallel replica method.
Compared to the initial phase of the simulation in figure 36 the probability of
multiple processors simultaneously accepting a trial move is much lower for
the 1000 trial moves afterwards which are plotted in this graph.

As can be seen from the example, the omission of trial moves due to collision is closely
connected to both the acceptance probability and the number of processors. To get a
better idea of the collision probability, the effective acceptance probability pg. is intro-
duced. This is calculated from the quotient of the number of replica compares and the
total number of all trial moves.

NreplicaComapTes

Pae = (31)

NtrialMoves
For a single processor pq. corresponds to the average acceptance probability for all pro-
cessed trial moves. For higher processor counts, p,. lies below the actual acceptance
probability due to the trial move collisions. For the system under consideration, p,. for
the first 600 trial moves with one processor is approximately 1.72%. Increasing the num-
ber of trial moves to 1200 or 9600 reduces the average acceptance probability to 1.05%
and 0.29%, respectively. For 16 processors with 600 trial moves each, pg. is only 0.1%,
which corresponds to approximately 0%8%9 = 34% of the corresponding serial acceptance
probability. When considering this development for even higher processor counts while
maintaining the total number of trial moves, it can be seen that this proportion con-
tinues to decrease. For 32 processors, the proportion is around 19%, and for 64 and 96
processors, it is 8% and 5% respectively (see figure 38).
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H P trial moves/P Dae Pac 1 —(1—pa)? H

0.0029
1 600 0.0172 - 0.0172
1 1200 0.0105 - 0.0105
1 9600 0.0029 1 0.0029
16 600 0.001 0.345 0.015
32 300 0.000555 0.191 0.017
64 150 0.000243 0.0838 0.015
96 100 0.000138 0.0476 0.013
96 600 0.000165 0.0569 0.015
96 1000 0.000167 0.0575 0.015
Figure 38

In addition to this development is can be seen that the effective acceptance probability
seems to bottom out when increasing the number of trial moves per processor for 96
processors total. Another observation can be made if pge is assumed to be constant
and as such the same for each processed trial move. In addition to that each trial
move is assumed to be processed synchronous on each processor as if there would be an
"MPI__Barrier’ for all processes after each trial move. The probability that at least one
trial move is accepted on P processors during each iteration can then be calculated by
1 — (1 —pge)f. While this value shows much variation for the serial execution for higher
numbers of processors it nearly always lies around 1.5% which is comparable to the true
acceptance probability at the beginning of the serial simulation (see figure 38).

A proportion of around 5% for the pge for 96 processors compared the the serial ac-
ceptance probability means that approximately 20 times as many trial moves can the-
oretically be accepted, provided that the individual trial move configurations of the
respective replica compares do not overlap. This would allow merging all accepted trial
moves within the same replica compare to a single new configuration which is then repli-
cated.

The collision probability for two independent trial moves can approximately be deter-
mined based on the overlapped system volume. Assuming that the two spheres of a
single trial move configuration do not overlap, the collision probability p.., for inserting
the (n + 1)-th sphere can be calculated using the following equation for n = 2.

4 3

n- 3m(2r)
CO 32
Pcol = % (32)

Thereby V is the Volume of the simulation box and r is the radius of the extracted trial

move sphere. This radius is doubled as the additional sphere with identical radius has to
be placed with a minimal distance to the existing ones to not overlap. In the considered
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examples the extracted sphere has a radius of » = 21,53846. This leads to a total
exclusion volume of 334828, 59 for each trial move sphere with the collision probabilities
shown in the following figure 39. Note that this is the maximum collision probability as
in practical spheres of the same trial move configuration may overlap as well as whole
trial move configurations if they are performed in serial order and not parallel.

H N spheres abs. Volume Peol cumul. Prob. for no collision H

0 0 0 1

1 334828,59  0.0124 0.9876
2 669657,19  0.0248 0.9631
3 1004485,78  0.0372 0.9272
4 1339314,38  0.0496 0.8813
5 167414297  0.062 0.8266
6 2008971,56  0.0744 0.7651
7 2343800,16  0.0868 0.6986
8 2678628,76  0.0992 0.629
9 3013457,35 0.1117 0.5591
10 3348285,95  0.124 0.4898

Figure 39

Given five independent trial move configurations whose spheres do not overlap, the
probability that the 10 spheres are locally independent of each other is only about 49%.
This means that even if there are about 20 times as many accepted trial moves as are
currently adopted for the main configuration, the chance to be able to merge all of them
into a singular configuration during the replica compare is quiet low as they have to be
locally independent.

A possible solution for this problem would be to shorten the time between initiation
an execution of the replica compare to be more or less instant while interrupting all
running relaxations. A simpler approach to reduce the number of rejected trial moves is
to slightly increase the replica compare interval as can be seen in figure 40. This means
that a replica compare is not initiated after every accepted trial move, but only after
every second one at a compare interval of 2. The basic problem, that several processors
accept a trial move between the initiation and execution of a replica compare, remains.
However, by increasing the compare interval, significantly fewer replica compares are
performed, with only 9 compared to 20 previously. This leads to fewer discarded trial
moves overall. This phenomenon only works for very low compare intervals of 2, as the
probability of multiple trial moves being accepted in close succession is increasingly low.
Thus very few processes reach this number of acceptances in short time which means
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fewer processes with more than one accepted trial move to be discarded. The success of
this method depends heavily on the timing of the relaxations and the reliability of the
energy prediction.
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Figure 40: The graph shows the number of omitted successful trial moves after perform-
ing N trial moves for each of the 96 processors for the parallel replica method.
The simulation starts from the same initial configuration as in figure 36 with
the single difference that not after each accepted trial move a replica compare
is initiated but the replica compare interval is increased to a minimum of two
accepted trial moves per process.

If the compare interval is further increased to values beyond 2, the average of accepted
trial moves for each processor between replica compares increases as well and with it the
number of omitted trial moves. With a compare interval of just 2 this average lies closely
above 1, while two trial move of progress are made at minimum each replica compare.
For a compare interval of 3 this average will lean more towards 2 which results in 2
discarded trial moves for a progress of at least 3 on each replica compare.

Further using higher replica intervals also means much less replica compares in total.
This tends to become a problem as there are only one or few processes that reach this
number of acceptances thus there is less choice for a maximum descend in potential
energy. This behavior can already be seen for a compare interval of 2 where on average
a less minimal potential energy could be found for the same number of trial moves.
However the deviation in the final energy is still small what can be seen in figure 41
where the development of the system energy is plotted for replica compare intervals of
1 and 2.
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Figure 41: In the graph the development of the potential energy in the simulated system
is plotted. Beginning with the starting configuration in total 96,000 trial
moves distributed on 96 processes were performed. The fact that the curves
show a similar decrease in energy shows, that increasing the comparison in-
terval to 2 has not a great negative impact yet.

To completely avoid this problem of the parallel replica method, the master-worker
scheme can be used to process the initial trial moves of a system. If the acceptance rate
for the trial moves falls below a certain threshold, the parallel replica method can be
used to speed up the search for accepted trial moves while the discarding rate of the
trial moves stays low.
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5 Conclusion

In the course of this work, the multipole coefficient based algorithm for the prediction of
potential energy was successfully integrated into the existing MC++ code and applied.
Furthermore, in addition to the IMD, a LAMMPS interface has been realized to perform
the necessary relaxations. The concept of virtual atoms was implemented in a way that
is compatible with LAMMPS; albeit with a workaround. The performance gain through
the use of the prediction algorithm is made up of several components.

On the one hand, the idea is based on a similarity search within previously processed
configurations in order to use this information to draw conclusions about the energy of
the current configuration. A high-performance database structure for storing this data is
therefore essential. In this work, three possible database models were examined in more
detail, with the multidimensional database model proving to be the best. This enabled
the search time for a data volume of 60,000 entries in the database to be reduced from
around 23,000 to 3000 microseconds. After a further adaptation of this model, in which
variable bin sizes were introduced, the search time was only 700 microseconds or 430
microseconds on the JUSUF supercomputer.

On the other hand, the energy prediction itself requires a high degree of reliability in
order to guarantee correct predictions. In the course of analyzing some freely selectable
parameters, the effects on the prediction quality could be determined and in some cases
optimal parameters could be found. An extension of the zone within which the energy
is predicted has yielded the greatest gain in accuracy. After a relatively short training
phase of 800 trial moves, higher energy trends could already be predicted correctly with
a probability of over 90%. However, the configuration space was not sufficiently sampled
so that no prediction could be made after 800 trial moves in 20% of cases.
Furthermore, for the algorithm to be used successfully, it is also necessary to be able
to recognize lower energy trends. This could only be achieved quite reliably with a
database from around 10,000 entries with 60% probability. To maximize the gained
speedup through using this prediction method, an almost complete coverage of the con-
figuration space is necessary, so that only a handful of configurations have to be relaxed,
due to no prediction could be made. Since the configurations that lead to a higher en-
ergy tendency occur far more frequently, the hope is that these are almost completely
sampled so that an increased proportion of unpredictable configurations will therefore
lead to a lower energy tendency.

The maximum speedup that could be achieved by using the energy prediction is approx-
imately 50 for a database with around 60,000 entries. Thereby the relative deviation
of the predicted energy to the actual one was on average about 8%. For this size of
database the chance to find a similar configuration and thus be able to predict an energy
was around 98.5%. Higher energy tendencies were correctly predicted to nearly 100%
whereas lower ones only about 80% of the time. For comparing performance, the variant
of the program without energy prediction was used, in which no relaxation is omitted
and therefore the effort is significantly increased.

In the existing MC++ code, the parallel processing of trial moves was made possible
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by implementing a master-worker scheme. This type of implementation enabled a sig-
nificant speedup with a minimal increase in memory requirements. The communication
overhead introduced by this approach was still negligible, as one relaxation was executed
for each trial move, which accounted for the majority of the runtime. The introduction
of the energy prediction algorithm in this work changed this ratio of communication
overhead to computation time considerably. A possible approach that the master pro-
cess takes over the energy prediction completely and only the relaxations are executed
on the workers was discarded, as this limits the speed at which new configurations can
be processed.

For this reason, a modification of the parallel replica method was implemented. This
can be used to speed up the search for accepted trial moves, especially in advanced
simulations with a lower acceptance rate, as all processors involved search simultane-
ously applying the prediction algorithm. Especially for high processor numbers of 96
the runtime of the simulation could be further reduced without a loss in quality of the
result. However, this method also poses some problems, such as the greatly increased
memory requirements, which needs to be addressed. To summarize, the parallel replica
method is a valid and necessary replacement for the existing master-worker scheme as
it shows much less limitations considering communication overhead for highly parallel
simulations.
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6 Outlook

Not all aspects could be examined in detail and all problems encountered could be fully
resolved in the course of this work. This section therefore takes a closer look at some of
these points and provides an outlook on possible future developments.

The current implementation of the multidimensional database was realized with the
C + + data structure ’std::vector’. A problem which is particularly evident for higher
dimensions and bin numbers is the high rate of pre-initialized memory. Since the vec-
tor data structure requires that all entries are continuously stored in memory, empty
lists must also be initialized in the database and corresponding memory space must be
reserved. A further problem arises if a list requires more memory than intended and
all subsequent lists in the memory have to be relocated in order to maintain continuity.
A possible solution to this problem is that each of the database lists contains only one
pointer. This pointer is a null pointer as long as the list contains no entries. To add
entries, a C'++ ’std::deque’ [4] is generated, with the pointer in the database pointing to
the first element. If further elements are added to this list, the 'std::deque’ is extended
by a further element. The advantage of the ’std::deque’ is that the elements do not
have to be stored continuously in memory and can be accessed from both ends of the
container, which makes fast initialization possible. However, unlike before, one or more
dereferences are required for each search in the database. This can have a negative effect
on search times, which needs to be investigated further.

Another aspect with which the database can be further improved is a rebinning pro-
cedure. This involves adjusting the bin boundaries based on the available data and
re-sorting all entries. This should in turn make them more evenly distributed and, on
average, speed up searches in the database. As such a procedure is very time-consuming,
it should only be carried out if the samples are very inhomogeneously distributed. It
is therefore necessary to develop a measure to determine this inhomogeneity so that
automated rebinning can be realized.

The last two aspects both concern the parallel replica method and in particular the
replica compare itself. Until now, the system with the minimum energy was always
replicated in order to minimize the energy as quickly as possible. This raises the ques-
tion of whether it might not be beneficial to replicate not just the minimum, but the N
minimum systems in order to retain more diversity in the configurations searched.
Another method to further optimize the minimization of the potential energy has already
been briefly touched upon, but it intervenes more strongly in the minimization process.
The idea is to identify trial moves during the replica compare that are independent of
each other, since the distance between the trial move configurations is larger than their
radii plus the cutoff radii of the pair interactions between the atoms. Under this condi-
tion, these trial moves can all be included in the same configuration without the need
for further relaxation. The new energy delta of the composite system corresponds to the
sum of the deltas of the individual trial moves. If successfully applied, this procedure
has the positive side effect of relativizing the problem of discarded trial moves, as these
can be used to further minimize the system energy.
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7 Appendix

7.1 Parallel replica worker

void Slave::runAsSlaveParRep(Master& master, int pRank, string mcOutputFile,

{

double rSphere, int checkInterval)

\\Initilization[...]

while(!finished)

{
currentMCStep++;
nlterations++;
sphereCenters.clear () ;
inputSphere.clear () ;

//Initialise new trial move

mcStepTimeStampHist .push_back(chrono::duration_cast<chrono::milliseconds
>(trialMoveGenTimeStart-trialMoveTimeBegin) .count ());

if (threadRank==0)

{
currJob = Job(currentMCStep, master, (*master.masterDomain_),
currentMCStep) ;
currJob.myResult.isConverged = false;

currJob.myResult.result=false;

currJob.state = FINISHED;

sphereCenters.push_back(globalList [currJob.swapList [0].ID].getPosition
0

sphereCenters.push_back(globallList [currJob.swapList[1].ID].getPosition
(ODN

//Construct configuration
master .masterDomain_->createConfiguration(currJob.swaplist,
inputSphere) ;

for (const auto& s : currJob.swapList)

{
// adding chosen Particle into configuration
Particle particle = globallist[s.ID];

particle.setType(s.type);
inputSphere.push_back(particle);
}
}
//Run configuration
if (threadRank == 0)
{
if (predictEnergy_)
{
//Predict energy for the swap operation
vector<long> swapIDList = vector<long>{currJob.swapList[0].ID,
currJob.swapList [1].ID};
mpPrediction = predObject.predictEnergy(inputSphere, sphereCenters
, rSphere, swapIDList);
energyDiff = predObject.getEnergyDiff (inputSphere, sphereCenters);
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11 eBefore = energyDiff.first + energyDiff.second;

42 ePredFe = mpPrediction[0].back();

13 ePredFeC = mpPrediction[1].back();

44 ePred = ePredFe + ePredFeC;

45

16 if (mpPrediction[0].size() > 16 || mpPrediction[1].size() > 16) //15
coeff + 1 energy; In case of no prediction is set to be 17 where energy
is 0 and last one is atom count (see predictEnergy())

17 {

18 nNoPredictions++;

49 nRelaxations++;

50 //no prediction could have been made -> perform normal localMD run
51 int flagRunLocalMD=1;

52 MPI_Bcast (&flagRunLocalMD, 1, MPI_INT, O, threadComm_);
53

54 //Broadcast new job

55 nParticles = inputSphere.size();

56 long* types = new long[nParticles];

57 double* ePot = new double[nParticles];

58 double* positions = new double [3*nParticles];

59 for(auto i=0; i<inputSphere.size(); ++i)

60 {

61 types[i] = inputSphere[i].getType();

62 ePot[i] = inputSphere[i].getEpot ();

63 positions[3*i] = inputSphere[i].getPosition() .x;

64 positions[3*i+1] = inputSphere[i].getPosition().y;

65 positions[3*i+2] = inputSphere[i].getPosition().z;

66 }

67 MPI_Bcast (&nParticles, 1, MPI_LONG, O, threadComm_);

68 MPI_Bcast (types, nParticles, MPI_LONG, O, threadComm_);

69 MPI_Bcast (ePot, nParticles, MPI_DOUBLE, 0O, threadComm_);
0 MPI_Bcast(positions, 3*nParticles, MPI_DOUBLE, 0, threadComm_);

2 currJob.myResult.isConverged = mdObject.runLocalMD (inputSphere,
currJob.myResult.particles,threadComm_, currentMCStep);

73 if (mpPrediction[0].size() > 16){mpPrediction[0].pop_back();}

74 if (mpPrediction([1].size() > 16){mpPrediction[1].pop_back();}

76 if (currJob.myResult.isConverged < 0)

7 {

78 nFailedLocalMD++;

79 }else

80 {

81 nFinishedRelaxations++;

82 //replace non predicted energy ("0") with actual energy

83 energyDiff = predObject.getEnergyDiff (currJob.myResult.particles
, sphereCenters);

84 mpPrediction[0] .back() = energyDiff.first;

85 mpPrediction[1].back() = energyDiff.second;

8¢

87 if (mpPrediction[0].back() + mpPrediction[1].back() < eBefore){

88 nNoPredLower ++;

89 }

90 //add new samples to database

75



predObject .mpCoeffDbFe_.addSample (mpPrediction[0]) ;
predObject .mpCoeffDbFeC_.addSample (mpPrediction[1]);

}

predObject.noPrediction(0);
predObject.noPrediction(1);

}else
{

nPredictions++;

//if a lower energy is predicted run normal relaxation step
if (ePred < eBefore)

{
nPredLower++;
nRelaxations++;
int flagRunLocalMD=1;
MPI_Bcast (&4flagRunLocalMD, 1, MPI_INT, O, threadComm_);
//Broadcast new job
nParticles = inputSphere.size();
long* types = new long[nParticles];
double* ePot = new double[nParticles];
double* positions = new double [3*nParticles];
for(auto i=0; i<inputSphere.size(); ++1i)
{
types[i] = inputSphere[i].getType();
ePot[i] = inputSphere[i].getEpot();
positions [3%i] = inputSphere[i].getPosition() .x;
positions[3*i+1] = inputSphere[i].getPosition().y;
positions [3*¥i+2] = inputSphere[i].getPosition().z;
}
MPI_Bcast (&nParticles, 1, MPI_LONG, O, threadComm_);
MPI_Bcast (types, nParticles, MPI_LONG, O, threadComm_);
MPI_Bcast (ePot, nParticles, MPI_DOUBLE, O, threadComm_);
MPI_Bcast (positions, 3*nParticles, MPI_DOUBLE, 0O, threadComm_);
currJob.myResult.isConverged = mdObject.runLocalMD (inputSphere,
currJob.myResult.particles,threadComm_, currentMCStep);
if (currJob.myResult.isConverged < 0)
{
nFailedLocalMD++;
}else
{
nFinishedRelaxations++;
//replace predicted energy with actual energy
energyDiff = predObject.getEnergyDiff (currJob.myResult.
particles, sphereCenters);

mpPrediction [0] .back () energyDiff.first;
mpPrediction[1].back() = energyDiff.second;

if (mpPrediction[0].back() + mpPrediction[1].back() < eBefore)
{
nRightLowerPred++;
predObject.rightPrediction (0) ;
predObject.rightPrediction (1) ;
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}

}else
{
nWronglLowerPred++;
predObject.wrongPrediction (0) ;
predObject.wrongPrediction(1);
}
//add new samples to database
predObject .mpCoeffDbFe_.addSample (mpPrediction[0]);
predObject . .mpCoeffDbFeC_.addSample (mpPrediction[1]);

}else

{

nPredHigher++;
if (alwaysRunRelaxation_ || ((1.0*rand()/RAND_MAX) > (double(
nRightHigherPred) /nPredHigherRunAnyway)))

{

nPredHigherRunAnyway++;

nRelaxations++;

int flagRunLocalMD=1;

MPI_Bcast (&flagRunLocalMD, 1, MPI_INT, O, threadComm_);

//Broadcast new job

nParticles = inputSphere.size();

long* types = new long[nParticles];

double* ePot = new double[nParticles];
double* positions = new double [3*nParticles];
for(auto i=0; i<inputSphere.size(); ++i)

{

types[i] = inputSphere[i].getType();
ePot [i] = inputSphere[i].getEpot();
positions [3*%i] = inputSphere[i].getPosition() .x;
positions [3*xi+1] = inputSphere[i].getPosition().y;
positions[3*i+2] = inputSphere[i].getPosition().z;
}
MPI_Bcast (&nParticles, 1, MPI_LONG, O, threadComm_);
MPI_Bcast (types, nParticles, MPI_LONG, O, threadComm_);
MPI_Bcast (ePot, nParticles, MPI_DOUBLE, O, threadComm_);
MPI_Bcast (positions, 3*nParticles, MPI_DOUBLE, 0, threadComm_)

currJob.myResult.isConverged = mdObject.runLocalMD (inputSphere

,currJob.myResult.particles,threadComm_, currentMCStep);

particles,

if (currJob.myResult.isConverged < 0)
{
nFailedLocalMD++;
}else
{
nFinishedRelaxations++;
//replace predicted energy with actual energy
energyDiff = predObject.getEnergyDiff (currJob.myResult.
sphereCenters) ;
mpPrediction[0] .back() = energyDiff.first;
mpPrediction[1].back() = energyDiff.second;
if (mpPrediction[0].back() + mpPrediction[1].back() > eBefore
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nRightHigherPred++;
predObject.rightPrediction (0) ;
predObject.rightPrediction (1) ;

}else
{

nWrongHigherPred++;

nPredHigherButLower++;

predObject.wrongPrediction (0) ;
predObject.wrongPrediction (1) ;

}

//add new samples to database
predObject .mpCoeffDbFe_.addSample (mpPrediction[0]) ;
predObject .mpCoeffDbFeC_.addSample (mpPrediction[1]);

}
}else
{

int flagRunLocalMD=0;

MPI_Bcast (&4flagRunLocalMD,

//dont run localMD
currJob.myResult.isConverged

currJob.myResult.particles

}
}else
{

nRelaxations++;

int flagRunLocalMD=1;

1,

MPI_INT, O, threadComm_);

= false;
inputSphere;

MPI_Bcast (&flagRunLocalMD, 1, MPI_INT, O, threadComm_);

//Broadcast new job

nParticles = inputSphere.size();
long* types = new long[nParticles];
double* ePot = new double[nParticles];

double* positions =

new double[3*nParticles];

for(auto i=0; i<inputSphere.size(); ++1i)

{

types[i] = inputSpherel[il.getType();

ePot[i] = inputSphere[i].getEpot();
inputSphere[i].getPosition() .x;
inputSphere[i].getPosition().y;
inputSphere[i].getPosition() .z;

positions[3*i] =
positions [3*i+1]
positions [3*i+2]

}

MPI_Bcast (&nParticles, 1, MPI_LONG,
MPI_Bcast (types, nParticles, MPI_LONG, O, threadComm_);

MPI_Bcast (ePot, nParticles,

currJob.myResult.isConverged =
currJob.myResult.particles,threadComm_,
if (currJob.myResult.isConverged==1) {nFinishedRelaxations++;}

}
}else
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0, threadComm_);

MPI_DOUBLE, 0, threadComm_) ;
MPI_Bcast (positions, 3*nParticles, MPI_DOUBLE, 0O, threadComm_);
mdObject.runLocalMD (inputSphere,

currentMCStep) ;



int flagRunLocalMD;
MPI_Bcast (&4flagRunLocalMD, 1, MPI_INT, O, threadComm_);
if (flagRunLocalMD == 1)
{
//Receive broadcast job
MPI_Bcast (&nParticles, 1, MPI_LONG, O, threadComm_);

long* types = new long[nParticles];
double* ePot = new double[nParticles];
double* positions = new double[3*nParticles];

MPI_Bcast (types, nParticles, MPI_LONG, O, threadComm_);
MPI_Bcast (ePot, nParticles, MPI_DOUBLE, 0, threadComm_);
MPI_Bcast (positions, 3*nParticles, MPI_DOUBLE, 0, threadComm_);
Particle p;
for (auto i=0; i<nParticles; ++i)
{
p.setType (types[il);
p.setEpot (ePot[i]);
p.setPosition(positions[3*i], positions[3*i+1], positions[3*i+2]);
inputSphere.push_back(p);
}
vector<Particle> tempParticles;
currJob.myResult.isConverged = mdObject.runLocalMD (inputSphere,
tempParticles,threadComm_, currentMCStep);

}

}

//Invoke Sync

if (threadRank == 0)

{
if (currJob.myResult.isConverged == 1)
{

//Acceptance check
master.processJob(currJob);
if (currJob.myResult.result==true && currJob.myResult.deltaEnergy <
01
nAccepted++;
nTrialSuccess++;
Yelsed
nRejected++;
}
if (!terminationReqSend && !syncReqSend && nTrialSuccess>=
checkInterval)
{
syncReqSend=true;
ePotHistGlobal.push_back (master.masterDomain_->getTotalEnergy());
if (worldRank !=0) {MPI_Isend(&worldRank, 1, MPI_INT, O, TAGSYNC,
mainThreadComm_, &request);}
}
}

if (!terminationReqSend && currentMCStep>=totalMCSteps)

{

terminationReqSend=true;
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294 if (worldRank!=0){MPI_Isend(&worldRank, 1, MPI_INT, O, TAGTERM,
mainThreadComm_, &request);}

205 }

206 }

297 //Dynamic Sync

298 if (worldRank==0) // MasterSlave

299 {

300 MPI_Iprobe (MPI_ANY_SOURCE, MPI_ANY_TAG, mainThreadComm_, &flagSYNC, &
probeStatus);

301 if (syncReqSend || (flagSYNC==1 && probeStatus.MPI_TAG==TAGSYNC))

302 {

303 bcTAG=TAGCOMPARE;

304 if (! syncReqSend){

305 MPI_Irecv(&srcRank, 1, MPI_INT, probeStatus.MPI_SOURCE, TAGSYNC,
mainThreadComm_, &request);

306 MPI_Wait (&request, &status);

307 Yelseq{

308 srcRank=0;

309 ¥

310 compareConfigs=true;

311 for(auto i=1; i<mainThreadSize; ++i)

312 {

313 MPI_Send (&srcRank, 1, MPI_INT, i, TAGCOMPARE, mainThreadComm_) ;
314 }

315 }else if(terminationReqSend || (flagSYNC==1 && probeStatus.MPI_TAG==

TAGTERM) ) {
316 bcTAG=TAGTERM;
317 if (!terminationReqSend){

318 MPI_Irecv(&srcRank, 1, MPI_INT, probeStatus.MPI_SOURCE, TAGTERM,
mainThreadComm_, &request);

319 MPI_Wait (&request, &status);

320 Yelseq

321 srcRank=0;

322 3

323 finished=true;

324 for(auto i=1; i<mainThreadSize; ++i)

325 {

326 MPI_Send (&srcRank, 1, MPI_INT, i, TAGTERM, mainThreadComm_) ;

327 ¥

328 }elseq

329 bcTAG=TAGSWAPLIST;

330 }

331 MPI_Bcast (&bcTAG, 1, MPI_INT, O, threadComm_);

332 £flagSYNC=0;

333 }else if (threadRank==0) //MainSlave

334 {

335 MPI_Iprobe(0, MPI_ANY_TAG, mainThreadComm_, &flagCOMPARE, &probeStatus
);

336 if (flagCOMPARE==1 && probeStatus.MPI_TAG==TAGCOMPARE)

337 {

338 bcTAG=TAGCOMPARE;

339 MPI_Recv(&srcRank, 1, MPI_INT, O, TAGCOMPARE, mainThreadComm_, &
status) ;

340 compareConfigs=true;
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}else if (flagCOMPARE==1 && probeStatus.MPI_TAG==TAGTERM){
bcTAG=TAGTERM;
MPI_Recv(&srcRank, 1, MPI_INT, O, TAGTERM, mainThreadComm_, &status)

finished=true;
Yelse{
bcTAG=TAGSWAPLIST;
}
MPI_Bcast (&bcTAG, 1, MPI_INT, O, threadComm_);
f1agCOMPARE=0;

}else //ThreadSlave

{

MPI_Bcast (&bcTAG, 1, MPI_INT, O, threadComm_);
if (bcTAG==TAGCOMPARE)
{
compareConfigs=true;
}else if (bcTAG==TAGTERM){
finished=true;
}//else No compare was initialised and mainThread broadcasts new Job

//Compare Configs
if (compareConfigs)

{

nCompares++;

MPI_Barrier (slaveComm_) ;
if (threadRank == 0)

{

//Get process with minimum energy

double currEpot = ePotHistGlobal.back();

double* allEpot = new double[mainThreadSizel];

MPI_Allgather (&currEpot, 1, MPI_DOUBLE, allEpot, 1, MPI_DOUBLE,

mainThreadComm_);

int idx_min_1=0, idx_min_2=0;
double eMin=allEpot [0];
for(auto i=1; i<mainThreadSize; ++i)
{
if (allEpot [i] < eMin)
{
idx_min_2 = idx_min_1;
idx_min_1

i;
}
}
currentMCStep = replicate(master, idx_min_1, currentMCStep);
delete[] allEpot;

if (syncOnCompareCounter == syncEveryNthCompare){
syncOnCompareCounter=0;
MPI_Barrier (mainThreadComm_) ;
predObject .mpCoeffDbFe_.sync(mainThreadComm_, mainThreadRank,

mainThreadSize, TAGDBSYNC, true);

MPI_Barrier (mainThreadComm_) ;
predObject .mpCoeffDbFeC_.sync(mainThreadComm_, mainThreadRank,

81



1

N

}

mainThreadSize, TAGDBSYNC, true);
}else{
syncOnCompareCounter++;

}

if (mainThreadRank == idx_min_1){
nTrialDeletedOnCompareHist .push_back(0);

}else{
nTrialDeletedOnCompareHist.push_back(nTrialSuccess) ;
nTrialDeletedOnCompare += nTrialSuccess;

}

nTrialSuccess=0;

if (! syncReqSend){
ePotHistGlobal.push_back(master.masterDomain_->getTotalEnergy());

}

compareOnIterationHist.push_back(nIterations);
}else
{

currentMCStep = replicate(master, -1, currentMCStep);
}

//MasterSlave has to drain all SYNC calls
if (worldRank==0){
MPI_Iprobe (MPI_ANY_SOURCE, TAGSYNC, mainThreadComm_, &flagSYNC, &
probeStatus) ;
while (flagSYNC==1)
{
MPI_Irecv(&srcRank, 1, MPI_INT, probeStatus.MPI_SOURCE, TAGSYNC,
mainThreadComm_, &request);
MPI_Wait (&request, &status);
MPI_Iprobe (MPI_ANY_SOURCE, TAGSYNC, mainThreadComm_, &flagSYNC, &
probeStatus);
}
}

compareConfigs=false;
syncReqSend=false;
MPI_Barrier (slaveComm_) ;

}
\\Evaluation[...]

7.2 Calculate multipole coefficients

vector<double> MultipolePrediction::getMpCoeff (vector<Vector3d>& atoms,

{

double rSphere)

using namespace complex_literals;
vector<complex<double>> mp_coeff;
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vector<double> mp_coeff_crop;

vector<double> pm;

mp_coeff.assign(1Max_x1Max_, 0.0);

double r_s_x, r_s_y, r_s_z, r_s, r_s_1, cos_phi, sin_phi, phi, cos_theta,
sin_theta;

long 1m;

for(int s 0; s < atoms.size(); ++s)

{
r_s_x = atoms[s].x;
r_s_y = atoms[s].y;
r s_z = atoms[s].z;
r_s = sqrt(r_s_x*r_s_Xx + r_s_y*r_s_y + Y_s_z*r_s_z);
if(r_s_x == 0.0 && r_s_y == 0.0)
{
cos_phi = 1.0;
sin_phi = 0.0;
}else
{
cos_phi = r_s_x / sqrt(r_s_x*r_s_x + r_s_y*r_s_y);
sin_phi = r_s_y / sqrt(r_s_x*r_s_x + Tr_s_y*r_s_y);

}
phi = evalPhi(cos_phi, sin_phi);

cos_theta r s z / r_s;
sin_theta = sqrt(r_s_x*r_s_x + r_s_y*r_s_y) / r_s;

pm = assoclLegendre(lMax_, 1lMax_, cos_theta);

mp_coeff [0] += 1.0;
for(int 1 = 1; 1 < 1lMax_; ++1)
{
r_s_1 = r_s;
Im = factorial(l);
mp_coeff[1*x1Max_ + 0] += (1.0 / (r_s_1 * 1m)) * pm[O0*1Max_+1] x*
(1.0 + 1i * 0.0);
for(int m = 1; m <= 1; ++m)
{
Im = factorial(l + std::abs(m));
mp_coeff [1*1Max_ + m] += (1.0 / (r_s_1 * 1lm)) * pm[m*1Max_+1]

* (cos(m*phi) - 1i * sin(m*phi));
}
}
}
for(int 1 = 0; 1 < 1Max_; ++1)
{
for(int m = 0; m <= 1; ++m)
{
mp_coeff_crop.emplace_back(mp_coeff [1*1Max_+m].real());
}
¥
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return mp_coeff_crop;

7.3 Multidimensional database bin index

long nonuniformbinnedDatabase::getBinIdx(vector<double>& sample)

{

long idx = 0;

for(auto i=0; i<nDims_; ++1i)
{
if (sample[i] < bin_lo_[il])
{
idx+=0;
}else if(sample[i] > bin_hi_[i])
{
idx+=(nBins_-1)*dim0Ofs_[i];
}else
{

idx += int(1 + (lower_bound(bin_size_[i].begin(), bin_size_[i].
end (), sample[i]) - bin_size_[i].begin())) * dimOfs_[i];
}
}

return idx;

7.4 Database similarity search

pair<vector<long>,std::vector<double>> nonuniformbinnedDatabase::getBestFit (

{

vector<double>& sample, vector<double>& coeff_deviation)

vector<long> binIdxList;
long binIdx = getBinIdx (sample);
binIdxList.push_back(binIdx) ;
for (auto i=0; i<nDims_; ++i)
{
if (binIdx+pow(nBins_,i) < data_.size()){binIdxList.push_back(binIdx+
pow(nBins_,i));}
if (binIdx-pow(nBins_,i) >= 0){binIdxList.push_back(binIdx-pow(nBins_,
i)) ;%
}

std::vector<double> mp_diff;

mp_diff.assign(sample.size(), 0.0);
std::pair<vector<long>,vector<double>> best_fit;

best_fit = make_pair(vector<long>{-1,-1}, vector<double>{-1});
long kMax=0;

int highest_weight = -1;
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int current_weight = 0;

for(auto& i: binIdxList)

{
for(auto j=0; j<data_[il.size(); ++j)
{
getMpDiff (sample, data_[i]l[j], mp_diff);
for (auto k=0; k<mp_diff.size(); ++k)
{
if (mp_diff [k] <= fabs(samplel[k]*coeff_deviationl[k]))
{
if (k > kMax)
{
best_fit.first[0] = 1i;
best_fit.first[1] = j;
best_fit.second[0] = data_[i][j][15]1;
kMax = k;
highest_weight = data_[i][j1[16];
}else if(k == kMax)
{
current_weight = data_[i][j]1[16];
if (current_weight > highest_weight)
{
best_fit.first[0] = 1i;
best_fit.first[1] = j;
best_fit.second[0] = data_[i]l[j][15];
highest_weight = current_weight;
}
}
}else
{
break;
}
}
}
}

return best_fit;

7.5 LAMMPS relaxation step

int interfaceLAMMPS::runLocalMD(vector<Particle>& inConfiguration, vector<

{

Particle>& outConfiguration, MPI_Comm subGroup, long jobCount)

int pRank;
int pSize;
MPI_Comm_rank (subGroup, &pRank) ;
MPI_Comm_size (subGroup, &pSize);

long nParticles = inConfiguration.size();
double eSumBefore=0; double eSumAfter=0;
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13

//Initialise LAMMPS

const char *lmpargv[] {"liblammps", "-echo", "log", "-screen", "out.

lammps", "-log", "log.lammps", "-in", "none"};

int lmpargc = sizeof (lmpargv)/sizeof (const char *);

LAMMPS_NS::LAMMPS *1lmp = new LAMMPS_NS::LAMMPS (lmpargc, (char **)lmpargv,
subGroup) ;

lammps_file(lmp, inputFile_);

Particle sphereParticle;
long nUnmatchedParticles = 0;
long nLammpsParticles = 0;
int nCoreZone = 0;
int nMiddleZone = O0;
int nOuterZone = 0;
int nEmbedZone = 0;
std::vector<long> outConfigurationMask;
outConfigurationMask.assign(nParticles, 0);

vector<int> lmpid_to_inConfidx; //index i is lammps particle index and

value [i]

is index of lammps particle in inConfiguration[value[i]]

vector<int> core_id;vector<int> core_type;vector<double> core_pos;
vector<int> middle_id;vector<int> middle_type;vector<double> middle_pos;
vector<int> outer_id;vector<int> outer_type;vector<double> outer_pos;
vector<int> embed_id;vector<int> embed_type;vector<double> embed_pos;
timeBegin = chrono::high_resolution_clock::now();

for (auto i=0; i<nParticles; i++)//types 0,1,2

{

eSumBefore += inConfiguration[i].getEpot();
if (inConfiguration[i].getType() >= 0 && inConfiguration[i].getType ()

< 3)
{

outConfigurationMask[i] = 1;

core_id.push_back (i) ;
core_type.push_back((inConfiguration[i].getType () %9)+1);
core_pos.push_back(inConfiguration[i].getPosition() .x);
core_pos.push_back(inConfiguration[i].getPosition().y);
core_pos.push_back(inConfiguration[i].getPosition().z);

}else if(inConfiguration[i].getType() >= 9 && inConfiguration[i].
getType () < 12)

{

outConfigurationMask[i] = 2;

middle_id.push_back(i);
middle_type.push_back((inConfiguration[i].getType () %9)+1);
middle_pos.push_back(inConfiguration[i].getPosition() .x);
middle_pos.push_back(inConfiguration[i].getPosition().y);
middle_pos.push_back(inConfiguration[i].getPosition() .z);

}else if(inConfiguration[i].getType() >= 18 && inConfiguration[i].
getType ) < 21)

{

outConfigurationMask[i] = 3;

outer_id.push_back(i);

outer_type.push_back ((inConfiguration[i].getType ()%9)+1);
outer_pos.push_back(inConfiguration[i].getPosition() .x);
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93
94
95
96
97
98

99

101

outer_pos.push_back(inConfiguration[i].getPosition().y);
outer_pos.push_back(inConfiguration[i].getPosition().z);
}else if (inConfiguration[i].getType() % == 3)
{
outConfigurationMask[i] = 4;
embed_id.push_back(i);
embed_type.push_back(1); // handle embed atoms as Fe atoms
embed_pos.push_back(inConfiguration[i].getPosition() .x);
embed_pos.push_back(inConfiguration[i].getPosition() .y);
embed_pos.push_back(inConfiguration[i].getPosition().z);
}else
{
outConfigurationMask[i] = 0;
nUnmatchedParticles++;

}

int ncreatedl, ncreated2, ncreated3, ncreated4;

nCoreZone = core_id.size();

int* c_type = core_type.data();

double* c_pos = core_pos.data();

ncreatedl = lammps_create_atoms (lmp, nCoreZone, NULL, c_type, c_pos, NULL
, NULL, 0);

lmp->input->one("group core type 1 2 3");

nMiddleZone = middle_id.size();

int* m_type = middle_type.data();

double* m_pos = middle_pos.data();

ncreated2 = lammps_create_atoms(lmp, nMiddleZone, NULL, m_type, m_pos,
NULL, NULL, 0);

lmp->input->one("group middle subtract all core");

nOuterZone = outer_id.size();

int* o_type = outer_type.data();

double* o_pos = outer_pos.data();

ncreated3 = lammps_create_atoms (lmp, nOuterZone, NULL, o_type, o_pos,
NULL, NULL, 0);

lmp->input->one("group outer subtract all core middle");

nEmbedZone = embed_id.size();

int* e_type = embed_type.data();

double* e_pos = embed_pos.data();

ncreated4 = lammps_create_atoms(lmp, nEmbedZone, NULL, e_type, e_pos,
NULL, NULL, 0);

lmp->input->one("group embed subtract all core middle outer");

nLammpsParticles = lammps_get_natoms (lmp) ;

timeEnd = chrono::high_resolution_clock::now();
avgTimeMeasurements [2] += chrono::duration_cast<chrono::milliseconds>(

timeEnd-timeBegin) .count () ;

//Make sure that all thread procs created atoms successfully

int atomCreationSuccess, equalAtomCount;
if (nLammpsParticles == nParticles){
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136

138
139
140

equalAtomCount=1;
}else{
equalAtomCount=0;

}
MPI_Allreduce (&equalAtomCount, &atomCreationSuccess, 1, MPI_INT, MPI_SUM,
subGroup) ;
if (atomCreationSuccess!=pSize){
outConfiguration = inConfiguration;
delete 1lmp;
return O;
¥
int* atom_ids_before = new int[nLammpsParticles];

lammps_gather_atoms (lmp, (char *) "id",0,1,atom_ids_before);

for(auto& val : core_id){1lmpid_to_inConfidx.push_back(val);}

for(auto& val : middle_id){lmpid_to_inConfidx.push_back(val);}
for(auto& val : outer_id){lmpid_to_inConfidx.push_back(val);}
for(auto& val : embed_id){lmpid_to_inConfidx.push_back(val);}

lmp->input->one("group Fe type 1");

lmp->input->one("group C type 2");

lmp->input->one("group V type 3");

lmp->input->one("group FeC type 1 2");

lmp->input->one("group Fe_core intersect Fe core");
lmp->input->one("group C_core intersect C core");
lmp->input->one("group V_core intersect V core");
lmp->input->one("group FeC_core_middle subtract FeC embed outer");

//Zone fixes
lmp->input->one("fix middle_fix_force middle setforce 0.0 0.0 0.0 region
simulation_box");
lmp->input->one("fix outer_fix_force outer setforce 0.0 0.0 0.0 region
simulation_box");
lmp->input->one("fix embed_fix_force embed setforce 0.0 0.0 0.0 region
simulation_box");
//Relax all but Fe and C separate to V
lmp->input->one("neigh_modify exclude type 1 3");
lmp->input->one("neigh_modify exclude type 2 3");
lmp->input->one("fix v_fix_force V setforce 0.0 0.0 0.0 region
simulation_box");
try{

lmp->input->one("minimize 1.0e-4 1.0e-6 200 2001");
}catch(const exception &e)

{
cout << e.what() << endl;
outConfiguration = inConfiguration;
delete 1lmp;
return O;

}

lmp->input->one("neigh_modify exclude none");
lmp->input->one("unfix v_fix_force");

//Relax only V

lmp->input->one("fix fe_fix_force Fe setforce 0.0 0.0 0.0 region
simulation_box");
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lmp->input->one("fix c_fix_force C setforce 0.0 0.0 0.0 region

simulation_box");
lmp->input->one("velocity Fe set 0 0 0");
lmp->input->one("velocity C set 0 0 0");
try{

lmp->input->one("minimize 1.0e-4 1.0e-6 200 2002");
}catch(const exception &e)

{
cout << e.what() << endl;
outConfiguration = inConfiguration;
delete 1lmp;
return O;

}

lmp->input->one("unfix fe_fix_force");
lmp->input->one ("unfix c_fix_force");

//Perform one update cycle to get all potential energies of atoms right

lmp->input->one ("compute atom_pe_compute all pe/atom");
lmp->input->one("neigh_modify exclude type 1 3");
lmp->input->one("neigh_modify exclude type 2 3");
lmp->input->one("neigh_modify exclude type 3 3");
lmp->input->one("fix nve_fix all nve");
try{

lmp->input->one("run 0");
}catch(const exception &e)

{

cout << e.what() << endl;

outConfiguration = inConfiguration;

delete 1mp;

return O;
}
//Get updated trajectories back
int* atom_ids_after = new int[nLammpsParticles];
int* atom_types = new int[nLammpsParticles];
double* atom_mass = new double[nLammpsParticles];
double* atom_coords = new double[3*nLammpsParticles];

lammps_gather_atoms (lmp, (char *) "id",0,1,atom_ids_after);

lammps_gather_atoms (lmp, (char *) "type",0,1,atom_types);

lammps_gather_atoms (lmp, (char *) "mass",1,1,atom_mass);
lammps_gather_atoms (1lmp, (char *) "x",1,3,atom_coords);

double* atom_pe = lmp->force->pair->eatom;
if (pRank == 0)
{

long coreCount = O0;

long middleCount = O0;

long outerCount = 0;

long unmatchedCount = 0;

int nOrderChanges=0;
int particleldx;

double atomMassTable[4] = {55.845, 12.0107, 12.0107,

for(auto i=0; i<nParticles; ++i)

{
if (outConfigurationMask[i] == 0)
{
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cout << "ERROR in LAMMPS::localMD there should be no
configmask[1i]=0" << endl;
outConfiguration.push_back(inConfiguration[i]);
unmatchedCount++;
delete 1mp;
outConfiguration = inConfiguration;
return 0;
}else
{
particleIdx = lmpid_to_inConfidx[atom_ids_after[i-
unmatchedCount] -1];

if (particleIdx<0 || particleIdx >= inConfiguration.size())
{
cout << "LAMMPS " << myrank_ << " ERROR: particleldx=" <<

particleIdx << " inConfig.size()=" << inConfiguration.size() << "
atomIdAft:" << atom_ids_after[i-unmatchedCount]-1 << " at i=" << i << "
with nLammpsPart=" << nLammpsParticles << " and nPart=" << nParticles <<
endl;

}

sphereParticle.setmcID(inConfiguration[particleIdx].getmcID()
)

sphereParticle.setType (inConfiguration[particleIdx].getType ()
)

sphereParticle.setMass (atomMassTable [sphereParticle.getType ()
%#91) ;5

sphereParticle.setPosition(atom_coords [3*(i-unmatchedCount)],
atom_coords [3*(i-unmatchedCount)+1], atom_coords [3*(i-unmatchedCount)
+21);
sphereParticle.setEpotBeforeLammps (inConfiguration[
particleIdx].getEpot());
outConfiguration.push_back(sphereParticle);
eSumAfter += outConfiguration.back().getEpot();
}
}
delete[] atom_ids_after;
delete[] atom_types;
delete[] atom_mass;
delete[] atom_coords;

if (inConfiguration.size() != outConfiguration.size())
{
cout << "LAMMPS " << myrank_ << " ERROR: Configuration sizes
after Lammps relaxation dont match." << endl;
}
}
delete 1mp;

return 1;
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