

QUANTUM FUTURE ACADEMY

Lecture: Quantum Annealing

2025 I DR. DENNIS WILLSCH

Motivation and Contents

➤ Main quantum computing paradigms:

Digital (gate-based) Quantum Computers

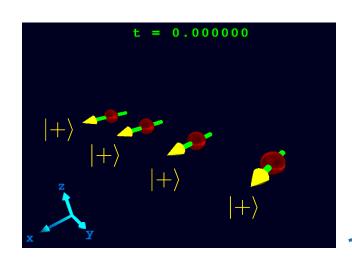
Quantum Simulators

Quantum Annealers

- ➤ Today, quantum annealers are the QC technology with the largest QPUs (~ 5000 physical qubits)
 - 1. What do these devices do? → Quantum Annealing and the Adiabatic Theorem
 - 2. Which problems can they solve? → QUBO & Ising Problems
 - 3. How do we program them? → D-Wave Ocean SDK
 - 4. Bonus: Relation between QA and digital QC → Finding parameters for QAOA
 - 5. Advanced Topics: Coherent / Non-Equilibrium / Quasistatic Annealing

Member of the Helmholtz Association Dr. Dennis Willsch Page 2

Overview

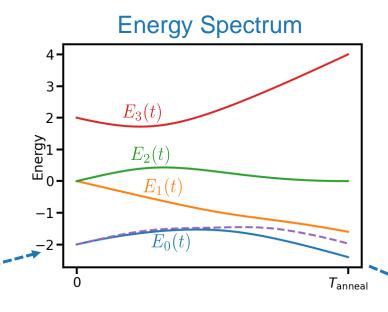


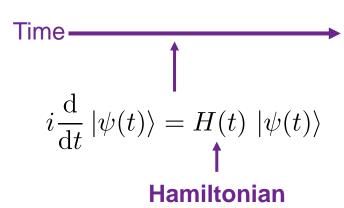
Start of Annealing Process:

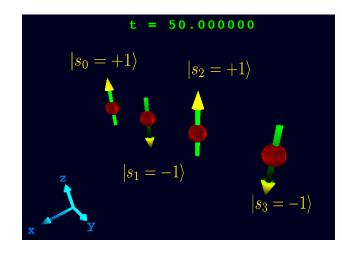
$$|\psi(0)\rangle = |+\cdots +\rangle = |+\rangle^{\otimes N}$$

$$\uparrow$$
 Known initial

state







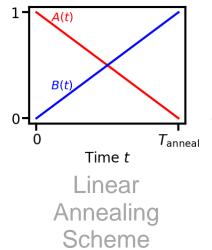
End of Annealing Process:

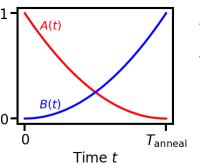
$$|\psi(T_{
m anneal})
angle \stackrel{?}{pprox} |s_0s_1\cdots
angle$$

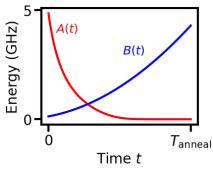
Unknown solution to our problem

What is the Hamiltonian?

$$H(t) = A(t) \left(-\sum_{i} \sigma_{i}^{x} \right) + B(t) \left(\sum_{i} h_{i} \sigma_{i}^{z} + \sum_{i < j} J_{ij} \sigma_{i}^{z} \sigma_{j}^{z} \right)$$
 H_{init}
 H_{problem}







Quadratic Annealing Scheme

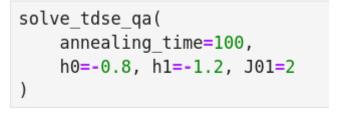
JUPSI Annealing Scheme

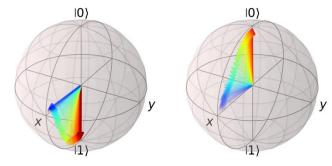
- \succ System evolves from initial Hamiltonian H_{init} to final Hamiltonian H_{problem}
- ightharpoonup Initial state $|+\rangle^{\otimes N}$ is the **ground state** of H_{init}

eigenstate with lowest eigenvalue

- \succ **Goal:** Final state shall be the ground state of $H_{
 m problem}$
- > Example for two qubits:

$$H(t) = A(t)(-\sigma_0^x - \sigma_1^x) + B(t)(h_0\sigma_0^z + h_1\sigma_1^z + J_{01}\sigma_0^z\sigma_1^z)$$

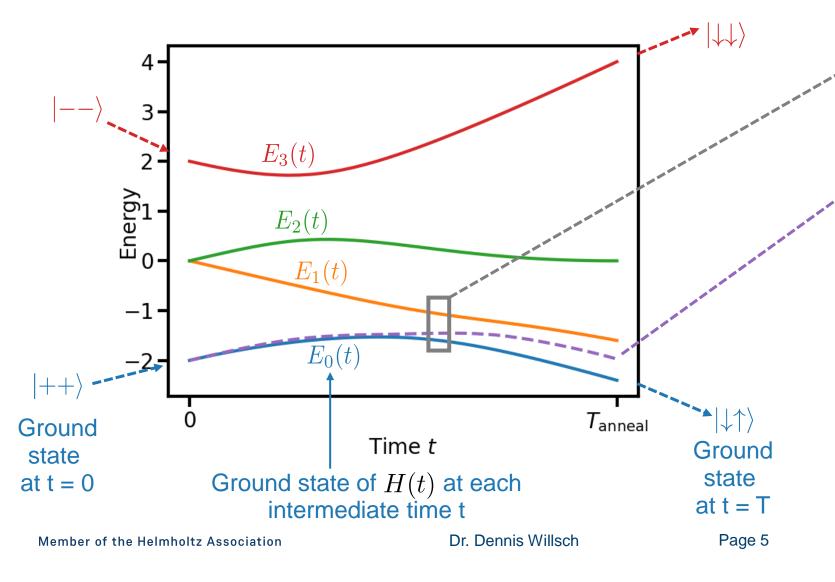




https://tinyurl.com/qc25-lecture QC_Exercise_06

$$H(t) = A(t)(-\sigma_0^x - \sigma_1^x) + B(t)(h_0\sigma_0^z + h_1\sigma_1^z + J_{01}\sigma_0^z\sigma_1^z)$$

Two-Qubit Example



Minimum Energy Gap

$$\Delta E = \min_{t \in [0, T_{\text{anneal}}]} \left(E_1(t) - E_0(t) \right)$$

Intermediate Energy Expectation Value

$$E(t) = \langle \psi(t) | H(t) | \psi(t) \rangle$$

Adiabatic Theorem: If the time evolution is slow enough, the system always stays in the ground state of H(t)

Adiabatic Theorem: What does it state?

Intuition: Hamiltonian should change slowly in time (as measured by the gap)

Traditional statement: If

$$\forall m \neq n: \max_{t \in [0, T_{\text{anneal}}]} \frac{|\langle E_m(t) | \frac{dH}{dt} | E_n(t) \rangle|}{(E_m(t) - E_n(t))^2} \ll 1$$

then a system initialized in $|E_n(0)\rangle$ will stay in the eigenstate $|E_n(t)\rangle$

Intuition: Energy gap should be large

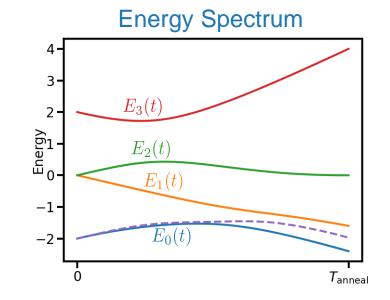
- Careful analysis shows an **additional condition** is needed:
 - Hamiltonian must not contain oscillating terms with frequencies

$$\omega \approx \langle E_m(t) - E_n(t) \rangle$$
 \leftarrow $\langle \cdot \rangle = \frac{1}{t} \int_0^t \cdot dt$

Amin 2009, https://doi.org/10.1103/PhysRevLett.102.220401

In the past decades, many **more quantitative** adiabatic theorems have been proven (but much less intuitive)

Albash & Lidar, RMP 90, 015002 (2018), https://doi.org/10.1103/RevModPhys.90.015002



Otherwise it would drive

between $|E_m(t)\rangle$ and $|E_n(t)\rangle$

fast Rabi oscillations

$H(t) = A(t) \left(-\sum_{i} \sigma_{i}^{x} \right) + B(t) \left(\sum_{i} h_{i} \sigma_{i}^{z} + \sum_{i < j} J_{ij} \sigma_{i}^{z} \sigma_{j}^{z} \right)$ H_{problem} $H_{\rm init}$

Which Type of Problems are Solved?

- \triangleright Goal: Final state shall be the ground state of H_{problem}
 - > Equivalent to the solution of the Ising Problem

$$\min_{s_i = \pm 1} \left(\sum_{i=0}^{N-1} h_i s_i + \sum_{i < j}^{N-1} J_{ij} s_i s_j \right)$$

> Equivalent to the solution of the **QUBO Problem**

$$\min_{x_i=0,1} \left(\sum_{i \leq j}^{N-1} x_i Q_{ij} x_j \right) \begin{array}{c} \text{Quadratic} \\ \text{Unconstrained} \\ \text{Binary} \\ \text{Optimization} \end{array} \right)$$

$$\min(2s_0 - 3s_1) = -5$$

$$(s_0, s_1) = (-1, +1)$$

 $\min(-s_0 s_1) = -1$

$$\min(2s_0 - 3s_1) = -5$$

$$(s_0, s_1) = (-1, +1)$$

Antiferromagnetic
$$(s_0,s_1)=(-1,-1)$$
 $(s_0,s_1)=(+1,+1)$

$$s_i = 2x_i - 1$$
$$x_i = \frac{1+s_i}{2}$$

$$x_i = 1 \Leftrightarrow s_i = +1$$

 $x_i = 0 \Leftrightarrow s_i = -1$

"QA convention"

$$\min(4x_0 - 6x_1) + 1 = -5$$

$$(x_0, x_1) = (0, 1)$$

$$\min(-4x_0x_1 + 2x_0 + 2x_1) - 1 = -1$$

$$(x_0, x_1) = (0, 0)$$

$$(x_0, x_1) = (1, 1)$$

$H(t) = A(t) \left(-\sum_{i} \sigma_{i}^{x} \right) + B(t) \left(\sum_{i} h_{i} \sigma_{i}^{z} + \sum_{i < j} J_{ij} \sigma_{i}^{z} \sigma_{j}^{z} \right)$

Which Type of Problems are Solved?

- \triangleright Goal: Final state shall be the ground state of H_{problem}
 - > Equivalent to the solution of the Ising Problem

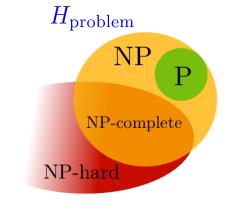
$$\min_{s_i = \pm 1} \left(\sum_{i=0}^{N-1} h_i s_i + \sum_{i < j}^{N-1} J_{ij} s_i s_j \right)$$

> Equivalent to the solution of the **QUBO Problem**

$$\min_{x_i=0,1} \left(\sum_{i\leq j}^{N-1} x_i Q_{ij} x_j \right)$$

Quadratic Unconstrained

 $H_{\rm init}$



(b) qSVM#1

Ising / QUBO are NP-hard

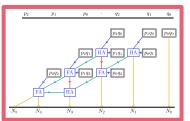
Traveling Salesman

Remote Sensing

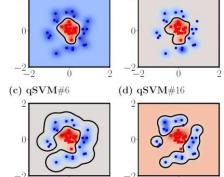
→ Can in principle map any NP problem to Ising / QUBO

Garden **Optimization**

Page 8



Integer **Factorization**



Quantum Machine Learning

References and more information:

https://doi.org/10.34734/FZJ-2025-02577

But: Not guaranteed to find a quantum advantage!

(a) cSVM

Tail

Assignment

$H(t) = \frac{A(t)}{(-\sigma_0^x - \sigma_1^x)} + \frac{B(t)}{(h_0\sigma_0^z + h_1\sigma_1^z + J_{01}\sigma_0^z\sigma_1^z)}$

Programming a D-Wave QPU: 2-Qubit Example

```
from dwave.system import DWaveSampler, EmbeddingComposite
import dwave_networkx as dnx
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
```

```
sampler = DWaveSampler()
solver = EmbeddingComposite(sampler)
```

```
result = solver.sample_ising(
    h={0: -0.8, 1: -1.2},
    J={(0,1): 2},
    num_reads=1000,
    annealing_time=20,
    return_embedding=True
)
```

Solution on JUPSI

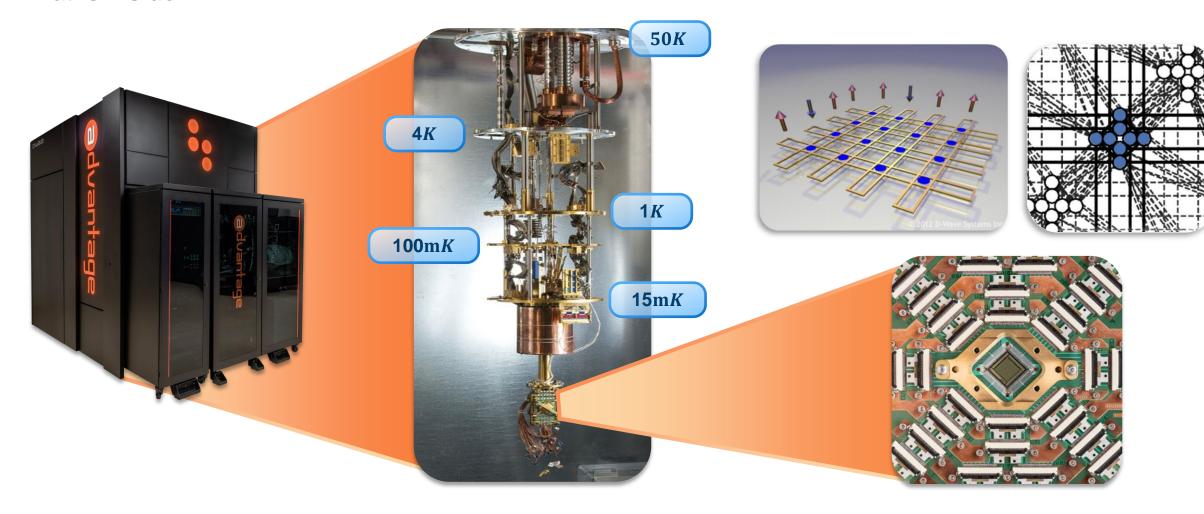
result.to pandas dataframe()

0	1	chain_break_fraction	energy	num_occurrences
---	---	----------------------	--------	-----------------

0	-1	1	0.0	-2.4	859
1	1	-1	0.0	-1.6	141

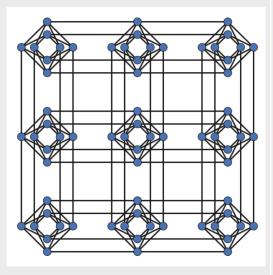
<pre>plt.figure(figsize=(10,10))</pre>
<pre>dnx.draw_pegasus_embedding(sampler.to_networkx_graph(), result.info['embedding_context']['embedding'], show_labels = True, crosses = True, node size = 20</pre>
)

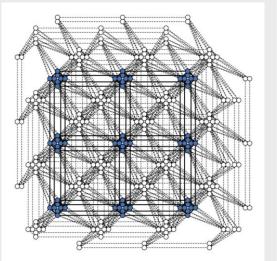
What is inside?

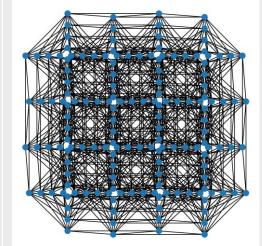


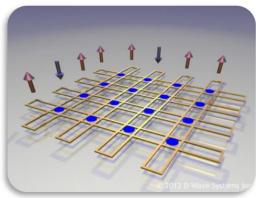
What is inside?

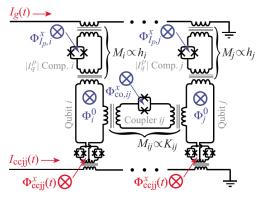
QPU:	DW2000Q	Advantage	Advantage2
Graph:	Chimera	Pegasus	Zephyr
#Qubits:	~2000	~5600	~4600
#Couplers:	~6000	~40000	~42000
Connectivity:	6	15	20
Generation:	previous	current	current/future





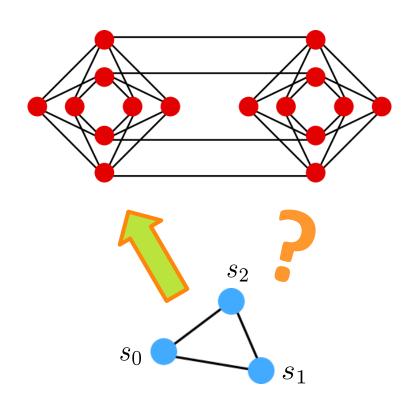






see reference slide at the end

Embedding: What if my problem does not fit on the QPU?



Represent logical qubit s_2

by a **chain** of **physical qubits**

```
embedding = {
    0: [1477],
    1: [4297],
    2: [4267, 1492],
}
```

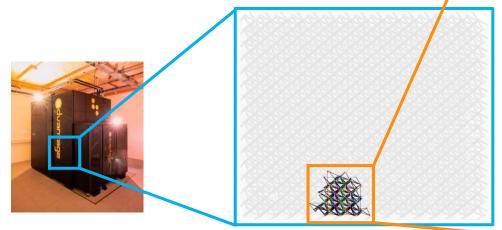
Page 12

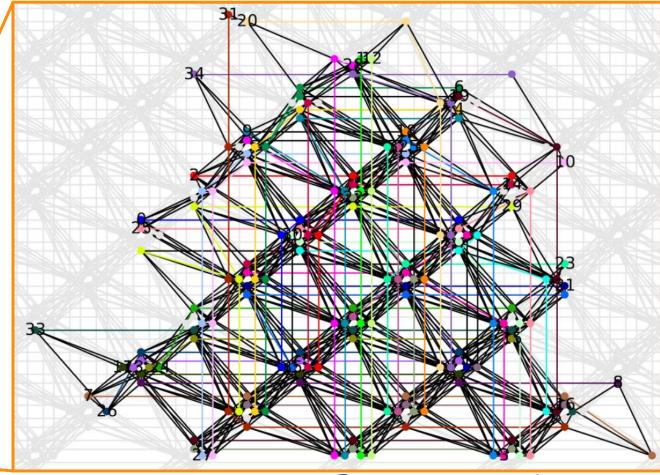
 $J = -\text{chain_strength}$ S_{4267} S_{1492} S_{4297}

S1

Embedding: Visualization

```
result.info['embedding context']
{'embedding': {0: (5344, 5346, 1094, 5345, 1093),
 1: (1181, 1184, 1183, 1182),
 2: (5285, 5287, 1139, 1138, 5286),
 34: (5150, 5152, 5151, 1289, 1288, 1287),
 35: (1109, 5452, 5451, 5450)},
'chain break method': 'majority vote',
'embedding parameters': {},
'chain strength': 30}
```



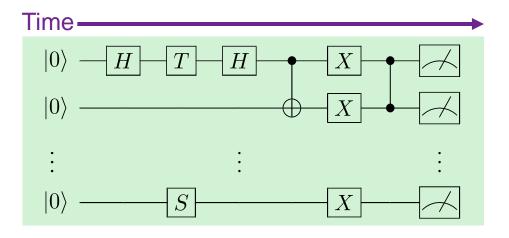


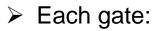
Page 13

QUIZ

Comparison to Gate-Based Quantum Computing

> Gate-Based Quantum Computing



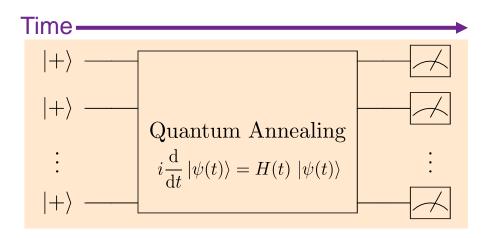


Individual, programmable time evolution

 \succ Initial state: $|0\rangle^{\otimes N}$

Dr. Dennis Willsch

> Quantum Annealing



Only one "gate": Intuition: Simpler to manufacture Natural time evolution according to

$$H(t) = \frac{A(t)}{A(t)} \left(-\sum_{i} \sigma_{i}^{x} \right) + \frac{B(t)}{A(t)} \left(\sum_{i} \frac{h_{i} \sigma_{i}^{z}}{h_{i} \sigma_{i}^{z}} + \sum_{i < j} \frac{J_{ij} \sigma_{i}^{z} \sigma_{j}^{z}}{h_{i} \sigma_{i}^{z}} \right)$$

ightharpoonup Initial state: $|+\rangle^{\otimes N}$

Discretizing Quantum Annealing

Quantum Annealing Hamiltonian

$$H(t) = \underbrace{A(t)}_{H_{M}} \left(-\sum_{i} \sigma_{i}^{x} \right) + \underbrace{B(t)}_{i} \left(\sum_{i} h_{i} \sigma_{i}^{z} + \sum_{i < j} J_{ij} \sigma_{i}^{z} \sigma_{j}^{z} \right) = -A(t) H_{M} + \underbrace{B(t)}_{H_{M}} H_{M}$$

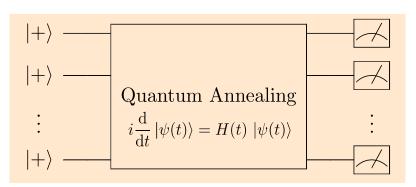
 \triangleright Time evolution operator for one time step τ :

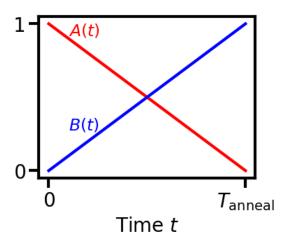
$$e^{-iH(t)\tau} = e^{-i(-\mathbf{A}(t)H_M + \mathbf{B}(t)H_W)\tau} \approx e^{i\mathbf{A}(t)H_M\tau} e^{-i\mathbf{B}(t)H_W\tau}$$

Suzuki-Trotter product formula (1st-order decomposition of matrix exponential, ok for small time step τ)

ightharpoonup Total time evolution discretized in p time steps (t_1,t_2,\ldots,t_p) of size au

$$|\psi(T)\rangle \approx e^{i\mathbf{A}(t_p)\tau H_M} e^{-i\mathbf{B}(t_p)\tau H_W} \cdots e^{i\mathbf{A}(t_1)\tau H_M} e^{-i\mathbf{B}(t_1)\tau H_W} |+\cdots+\rangle$$
 "Trotterization"



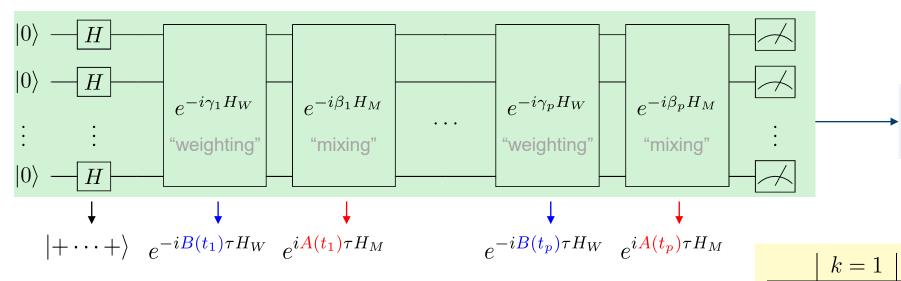


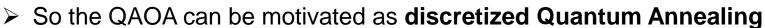
Discretizing Quantum Annealing → Finding good QAOA parameters

Quantum Annealing time evolution — discretized in p time steps (t_1, t_2, \dots, t_p) of size τ

$$|\psi(T)\rangle \approx e^{i\mathbf{A}(t_p)\tau H_M} e^{-i\mathbf{B}(t_p)\tau H_W} \cdots e^{i\mathbf{A}(t_1)\tau H_M} e^{-i\mathbf{B}(t_1)\tau H_W} |+\cdots+\rangle$$

Compare this with the QAOA circuit:





→ and the **individual time steps** are the parameters to be optimized!

	0-		
	0	Time t	$T_{ m anneal}$
$\gamma_k = 1$	$B(t_k) au$	goes	to 1
$\beta_k = -$	$-A(t_k)$ 7	goe	es to 0
	7		
k=2	k=3		k = p
-0.8	-0.7	• • •	0
0.2	0.3	• • •	1

 β_k

-0.9

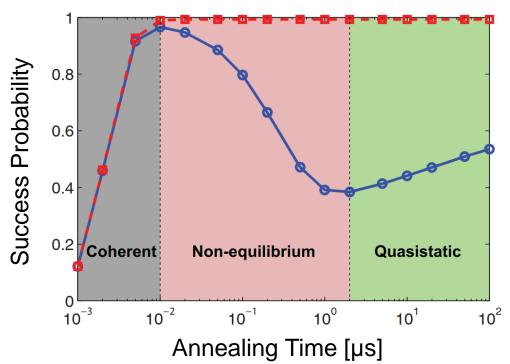
0.1

$\begin{array}{c} \text{Quantum System} \\ \text{with } 2^N \text{possible} \\ \text{states} \end{array} \qquad \begin{array}{c} \text{Environment at temperature } T \end{array}$

Advanced Topics: Annealing Regimes

- > Recently, the **fast annealing** feature was introduced for D-Wave Advantage QPUs
- With fast annealing, we can anneal as quickly as 5 ns (compared to the normal minimum 500 ns)
- > One can show that for very short annealing, the success probability can **improve** again

(and computation speed matters!)



Explanation:

- > Coherent regime:
 - ightharpoonup Anneal dominated by "quantum" dynamics: $i rac{\mathrm{d}}{\mathrm{d}t} \ket{\psi(t)} = H(t) \ket{\psi(t)}$
 - ➤ Intuition: so fast that the system is not affected by environment
- > Non-equilibrium regime:
 - > Environment excites the system into higher-energy states
- > Quasistatic:
 - > System can relax to lower-energy states again (T is quite (29))

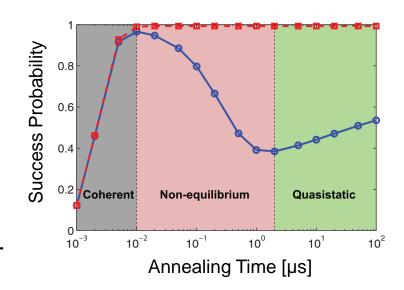
Amin, PRA 92, 052323 (2015), http://dx.doi.org/10.1103/PhysRevA.92.052323

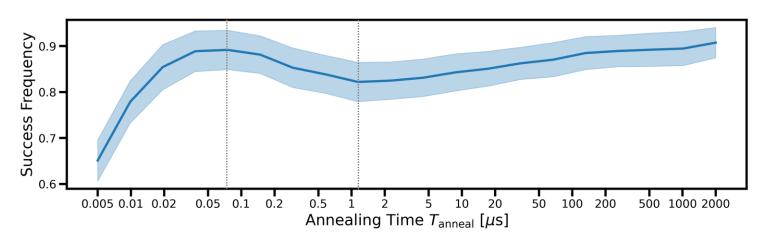
Experimental Results

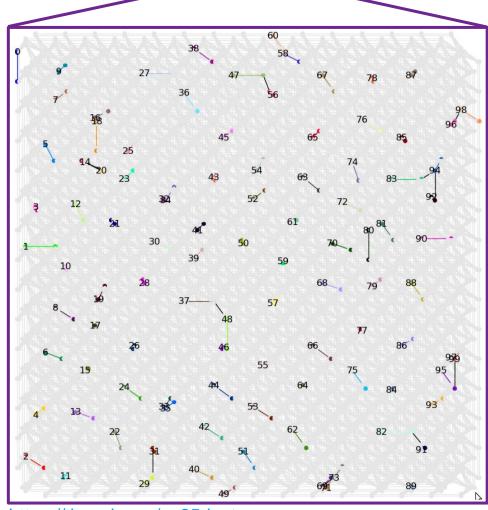
Ву

- > averaging over many qubit pairs on the QPU
- > repeating the experiment a few times

we can observe the theoretically expected behavior:



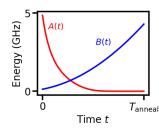




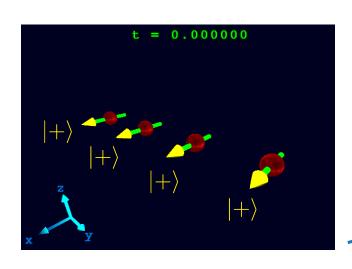
https://tinyurl.com/qc25-lecture

QC_07_Lecture_Fast-and-Reverse-Annealing

$$H(t) = A(t) \left(-\sum_{i} \sigma_{i}^{x} \right) + B(t) \left(\sum_{i} h_{i} \sigma_{i}^{z} + \sum_{i < j} J_{ij} \sigma_{i}^{z} \sigma_{j}^{z} \right)$$
 H_{init}
 H_{problem}



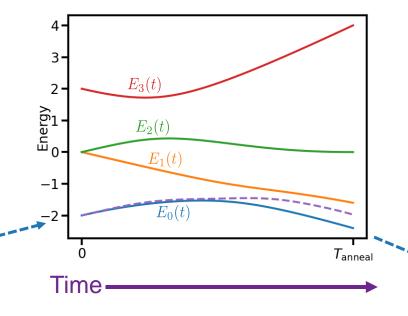
Summary



Start of Annealing Process:

$$H(0) = H_{\text{init}}$$
 $|\psi(0)\rangle = |+\cdots+\rangle = |+\rangle^{\otimes N}$

Known initial state

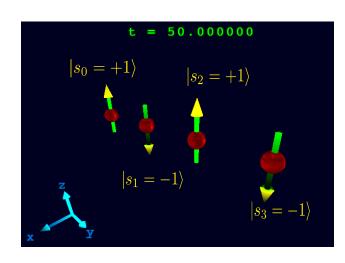


$$i\frac{\mathrm{d}}{\mathrm{d}t}|\psi(t)\rangle = H(t)|\psi(t)\rangle$$

Adiabatic Theorem

THANK YOU FOR YOUR ATTENTION

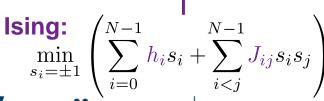
Dr. Dennis Willsch



End of Annealing Process:

$$H(T_{\rm anneal}) = H_{\rm problem}$$

 $|\psi(T_{\rm anneal})\rangle \stackrel{?}{\approx} |s_0 s_1 \cdots \rangle$



FOR REFERENCE

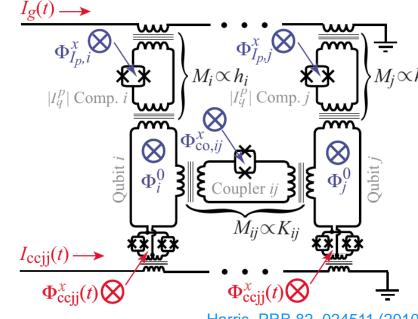
D-Wave Flux Qubit Hamiltonian

Desired quantum annealing Hamiltonian:

$$H(s(t)) = \sum_{i} -\frac{A(s(t))}{2} \ \sigma_{i}^{x} + \sum_{i} \frac{B(s(t))}{2} \ h_{i} \ \sigma_{i}^{z} + \sum_{i < j} \frac{B(s(t))}{2} \ J_{ij} \ \sigma_{i}^{z} \sigma_{j}^{z}$$

Given flux-qubit Hamiltonian:

$$H(s(t)) = \sum_{i} -\frac{\Delta_q(\Phi_{\text{ccjj}}(s(t)))}{2} \sigma_i^x + \sum_{i} |I_p(\Phi_{\text{ccjj}}(s(t)))| (\Phi_i^x(s(t)) - \Phi_i^{x,\text{offset}}) \sigma_i^z$$
$$+ \sum_{i} |I_p(\Phi_{\text{ccjj}}(s(t)))|^2 M_{ij}(\Phi_{\text{co},ij}^x) \sigma_i^z \sigma_j^z$$



Harris, PRB 82, 024511 (2010), http://dx.doi.org/10.1103/PhysRevB.82.024511

Need fast cancellation current to obtain a constant h!

flux_bias
↓

Quantum annealing parameters from physically controllable magnetic fluxes and currents:

$$A(s(t)) = \Delta_q(\Phi_{\text{ccjj}}(s(t)))$$

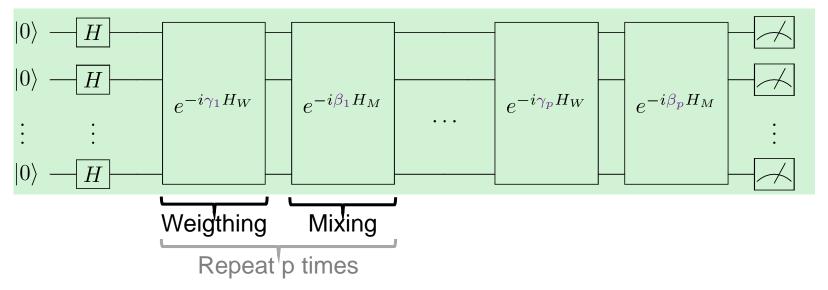
$$h_i = \frac{2}{B(s(t))} |I_p(\Phi_{\text{ccjj}}(s(t)))| \ (\Phi_i^x(s(t)) - \Phi_i^{x,\text{offset}}) = \frac{M_i(\Phi_{I_p,i}^x) I_g(s(t)) - \Phi_i^{x,\text{offset}}}{M_{\text{AFM}} |I_p(\Phi_{\text{ccjj}}(s(t)))|}$$

$$B(s(t)) = 2M_{\text{AFM}} |I_p(\Phi_{\text{ccjj}}(s(t)))|^2 \qquad J_{ij} = \frac{M_{ij}(\Phi_{\text{co},ij}^x)}{M_{\text{AFM}}}$$

FOR REFERENCE

QAOA — Quantum Approximate Optimization Algorithm

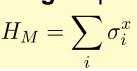
- > The QAOA is one of the most popular variational quantum algorithms
- ightharpoonup The QAOA has 2p variational parameters $\vec{\beta}=(\beta_1,\ldots,\beta_p)$ and $\vec{\gamma}=(\gamma_1,\ldots,\gamma_p)$

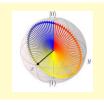


➤ It consists of p QAOA layers with 2 alternating steps:

$$H_W = \sum_i h_i \sigma_i^z + \sum_{i < j} J_{ij} \sigma_i^z \sigma_j^z \qquad H_M = \sum_i \sigma_i^x$$

Mixing Step





Reference Page 2

Execution

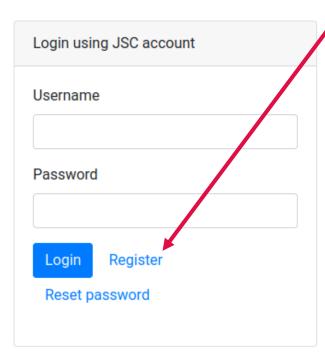
 $|0\rangle$

Measurement

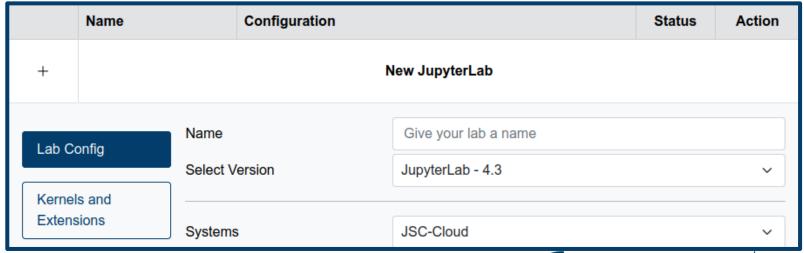
https://go.fzj.de/juniq-getting-started

QUANTUM ANNEALING

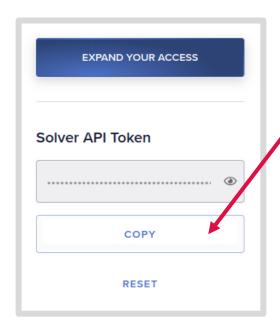
Setup Access to JUNIQ Cloud



- 1. Create a **Judoor** account at https://judoor.fz-juelich.de/ (if you don't have one yet).
- 2. Join the **juniq-lecture** project by submitting a join request at https://judoor.fz-juelich.de/projects/join/juniq-lecture/
- 3. Wait some time for us to admit you to the **juniq-lecture** project
- 4. Sign the usage agreement in Judoor under "Systems"
- 5. Login to JUNIQ at https://juniq.fz-juelich.de/ with your Judoor account.
- 6. Create a new Jupyter Lab on JSC-Cloud:



Setup Access to the Quantum Annealer



- 1. Create **D-Wave Leap Account** at https://cloud.dwavesys.com/leap/
- 2. Follow the Leap email to join juniq-lecture on Leap (can take 2 days, check Spam/Junk)
- 3. When that's done, on the left side in D-Wave Leap, copy the juniq-lecture **API Token**NOTE: Never share your token!
- 4. In https://juniq.fz-juelich.de/ click on File → New → Terminal
- 5. Type ml Dwave and dwave config create and paste your juniq-lecture API Token:

```
jovyan@JSC-Cloud:~$ ml DWave
jovyan@JSC-Cloud:~$ dwave config create
Using the simplified configuration flow.
Try 'dwave config create --full' for more options.

Creating new configuration file: /home/jovyan/.config/dwave/dwave.conf
Updating existing profile: defaults
Solver API token [skip]: jV1M-
Configuration saved.
```

6. Check with dwave ping or cat .config/dwave/dwave.conf whether it worked