
Aachen University of Applied Sciences
Campus Jülich

Faculty: Medical Engineering and Technomathematics
Master’s Program: Applied Mathematics and Computer Science

Witsenhausen’s Counterexample
A Refined Approach using Variational Analysis

Master’s Thesis

by

René Noffke
Matriculation Number: 3277303

Jülich, 21st August 2025

This master’s thesis was created at the Jülich Supercomputing Centre (JSC).

Division: Mathematics and Education
Algorithms, Tools and Methods Laboratory: Numerical and Statistical Methods

under the supervision of Prof. Dr. Andreas Kleefeld.

This thesis was supervised by:
1st examiner: Prof. Dr. Andreas Kleefeld
2nd examiner: Prof. Dr. Daniel Gaigall

iii

Declaration of Originality

I hereby declare that I have written the thesis with the title

Witsenhausen’s Counterexample
A Refined Approach using Variational Analysis

on my own. No sources or resources other than those listed have been used.

Name: René Noffke
Jülich, 21st August 2025

Signature:

v

Abstract

Witsenhausen’s counterexample is a well known problem from control theory illustrating,
linear controllers are not always the best choice. Studies on theoretical and numerical
results have been conducted for now more than 50 years and mathematicians are still
searching for new attempts gaining better controllers for the problem. The performance
of these controllers is compared on a benchmark based on the problem’s underlying cost
functional.

In this thesis first a new method to evaluate the named cost functional was developed.
Hereby the method was built as it works adaptively, requiring only as much computing
capacity as is necessary. Moreover, the method includes a discontinuity detection to
handle step functions which are often used for Witsenhausen’s counterexample.
Next, it was shown that Witsenhausen’s counterexample is a problem from variational
analysis and a necessary criterion for optimality, based on the Euler-Lagrange, equation
was derived. Based on this result, a basis function fulfilling the gained criterion was
computed.
In the first performed optimization step, the described basis functions were combined to
gain an approximation for an optimal controller.
The next optimization step was created based on the insights from previous papers
indicating that adding a curve to each step improves the results.

The result on the one hand was an evaluation method computing the cost for an analyt-
ically known result in less than a second for a precision of 10−8. Moreover, this method
was able to determine the value up to a precision of 10−14. On the other hand, the
optimization yielded the fourth best value known up to now, with an absolute difference
of 3.159 · 10−5 to the best known.

vii

Contents

1. Introduction, Relevance and Methodology 1
1.1. Relevance . 2
1.2. Methodology . 2

I. Introduction to the Counterexample and Computation of the Cost
Value 4

2. Introduction and theoretical Results 5
2.1. Introduction and Mathematization of the Problem 5
2.2. Theoretical Results . 7

2.2.1. Existence of an optimal Solution 7
2.2.2. Determining the optimal g∗ for fixed f 8
2.2.3. Computation Rule of the Second Part of the Cost Functional . . . 9
2.2.4. Monotonicity of the optimal Function 11

3. Witsenhausen’s Counterexample 13
3.1. Deriving the best affine Solution . 13
3.2. Two-point distributed Variables . 17
3.3. Witsenhausen’s Counterexample . 20

4. Historical Results 22
4.1. Gaining a 2-step Function: Results from Deng and Ho [1] 23
4.2. Gaining a 3.5-step Function: Results from Li et al. [20] 24
4.3. Gaining a Sloped 4-step Function: Results from Karlsson et al. [17] 27
4.4. Gaining a Curved Step Function: Results from Tseng and Tang [28] . . . 28

5. Implementation of the Cost Functional 31
5.1. Implementation of the Cost Function . 31
5.2. Principle of Approximating the Integrand 31
5.3. Adaptive Choice of Grid Points . 33
5.4. Determining the Integral needed . 34
5.5. Implementation Details . 35

5.5.1. Approximating Integrals for possibly non-smooth Functions 35
5.5.2. Gaining Borders for the Integrals 37
5.5.3. Results in Performance and Precision 37

ix

II. Optimization using Variational Analysis 39

6. Introduction to Variational Analysis 40
6.1. The Quarrel of two Brothers or The Problem of the Brachistochrone . . . 40

6.1.1. Mathematization of the Problem 41
6.1.2. Johann Bernoullis’ Solution - Not Knowing the Calculus of Varia-

tions . 42
6.2. Theory on using Variational Analysis for Optimization 46

6.2.1. Basic Theory on Variational Analysis 46
6.2.2. The Euler-Lagrange Equation . 51
6.2.3. Second Order Condition . 55

6.3. Solving the Problem of the Brachistochrone using Calculus of Variations . 57
6.3.1. Analytical Solution . 57
6.3.2. Numerical Solution . 58

7. A Variational Perspective on Witsenhausen’s Counterexample 61
7.1. From Variational Analysis to a numerical Criterion 61

7.1.1. Showing, Witsenhausen’s Counterexample may be handled using
Variational Analysis . 61

7.1.2. Deriving a numerical Criterion for local Minimizers 63
7.2. Euler-Lagrange Values of known Attempts to the Counterexample 65

7.2.1. Witsenhausen’s Attempt . 65
7.2.2. Deng’s and Ho’s Attempt . 66
7.2.3. 3.5-step Function from Lau’s, Lee’s and Ho’s Attempt 66

8. Applying Variational Methods to Witsenhausen’s Counterexample 67
8.1. Concept for a Methodology based on Variational Analysis 67
8.2. Gaining a Basis Function by Rooting a 2-step Function 69
8.3. Combine Basis Functions using scipy Built-Ins 70
8.4. Combine Basis Functions using a Grid Search Method 72
8.5. Refining Step Profiles through Smoothing Functions 74
8.6. Combining Search for Optimal Stacked Basis Functions and Smoothing

of the Step Functions . 79
8.7. Evaluating the Algorithm for different k 81

9. Conclusion and Outlook 84
9.1. Outlook . 85

x

1. Introduction, Relevance and
Methodology

Control problems occur in our daily life, often without us knowing they are Control
problems. The most obvious problem is the communication of a transmitter and a
receiver using a disturbed communication medium. This happens to us every day when
we use our smartphones communicating via WiFi, mobile communications, etc.

The question is: How to deal with a medium’s disturbance?

To get an idea on how this question might be answered, we have a look on Figure 1.1.
Here we want a mobile device to send a document M to a receiver. As already mentioned,
the used communication medium is disturbed, e.g. by bad weather or other obstacles to
mobile communication. To reduce the information loss during the communication, two
things are done:

1. A controller C1 is added to the transmitting device, modifying M to M1 which
should make it more resistant against influences.

2. A controller C2 is added to the receiving device trying to obtain the original M
from the noised M̂1.

Adding those two controllers makes it possible to increase the liability of the communi-
cation.

C1
C2

෡𝑴𝟏𝑴𝟏

𝑴 𝑴𝟐

Figure 1.1.: Illustration of mobile communication as controller problem

Therefore, the new question is: How to choose the controllers C1 and C2 best for the
least communication cost and least information loss?

This question belongs to a set of problems with non classical information pattern and is
addressed in Witsenhausen’s counterexample.

1

1.1. Relevance
Witsenhausen himself pointed out three areas, where the problem he stated is important.
One of them is the already seen communication problem. Moreover he names controller
with a very limited memory, wherefore he explains the idea of a zero memory controller.
He also points out, his problem fits into the category of non classical control pattern,
which makes the theory accessible to a large number of problems. [29, p.146]

Besides the areas Witsenhausen pointed out, newer publications from different fields
show that the counterexample also fits into their topic. For example, Li and Marden
in [20] presented the problem as a problem from game theory. This enabled them to
achieve new results and show that the problem can be applied in even more areas. Even
for more practical topics use cases were found as e.g. in [8] the problem is compared to
problems from the area of multimedia security.

1.2. Methodology
The aim of this thesis is to obtain a new method, approximating the optimal controller
functions for Witsenhausen’s counterexample. To reach this, two major points have to
be considered:

1. Obtain an efficient method to evaluate the cost functional.

2. Obtain a method optimizing functions that minimize the cost functional.

Therefore the thesis is separated into two parts.

In part I, we first formalize in Chapter 2 the illustrative problem introduced in this
Chapter and gain the problem considered by Witsenhausen. Moreover, we have a look
on prior theoretical results, we will use in further chapters, to realize the evaluation and
minimization of the cost functional. After introducing the problem, in Chapter 3 we
look on the main result Witsenhausen had to the problem stated and have a look on the
first attempt, outperforming the linear solution. The next step, described in Chapter 4,
is to introduce major prior attempts to the problem stated by Witsenhausen and have
a closer look on some of them. After introducing known theory and results, in Chapter
5 we introduce a new method to evaluate the cost functional, which was developed as a
part of the research to this thesis.

As the used optimization method is based on results from variational analysis, we start
Part II with an introduction to the most important theory of variational analysis in
Chapter 6. There, the theory as well as the numerical usage is demonstrated using the
example of the Brachistochrone. After introducing theory, in Chapter 7 we focus on
the question, why we might use variational analysis to search for an optimal solution
to Witsenhausen’s counterexample and determine a numerical criterion we use further.
Then in Chapter 8 we develop an optimization method, based on these results, and
discuss the results obtained.

2

Last, in Chapter 9 we have a conclusion and an outlook.

3

Part I.

Introduction to the Counterexample
and Computation of the Cost Value

4

2. Introduction and theoretical Results

2.1. Introduction and Mathematization of the Problem
In this section the main ideas of the article “A counterexample in stochastic optimum
control” by H. S. Witsenhausen will be summarized. Therefore, the underlying problem
will be pointed out and possible simplifications will be explained. The discussion is based
on the original paper [29].

The problem is based on two controllers C1 and C2. If the problem would fit the classical
information pattern, these controllers would know the input value of each other. The
structure of the problem, Witsenhausen pointed out, is different. As to see in Figure 2.1
controller C1 gets the input value x0. Each controller has a given function that will be
evaluated for its input value. For C1 the function u1 is evaluated for x0 and added to
the input value. The output value, also named state function, is called x1. The second

x0

C1 u1

+ x1

+ν C2 u2

− x2

Figure 2.1.: Structure of the problem

controller C2 does not get the value x1. Instead, its input is disturbed by a random
variable ν that can be imagined as noise added during the transport of x1. C2 evaluates
the function u2 for the given input and subtracts it from the input. The output or state
function is named x2.

As we already see in this figurative explanation, the controllers do not know the input
of the other controller. Therefore, the problem cannot be described with the classical
information pattern.

We want to formulate the problem more general. Therefore, the state functions of the
controllers can be expressed with

x1 = x0 + u1(y0)

x2 = x1 − u2(y1).

Hereby, u1 and u2 are Borel measurable functions. Furthermore, we denote x0 as x and
the input values of the controllers with y0 and y1 whereby y0 = x and y1 = x1 + ν.
Hereby, x0 and ν are two independent random variables.

5

The aim of the problem is to find a pair of functions (u1, u2) out of a set Γ that minimizes
the expected squared value of the function u1 added in C1 and the residuum (x+u1−u2)2
in C2. Therefore, we get the cost function

k2u21(y0) + (x+ u1 − u2)
2 = k2u21(y0) + x22,

whereby k ∈ R+ \ {0} is a parameter to influence the properties of the obtained result.
To simplify the expected value, we define the functions

f(x) = x+ u1(x)

g(x) = u2(x)

and can write the expected value of the cost functional as

J(f, g) = E
[
k2(x− f(x))2 + (f(x)− g(f(x) + ν))2

]
.

Therefore, we get J as the term to minimize. In this case we have to optimize above f
and g instead of u1 and u2. (cf. [29, pp. 131–132])
Remark 2.1.1
If we have a look on the function J , we know that

J(f, g) =

∫ ∫
(k2u21 + x22)fx(x) dxfν(ν) dν,

whereby fx is the probability density function of x and fν the probability density function
of ν. As shifting the moments of x and ν just influences fx and fν the best possible
solution for f and g is just influenced in such a way that they will be shifted in the x-
and y-axis and they will be rescaled. The generality is not lost. [29]

We get another simplification by assuming that E[x] = E[ν] = 0 and E[ν2] = 1. As
we see in Remark 2.1.1 this may be assumed without the loss of generality. (cf. [29, p.
132])

As the general problem was presented, finally, the original problem treated by Witsen-
hausen can be introduced in the following definition.
Definition 2.1.1
Let f , g and J be defined as before and

x ∼ N
(
0, σ2

)
, ν ∼ N (0, 1).

Then the problem of minimizing the functional J for f and g is denoted by π(k2, σ2).
(cf. [29, p. 132])

6

2.2. Theoretical Results
Before the main result, the “counterexample” is induced, a few theoretical details will
be shown. These results are needed to understand the example and are used in many
papers that followed on the original from Witsenhausen.

2.2.1. Existence of an optimal Solution
For the existence of an optimal solution Witsenhausen gives the following lemma.
Lemma 2.2.1
Let the variables be defined as in the previous section, then

a) the optimal result J∗ is defined as J∗ = inf{J(f, g)|(f, g) ∈ Γ} and it is valid that
0 ≤ J∗ ≤ min(1, k2σ2)

b) ∀(f, g) ∈ Γ ∃(f∗, g∗) : J(f∗, g∗) ≤ J(f, g) whereby E[f∗(x)] = 0, E[(x− f∗(x))] ≤
σ2 and E[(f∗(x))2] ≤ 4σ2

Proof :

a) First, we show J∗ ≥ 0. As we can write J as

J = E
[
a(x)2 + b(x, ν)2

]
and the expected value of a nonnegative function cannot be negative, the assertion is valid.
Secondly, we show J∗ ≤ min(1, k2σ2). We assume

f1(x) = g1(x) = 0 ,

therefore, we get

J(f1, g1) = E
[
k2x2

]
= k2

(
E[x2]− E[x]2 + E[x]2

)
= k2(Var(x) + E[x]2) = k2σ2.

By choosing the functions with f2(x) = g2(x) = x, we obtain another value with

J(f2, g2) = E[ν2] = 1.

As we have two different values for J we can get the upper bound by J∗ ≤ min(1, k2σ2).

b) The second part of the proof will be done using a case distinction. First, we choose (f, g) ∈ Γ
in a way that E

[
(x− f(x))2

]
> σ2. Since J(f, g) ≥ k2E

[
(x− f(x))2

]
we get J(f, g) >

k2σ2. Assuming this, after a), we can choose the functions with

f∗(x) = g∗(x) = 0

and thereby improve the solution found.

On the other hand, we have to consider E
[
(x− f(x))2

]
≤ σ2. In this case, we see

E
[
(x− f(x))2

]
= E

[
x2
]
− 2E [xf(x)] + E

[
f2(x)

]
= σ2 − 2E [xf(x)] + E

[
f2(x)

]
≤ σ2 ,

7

which results in

E
[
f2(x)

]
≤ 2E [xf(x)] .

If E[f2(x)] ≤ 4σ2 should be valid it must be true that E [xf(x)] ≤ 2σ2. Therefore it must
be valid that f(x) ≤ 2x. Assuming the opposite, f(x) > 2x, we get

E
[
(x− f(x))2

]
> E

[
(x− 2x)2

]
= E

[
x2
]
= σ2.

This is a contradiction and the assumption that E[f2(x)] ≤ 4σ2 must be true.

As the second moment E[f2(x)] exists also the first moment E[f(x)] must exist. We define
m = E[f(x)], f1(x) = f(x) − m and g1(x) = g(x + m) − m. By using the linearity of
expected values we get E[f1(x)] = 0. As E[x] = 0 we get

E[(x− f1(x))
2] = E[x2]− 2E[xf1(x)] + E[f2

1 (x)]

= E[x2 − 2xf(x) + f2(x)] + 2E [x]E [f(x)]

− 2E [f(x)]E [f(x)] + E [f(x)]
2

= E[(x− f(x))2]− E [f(x)]
2

= E[(x− f(x))2]−m2

Since E[(x − f(x))2] ≤ σ2 and m2 is a nonnegative value, also E[(x − f1(x))
2] ≤ σ2.

Determining the difference of J(f1, g1) and J(f, g), we get

J(f1, g1)− J(f, g) = E
[
2k2xE [f (x)]− 2k2f (x)E [f (x)] + k2E [f (x)]

2
]

= 2k2E [f (x)]E [x]− k2E [f (x)]
2

= −k2m2

and therefore
J(f1, g1) = J(f, g)− k2m2.

This shows that it is possible to get a better result in both considered cases. Therefore a
optimal solution must exist. [29]

As (f∗, g∗) just differs from (f, g) if E [f(x)] 6= 0 the optimal solution for f must have
E [f∗(x)] = 0. Since E

[
(f∗(x))2

]
≤ 4σ2, all functions not fulfilling this equation can be

ignored for the search of the minimum of J . (cf. [29, pp. 132–133])

2.2.2. Determining the optimal g∗ for fixed f

Witsenhausen showed there is a way to determine the optimal g∗ if the optimal function
f∗ is known. Knowing this, the search for a global minimum can be reduced to a problem
in just one function.

The result of this idea is given in the following lemma.

8

Lemma 2.2.2
Let f be fixed. Then the g∗ minimizing the expected value of the cost function is given

by

g∗(y) =

∫
f(x)fx,y(x, y) dx

fy(y)
, (2.1)

whereby fy is the density function of y = f(x) + ν and fx,y the joint density function of
x and y.

Proof : Assuming we know a way to determine g∗ depending on f , we get an expression for J
just depending on f , with

J(f) = E
[
k2(x− f(x))2 + (f(x)− g∗(f(x) + ν))2

]
= E

[
k2(x− f(x))2

]
+ E

[
(f(x)− g∗(f(x) + ν))2

]
.

As the first summand is independent of g, we may disregard it when optimizing for g. Therefore,
we can express the optimal g∗ as

g∗(y) = argmin
g∗

E
[
(f(x)− g∗(y))2 | f(x) + ν = y

]
. (2.2)

It may be seen, the term to minimize corresponds to the mean squared error of two random
variables. The minimizer for such a term is well known from literature and given by

g∗(y) = E [f(x) | f(x) + ν = y] (2.3)

(cf. [25]). As the conditional expected value of two random variables X and Y is defined as

E [X|Y = y] =

∫
xfX|Y (x) dx

whereby the conditional density function is given with

fX|Y (x) =
fX,Y (x, y)

fY (y)
, fY (y) > 0 .

Hereby, fX,Y means the joint density function of X and Y and fY the marginal density function
of Y . Applying this to Equation (2.3), we get

g∗(y) =

∫
f(x)fx,y(x, y) dx

fy(y)
.

(cf. [29, pp. 133–134])

2.2.3. Computation Rule of the Second Part of the Cost Functional
If we know the g is derived that way and therefore is optimal for the given f, the following
Lemma provides information about the expected value of the cost function.

9

Lemma 2.2.3
Let g∗f be chosen as in Lemma 2.2.2. Then

J(f, g∗f)− k2E
[
(x− f(x))2

]
= E

[
(f(x)− g∗f (y))

2
]
= E[f2(x)]− E[g∗2f (y)].

Proof : We know the optimal g depending on a given f with

g∗f = E [f(x) | y = f(x) + ν] .

This results in

E
[
(f(x)− g∗f (y))

2
]
= E

[
(f(x)− E [f(x) | y = f(x) + ν])

2
]

= E [Var(f(x) | y = f(x) + ν)] .

We know that
Var(X|Y = y) = E

[
X2|Y = y

]
− E [X|Y = y]

2

[25, Section 5.1.5]. Therefore we get

E
[
(f(x)− g∗f (y))

2
]
= E [Var(f(x) | y = f(x) + ν)]

= E
[
E
[
f2(x) | y = f(x) + ν

]
− E [f(x) | y = f(x) + ν]

2
]
.

As E[X] = E [E[X|Y]] [25, Section 5.1.5] and g∗f = E [f(x) | y = f(x) + ν] this can be simplified
to the expected result

E
[
(f(x)− g∗f (y))

2
]
= E

[
E
[
f2(x) | y = f(x) + ν

]
− g∗2f (y))

]
= E

[
f2(x)

]
− E

[
g∗2f (y)

]
.

(cf. [29])

Remark 2.2.1
As we know the distribution of x and ν, we can write down the marginal density function
of y as well as the joint density function of x and y = f(x) + ν. We get

fy(y) =

∫
fν(y − f(x))fx(x)dx,

fx,y(x, y) = fx(x)fν(y − f(x)),

whereby fx is the density function of x and fν is the density function of ν.

Knowing those facts, we may determine another simpler formulation for the second part
of the cost functional.
Lemma 2.2.4
It is valid that

J2(f)− k2E[(x− f(x))2] = E[f2(x)]− E[g∗2f (y)]

= 1− I(Df)

10

whereby I(Df) means the Fisher information of y that is given by

I(Df) = 4

∫ (
d

dy

√
Df (y)

)2

dy

with
Df (y) =

∫
fν(y − f(x))fx(x) dx .

[29]

Proof : We know from Lemma 2.2.3

E[f2(x)]− E[g∗2f (y)] = E[(f(X)− E[f(x)|y])2] = MMSE(f(x)|y) .

As explained in [7, p. 3] for a random variable Y =
√
snrX + Z, whereby X is an arbitrary

random variable, Z has standard normal distribution, Y has pdf fY and snr is the signal to noise
ratio, we know

I(fY) = 1− snr ·MMSE(X|Y) .

As we may choose an arbitrary random variable X, we choose a scaling factor as snr becomes 1.
This allows us to choose

Y = f(x) + ν ,

which leads to
I(fy) = 1−MMSE(f(x)|y) .

As Df is the density of y [29], we have

MMSE(f(x)|y) = 1− I(Df) .

The explicit computation of I(Df) is left out. (cf. [29])

2.2.4. Monotonicity of the optimal Function
An important result is given in the monotony of the optimal function. Therefore, we will
discuss two major results from history. The first was already discussed in the original
paper [29] from Witsenhausen, the second more than 30 years later in the paper [31]
from Vu and Verdú. As a full presentation of the corresponding proofs would require
lengthy derivations, we omit them here and focus on the main insights.

To introduce the Lemma pointed out by Witsenhausen, we first have to introduce a
concept, Witsenhausen also used in his publication [29, p. 135].
Definition 2.2.1
Let P be the distribution of a real valued random variable. Then, let α(P) be the
smallest convex set wherefore

P (α(P)) = 1 .

Knowing this, we may introduce the result Witsenhausen gained in [29, p. 137].

11

Lemma 2.2.5
Let F be the probability distribution of the random variable x and α(F) as defined
before. Then for E

[
(f0(x)− x)2

]
≤ σ2 and g∗f the optimal function g for f there is a

function f∗ that is monotonically non-decreasing on α(F) with

J(f∗, g∗f) = min{J(f, g) | f Borel }.

This already gives insights on the monotony of the optimal f function. Years later,
the question about the monotony was asked again and yields the Theorem from [31, p.
5735], where Vu and Verdú formulated the problem stated by Witsenhausen as problem
from optimal transport theory.
Theorem 2.2.1
For a probability measure with real analytic strictly positive density, any optimal con-
troller f is a strictly increasing unbounded piece wise real analytic function with a real
analytic left inverse. (cf. [31])

A few more details to the theorem are added in the following Remark.
Remark 2.2.2
Real analytic left inverse combines two properties of a function.

• real analytic: For I ⊂ R an open set, a function f : I → R is called real analytic if
for all x0 ∈ I there exists J such as there exists a series wherefore

f(x) =
∑
n∈N

an(x− x0)
n ∀x ∈ J

is true. [13]
• left inverse: For functions h and f we call for

h ◦ f = id

h the left inverse of f . [31]

12

3. Witsenhausen’s Counterexample

For problems based on the classical information pattern, it can be assumed that the
optimal solution can be found in the set of affine functions. Witsenhausen showed, this
does not apply for non classical information pattern (cf. [29, p. 131]). In this section
first the optimal affine solution will be derived, then an example for a not affine solution
will be given, that improves the value of J compared to the affine solution.

3.1. Deriving the best affine Solution
Solving the optimization problem π(k2, σ2) for f , g affine, Witsenhausen came to the
following results.
Lemma 3.1.1
Solving the problem π(k2, σ2) over the affine class, thus searching

J∗
a = inf {J(f, g)|f, g affine} ,

results in
a) the optimal affine controller function f∗

a , with

f∗
a (x) = λx, λ ∈ R,

b) the optimal affine controller function g∗a depending on f∗
a , with

g∗a(y) = g∗fa(y) =
σ2λ2

1 + σ2λ2
y,

c) the expexted cost function value

J(f∗
a , g

∗
a) = k2σ2(1− λ)2 +

λ2σ2

1 + λ2σ2
.

Proof :

a) Since f must be affine, we know it is of the form

f(x) = c1 + c2x.

13

As known from chapter 2.2, it must be valid that E[f(x)] = 0. Therefore, c1 = 0. Denoting
c2 as λ, we get the statement.

b) We already derived that for f given, the optimal g is given by

g∗f (y) =

∫
f(x)fx,y(x, y) dx

fy(y)
.

Solving the integral and setting g∗a(x) = g∗f (x) leads to the statement.

c) J is given by
J(f, g) = E

[
k2(x− f(x))2 + (f(x)− g∗a(f(x) + ν))2

]
.

Inserting f∗
a and g∗a, we get

J(f∗
a , g

∗
a) = k2E

[
x2(1− λ)2

]
+

λ2

(λ2σ2 + 1)2
E
[
(λνσ2 − x)2

]
= k2(1− λ)2E

[
x2
]
+

λ2

(λ2σ2 + 1)2
(
λ2σ4E

[
ν2
]
− 2λσ2E [xν] + E

[
x2
])

.

Since x and ν are independent, it is valid that E[xν] = E[x]E[ν]. Moreover, E[x] = E[ν] =
0, E[x2] = σ2 and E[ν2] = 1. Therefore, the expression simplifies to

J(f∗
a , g

∗
a) = k2σ2(1− λ)2 +

λ2

(λ2σ2 + 1)2
(
λ2σ4 + σ2

)
= k2σ2(1− λ)2 +

λ2σ2
(
λ2σ2 + 1

)
(λ2σ2 + 1)2

= k2σ2(1− λ)2 +
λ2σ2

1 + λ2σ2
.

(cf. [29, pp. 140–141])

As the form of the optimal equations is known and g∗a can be determined for a given
f , the optimal f∗

a has to be found. fa just depends on λ ∈ R. Therefore, we get an
optimization problem in λ. For the optimal λ, Witsenhausen obtained the following
results.
Lemma 3.1.2
If t = σλ, then t must be a real root value of

(t− σ)(1 + t2)2 +
1

k2
t = 0. (3.1)

Proof : As fa can just be varied by λ, J behaves like a function with J : R → R. Denoting
J(fa, ga) as J(λ), for a minimum

d

dλ
J(λ) = 0

14

must be valid. This leads to

d

dλ
J(λ) = −2k2σ2 (1− λ) +

2λσ2

1 + λ2σ2
− 2λ3σ4

(1 + λ2σ2)
2

= −2k2σ(σ − t) +
2tσ

1 + t2
− 2t3σ

(1 + t2)2

= 2k2σ(t− σ) + 2σ

(
t

1 + t2
− t3

(1 + t2)2

)
.

As dJ/dλ
!
= 0, we get

d

dλ
J(λ)

!
= 0 ⇔ 0 = 2k2σ(t− σ) + 2σ

(
t

1 + t2
− t3

(1 + t2)
2

)

⇔ 0 = k2(t− σ) +

(
t
(
1 + t2

)
− t3

(1 + t2)
2

)
⇔ 0 = k2(t− σ)

(
1 + t2

)2
+ t

⇔ 0 = (t− σ)
(
1 + t2

)2
+

t

k2
,

which shows that the statement is true. (cf. [29, p. 141])

Remark 3.1.1
Equation (3.1) can be interpreted more intuitively. Instead of solving

0 = (t− σ)
(
1 + t2

)2
+

t

k2
,

we can also search the intersection points of the curve k and the line l, with

k(t) =
t

(1 + t2)2
, l(t) = k2 (σ − t) ,

as

k(t) = l(t) ⇔ t

(1 + t2)2
= k2 (σ − t)

⇔ (t− σ)
(
1 + t2

)2
+

t

k2
= 0.

Using this insight, the following results can be gained easily. (cf. [29, p. 141])

The last question to answer is whether solving (3.1) yields a unique value for λ, and thus
a unique minimum for J . Therefore, we state the following lemma without proof, as it
follows from standard results in real analysis.
Lemma 3.1.3
Let h be a sufficiently smooth function with

mh = max

{∣∣∣∣ ddxh(x)
∣∣∣∣ ∣∣∣x ∈ R

}
,

15

and exactly one extremum, k a line with

mk =
d

dx
k(x)

and
|mk| > mh.

Then there is exactly one intersection point between h and k. [29]

As σ and k2 are always positive, solutions of (3.1) lead to positive t. Looking at t > 0
we get the following lemma.
Lemma 3.1.4
Solving π(k2, σ2) over the class of affine functions we get

a) a unique solution for k2 ≥ 1
4 ,

b) two equivalent solutions for k2 < 1
4 and σ = σc = k−1.

Proof :

a) Using the derivative
d

dt
k(t) = − 3t2 − 1

(t2 + 1)3
,

we get that, for positive t, k has its maximum at
√
3/3 and from thereon decays to zero.

As the maximum absolute slope can be found at t = 1 with 1/4 and the deviation of k is
not constant, the statement follows according to Lemma 3.1.3.

b) Assuming k2σ = 1 and therefore 1/k2 = σ2, we can write the condition (t−σ)(1+t2)2+t/k2

as
(t2 − σt+ 1)(t3 + t− σ) = 0.

The first factor leads to the roots

t0, t1 =
1

2
σ ±

√
σ2

4
− 1.

And the second yields the real root

t2 =

(
108σ + 12

√
81σ2 + 12

) 2
3 − 12

6
(
108σ + 12

√
81σ2 + 12

) 1
3

.

As k2 > 1/4 and k2σ2 = 1 it must be valid that |σ| > 2. Solving d2/dt2J(ti) = 0 for σ, we
get ±2 as real roots. Testing for |σ| > 2, we get

d2

dt2
J(t0) > 0,

d2

dt2
J(t1) > 0,

d2

dt2
J(t2) < 0.

As J(t0) = J(t1) for k2σ2 = 1, the optimal solutions are found with t0 and t1, wherefore
we know σc = k−1 is the critical value.

(cf. [29])

16

3.2. Two-point distributed Variables
As an intermediate step to come to the final result of Witsenhausen’s paper, we assume
x would have an easier distribution than before.
Definition 3.2.1
In this subsection the variable x is defined as a two-point distributed random variable,
with

fx(σ) = fx(−σ) =
1

2
.

Simplifying the distribution leads to an easier way to determine the functions f and g
and the following Lemma.
Lemma 3.2.1
Let f(σ) = a, a ∈ R, then

a) f(x) = a sgn(x)
b) the optimal g for f is given with

g∗f (y) = a tanh(ay) .

Proof :

a) As shown in Lemma 2.2.1 it must be valid that E[f(x)] = 0. Therefore, f(σ) = f(−σ).

b) As already discussed in Lemma 2.2.2 the optimal g, depending on f is given by

g∗f (y) = E [f(x) | f(x) + ν = y] .

As we are in the discrete case for x and (ex + e−x)/2 = cosh(x) [23, p. 107], we get

fy(y) =
1

2
(fν (y − a) + fν (y + a))

=
1

2
√
2π

(
exp

(
−y2 − a2

2

)
exp (ay) + exp

(
−y2 − a2

2

)
exp (−ay)

)
=

1√
2π

exp

(
−y2 − a2

2

)
exp (ay) + exp (−ay)

2

= 2π
1√
2π

exp

(
−y2

2

)
1√
2π

exp

(
−a2

2

)
cosh(ay)

= 2πfν(y)fν(a) cosh(ay)

17

as the denominator. The nominator of g∗f can be obtained with

Ng(y) =
a

2
fν(y − a)− a

2
fν(y + a)

=
a

2
√
2π

(
exp

(
−y2 − a2

2

)
exp (ay)− exp (ay) + exp

(
−y2 − a2

2

)
exp (−ay)

)
= 2aπ

1√
2π

exp

(
−y2

2

)
1√
2π

exp

(
−a2

2

)(
exp(ay)− exp(−ay)

2

)
= 2aπfν(y)fν(a) sinh(ay).

Therefore, with tanh(x) = sinh(x)/ cosh(x) [23, p. 108], we obtain the optimal g, with

g∗f (y) =
N∗

g (y)

fy(y)
= a tanh(ay).

(cf. [29])

The expected value of the cost functional can easily be derived as shown in the next
Lemma.
Lemma 3.2.2
Let f and g be chosen as described in Lemma 3.2.1, then J is given with

J(f) = k2(a− σ)2 + h(a),

whereby

h(a) =
√
2π a2fν(a)

∫
fν(y)

cosh(ay)
dy.

Proof : Figuring out the expected value of the cost function, we get

J(f, g) = E
[
k2(x− a sgn(x))2

]
+ E

[
(a sgn(x)− a tanh (a(a sgn(x) + ν)))

2
]

The first summand is easy to determine as the distribution of x is just a two-point distribution.
This restricts the values of x to the set {−σ, σ}. Therefore, we obtain

E
[
k2(x− a sgn(x))2

]
=

1

2

(
k2 (σ − a sgn(σ))

2
+ k2 (−σ − a sgn(−σ))2

)
= k2 (a− σ)

2
.

The second part is more complicated as there is not just a two-point distribution but also a
normal distribution for ν. We know

f2(x) = a2,

g∗2f (x) = a2 tanh2(ay)

= a2 − a2 sech2(ay).

18

Moreover, we can determine the probability density function of y with

fy(y) =
1

2
(fν(y − a) + fν(y + a))

=
1

2
√
2π

exp

(
−a2

2

)
exp

(
−y2

2

)
(exp(ay) + exp(−ay))

=
√
2π

1√
2π

exp

(
−a2

2

)
1√
2π

exp

(
−y2

2

)
exp(ay) + exp(−ay)

2

=
√
2πfν(a)fν(y) cosh(ay).

Determining the expected values of the squared functions we get for f

E
[
f2(x)

]
= a2

and for g∗f

E
[
g∗2f
]
= E

[
a2 − a2 sech2(ay)

]
= a2 −

∫
fy(y)a

2 sech2(ay) dy.

As sech(x) = 1/ cosh(x), this results in

E
[
g∗2f
]
= a2 −

√
2π a2fν(a)

∫
fν(y)

cosh(ay)
dy

and will be written as
E
[
g∗2f
]
= a2 − h(a),

whereby

h(a) =
√
2π a2fν(a)

∫
fν(y)

cosh(ay)
dy.

As we know, g is chosen optimal for the given f , we get

J(f, g) = k2(a− σ)2 + E
[
f2(x)

]
− E

[
g2(x)

]
from Lemma 2.2.3 and therefore

J(f, g) = k2(a− σ)2 + h(a).

(cf. [29])

Lemma 3.2.3
Let h be as before, then there is an upper bound given with

h(a) ≤
√
2πa2fν(a) = a2 exp

(
−a2

2

)
.

19

Proof : h is given by

h(a) =
√
2π a2fν(a)

∫
fν(y)

cosh(ay)
dy.

As ∫
fν(y)

cosh(ay)
dy ≤

∫
fν(y) dy = 1 ,

the statement is valid. (cf. [29])

This design idea will be considered to obtain the final result in the next section.

3.3. Witsenhausen’s Counterexample
Leaving the simplification behind and assuming that x is normal distributed, we come
to the Witsenhausen Counterexample, which is the main result in [29].
Theorem 3.3.1
There are parameters σ and k wherefore the optimal solution J∗ of the problem π(k2, σ2)
is less than the optimal affine solution J∗

a .

Proof : Considering the design idea from Lemma 3.2.1, we choose

f(x) = a sgn(x), g(y) = a tanh(ay)

and set a = σ. Since f is two-point distributed again, determining J for this choice of functions,
we get

J(f, g) = E
[
k2(x− f(x)2

]
+ E

[
(f(x)− g(f(x) + ν))

2
]

= k2E
[
(x− σ sgn(x))2

]
+ h(σ).

Evaluating the first part we get

k2E
[
(x− σ sgn(x))2

]
= k2E

[
x2 − 2xσsgn(x) + σ2

]
= k2

(
σ2 − 2E [σ|x|] + σ2

)
= 2k2σ2

(
1− E

[∣∣∣x
σ

∣∣∣]) .

As the limit of the integral in the expexted value is known as
√
2/π, the expression can be

determined. For k2σ2 = 1 together with Lemma 3.2.3, we get

J(f, g) ≤ 2

(
1−

√
2

π

)
+

1

k2
fν

(
1

k

)
.

For k → 0 this tends to 2
(
1−

√
2/π

)
≈ 0.4042308783943. Using Lemma 3.1.1, we get for the

affine solution

J∗
a (f, g) = k2σ2(1− λ)2 +

λ2σ2

1 + λ2σ2
.

20

As k2σ2 = 1, we can use Lemma 3.1.4 to determine the optimal λ with

λ =
1

2
±
√

1

4
− k2.

As both λ lead to the same result, we may choose one arbitrary and get

J∗
a = 1− k2.

For k → 0 this results in 1. Therefore, J∗ < J∗
a which shows the statement is valid. (cf. [29])

21

4. Historical Results

In the last decades, various people worked on the problem, stated by Witsenhausen.
They have published theoretical results on the properties of the optimal control function,
as well as numerical attempts, gaining such an optimal function. In this Chapter, we
will focus on the second case and focus on a selection out of the numerical attempts. As
we cannot consider all results, we try to focus on a couple of main results.

Before we start to select results, we have a look on the most relevant results from the past
five decades. This results are listed in Table 4.1. The table is gained as a combination
of the results summarized in [20, p. 2] and [28, p. 5017]. In this chapter, we just focus
on results for the benchmark configuration σ = 5, k = 0.2.

Year Idea Author J

1968 Affine solution Witsenhausen [29] 0.961852
1968 1-step function Witsenhausen [29] 0.404253
1987 1-step function Bansal & Basar [5] 0.365015
1999 2-step function Deng & Ho [1] 0.19
2000 25-step function Ho & Lee [15] 0.1717
2001 2.5-step function Baglietto et al. [4] 0.1701
2001 3.5-step function Lee et al. [19] 0.1673132
2009 3.5-step function Li et al. [20] 0.1670790
2011 Sloped 4-step function Karlsson et al. [17] 0.16692462
2014 Sloped 5-step function Mehmetoglu et al. [21] 0.16692291
2017 Curved step function Tseng & Tang [28] 0.166897

Table 4.1.: Major results regarding found f for Witsenhausen’s Counterexample

As to see in Table 4.1 there are three major attempts for the function type chosen for f :

1. Until 2001, the functions are chosen as n-step functions and the step positions and
heights were optimized.

2. From 2001 to 2009, the functions are chosen as n.5-step function, which means the
first step is not positioned in x = 0. Such a function is shown in Figure 4.1.

3. From 2011 to 2014, sloped step functions were used to find an optimal f for the
given problem. Which adds a slope to each step of a step function.

22

4. The function determined in 2017, which is the best currently known, is given as a
point representation, approximating a curved step function.

x

f(x)

Figure 4.1.: 2.5-step function

Now, as we found four different classes, we can
group the optimized functions in, we want to
focus on the methods used, to gain them. Since
we cannot introduce all methods used and re-
sults gained, we will focus on one approach
from each function class. Therefore, we start
with the approach pointed out by Deng and Ho
in 1999, continue with the idea of Baglietto et
al., then introduce the method of Karlsson et
al. and in the end present the results of Tseng
and Tang.

4.1. Gaining a 2-step Function: Results from Deng and Ho [1]
In their publication, “An ordinal optimization approach to optimal control problems,”
Deng and Ho 1999 introduced a new method based on ordinal optimization to obtain
a new controller function f for the problem stated by Witsenhausen. For the common
benchmark k = 0.2, σ = 5 they reached a cost value which is more then 50% better than
the best value known before. [1]

The strategy Deng and Ho use, is build on the main idea of ordinal optimization, which
is a strategy to speed up stochastic optimizations by considering two main ideas:

1. It is easier to obtain an order than a value.

2. It is easier to find good enough with high probability than best for sure.

These main ideas should be used for problems where the design space Θ for an optimiza-
tion problem is very large. In such cases, the number of combinations to be considered
becomes too huge to compute all of them. For this reason, they want to search for
subspaces Θ1,Θ2, · · · ⊂ Θ and determine up to a high probability, which one includes
the top-k combinations. [1]

As indicator for such a decision, they introduce the Performance Density Function and
the Performance Distribution Function (PDF). The Performance Density Function for
a design space Θ and the cost function JΘ is the histogram gained by evaluating

J(θ), ∀θ ∈ Θ .

The PDF is the integral of the Performance Density Function. For a chosen number
of samples N , they found rules to guarantee the approximated PDF is near the true
PDF.[1]

23

For two subsets, Θ1,Θ2 ⊂ Θ choosing one is now done by just comparing the approxi-
mated PDFs. Concerning the case where the cost functional JΘ might not be evaluated
without an inaccuracy, Deng and Ho showed under a few extra conditions that the
probability choosing the better subspace based on the approximated PDF is > 0.5. [1]

Figure 4.2.: PDFs reached for n intervals.
Taken from [1]

Applying the method explained on the
problem stated by Witsenhausen, they
first assume the optimal function f is
odd what they justify with the property
E[f(x)] = 0 for the optimal f . Then
they use the method by choosing key pa-
rameters to split the design space into
subspaces. First, they choose the num-
ber of intervals to obtain function values
for, which is equivalent to choosing the
number of steps. The PDFs gained for
n = 1, 2, 5, 10 intervals is shown in Fig-
ure 4.2. This lead to the decision for a
2-step function, as two intervals seem to
have combinations reaching lower cost values than any other combination.

x

f(x)

6.41

3.1686

9.0479

Figure 4.3.: Optimal function from Deng
and Ho for x ≥ 0

The same method is applied to find the
optimal jump point. Which leads to the
optimal function

f(x) =


3.1686, 0 ≤ x < 6.41

9.0479, x ≥ 6.41

−f(−x), x < 0

which is also shown in Figure 4.3. This
function reaches the cost value 0.19 for
σ = 5, k = 0.2. As the best value known
before was 0.365015, this is an reduction
of more than 50%. Moreover, they were
able to beat all previous known values for
benchmarks different to σ = 5, k = 0.2.
[1]

4.2. Gaining a 3.5-step
Function: Results from Li et al. [20]
In their paper, ”Learning Approaches to the Witsenhausen Counterexample From a View
of Potential Games,” Li, Marden and Shamma consider the problem stated by Witsen-
hausen as a problem from game theory. They develop a method based on ideas from

24

game theory which in the end lead to a 3.5 step function. Doing this, they outperformed
any cost value previously known. [20]

To apply ideas from game theory on the problem stated by Witsenhausen, the problem
first has to be converted into a game. Therefore, it should be clear what goal is pursued
in game theory. Usually in game theory the aim is to obtain a so called Nash Equilibrium.
The definition of a Nash Equilibrium in simple words is given by:

“Nash equilibrium is a concept in game theory where the game reaches a
state that gives individual players no incentive to deviate from their initial
strategy. The players know their opponents’ strategy and can’t deviate from
their chosen strategy because it remains optimal.” [16]

Before we might search such a state, Witsenhausen’s problem must be converted to a
problem from game theory. The problem will be converted to a potential game. Which
means there are n players N = {1, 2, . . . , n} where all players have the same utility
function

Ui(a) = Ug(a), Ug : A → R, i = 1, . . . , n ,

whereby A = A1×A2×· · ·×An is the action set of all players and a = (a1, . . . , an) ∈ A.
Furthermore, the notation

a−i = (a1, . . . , ai−1, ai+1, . . . , an)

is used. Knowing this, the definition of a pure Nash equilibrium is simple. An a∗ ∈ A is
called a pure Nash equilibrium if

Ui(a
∗
i , a

∗
−i) = max

ai∈Ai

Ui(ai, a
∗
−i) ∀i = 1, 2, . . . , n .

This means the aim is to find an action state a∗ as the utility function Ug(a) is maximized
for all players. [20]

When converting the problem stated by Witsenhausen into a potential game, Li et al.
first assume the optimal f is an odd function. Then, the interval [0,∞), on which the
function is approximated, is divided into n+ 1 subintervals

[bi, bi+1), b0 = 0, bn+1 =∞, i = 1, . . . , n .

Each subinterval is seen as one player in the game we define. The values ai , i = 1, . . . , n
chosen on those intervals are seen as the actions of the players. This leads to the following
representation of the function in the game

f(x) =



a1, 0 ≤ x < b1

a2, b1 ≤ x < b2
...
an, bn−1 ≤ x < bn

an+1, bn ≤ x <∞
−f(−x), x < 0

.

25

The utility function is then chosen as the negative cost function J from Witsenhausen’s
counterexample, which leads to

U = −J

as the utility function. [20]

This way, the problem from Witsenhausen’s counterexample is formulated as a potential
game. On this game the learning algorithm fading memory joint strategy fictitious play
(JSFP) with inertia is applied to gain pure Nash equilibriums. A detailed description of
the algorithm is omitted, since it would go beyond the scope of this discussion. [20]

Choosing n = 600 players they reached the function represented in Table 4.2. The plot

f(x) Interval f(x) Interval

0.00 0.000 ≤ x < 0.467 13.233 10.667 ≤ x < 11.667
0.033 0.467 ≤ x < 1.400 13.267 11.667 ≤ x < 12.633
0.067 1.400 ≤ x < 2.333 13.300 12.633 ≤ x < 13.633
0.100 2.333 ≤ x < 3.333 13.333 13.633 ≤ x < 14.600
6.467 3.333 ≤ x < 4.133 13.367 14.600 ≤ x < 15.567
6.500 4.133 ≤ x < 5.100 13.400 15.567 ≤ x < 16.533
6.533 5.100 ≤ x < 6.033 13.433 16.533 ≤ x < 16.867
6.567 6.033 ≤ x < 7.000 20.267 16.867 ≤ x < 17.531
6.600 7.000 ≤ x < 7.933 20.300 17.531 ≤ x < 18.567
6.633 7.933 ≤ x < 8.867 20.333 18.567 ≤ x < 19.600
6.667 8.867 ≤ x < 9.833 20.367 19.600 ≤ x < 20
6.700 9.833 ≤ x < 9.967 20.400 x ≥ 20
13.200 9.967 ≤ x < 10.667 −f(−x) x < 0

Table 4.2.: Function determined by Li et al. for n = 600 [20]

of the function is shown in Figure 4.4. The function reaches for σ = 5, k = 0.2 the cost
value 0.1670790 which outperforms any cost value gained before.

0 2 4 6 8 10 12 14 16 18 20 22 24

0

10

20

x

f
(x
)

Figure 4.4.: Plot of function gained by Li et al. for x ≥ 0

26

4.3. Gaining a Sloped 4-step Function: Results from Karlsson
et al. [17]

In their paper “Iterative Source-Channel Coding Approach to Witsenhausen’s Coun-
terexample” Karlsson, Gattami, Oechtering and Skoglund introduce a new optimization
approach, which alternately optimizes f and g while keeping the other function fixed.
[17]

The approach published is based on the idea of the Lloyd-algorithm. The main idea of
the Lloyd-algorithm is just optimizing one variable part regarding a cost function. The
variable rest is then assumed to be fixed and just one part is optimized. The algorithm
will then converge against a local minimum. This idea should now be generalized, to gain
a generalization of the Lloyd-algorithm. Therefore, four main points must be considered:

1. Derive necessary conditions for whether optimizing f or g.

2. Discretize inputs for f and g to finite set.

3. Optimize f and g alternately to fulfill their necessary conditions.

4. Use noise channel relaxation to make solutions less dependent on the initialization.

[17] Before focusing on the necessary conditions, we have a look on the based cost
functional to minimize. This is given by

J(f, g) = E
[
k2(f(x)− x)2 + (f(x)− g(f(x) + ν))2

]
.

When g is fixed and we name

F (x, x1, g(y
′)) =

(
k2(x1 − x)2 + (x1 − g(y′))2

)
then the necessary condition for the optimal f is given as

f(x) = arg min
xi∈R

(
fy|x(y

′)F (x, x1, y
′) dy

)
,

whereby fy|x(y
′) means the probability density function of y = f(x)+ ν. For fixed f the

first part of the expected value does not have to be considered. This means, optimizing
J for fixed f is equivalent to minimizing

min
g

E[(f(x)− g(f(x) + ν))2] .

As we know, this yields the MMSE as optimal function g. Therefore, the necessary
condition for optimal g is given as

g(y′) = E[f(x)|y = y′] ,

which is the optimal g we already know. [17]

27

As the inputs x, y to the necessary conditions both come from infinite sets, a discretiza-
tion must be chosen for the input variables. Therefore, Karlsson et al. choose

SL =

{
−∆L− 1

2
,−∆L− 3

2
. . . . ,∆

L− 3

2
,∆

L− 1

2

}
whereby L ∈ N and ∆ ∈ R+ determine the number of points and the spacing between

Figure 4.5.: Function gained by Karlsson et
al. Taken from [17]

them. Then, the inputs are chosen as

x ∈ SL

y′ ∈ QSL
(y′) ,

whereby QSL
for an input y′ returns the

nearest value to y′ included in SL. [17]

The iterative optimization then is per-
formed including a Noise Channel Relax-
ation (NCR). The NCR therefore starts
optimizing for some changed parameters
that obtain a simpler solution, to a maybe
different scenario. Then, the obtained
variables are chosen as an input for the
next iteration which is closer to the origi-
nal scenario. [17]

Using this idea and the NCR, Karlsson
et al. were able to reach the cost value
0.16692462 for σ = 5, k = 0.2 with
a sloped 4-step function. The function
gained is shown in Figure 4.5. [17]

4.4. Gaining a Curved Step Function: Results from Tseng and
Tang [28]

In their paper, “A Local Search Algorithm for the Witsenhausen’s Counterexample,”
Tseng and Tang use variational analysis to gain necessary conditions for the optimal
controller for Witsenhausen’s counterexample. They do not search within a specific
type of functions and gain the currently best known solution. [28]

As the conditions that might be gained from variational analysis only fit for local minima,
they first introduce so called local Nash minimizers. This means that, for the known
cost functional J , (f, g) is a local Nash minimizer if it fulfills

J(f + δf, g) ≥ J(f, g)

J(f, g + δg) ≥ J(f, g)

28

for arbitrary functions δf and δg. They then focus on finding good local minima instead
of the global minimum. [28]

By using variational analysis they gain a first and second order condition for a local Nash
minimizer. The first order condition is given as∫

δJ(f, g)(x0)

δf
δf(x0) dx0 = 0∫

δJ(f, g)(y)

δg
δg(y) dy = 0 .

This implies, as δf and δg are arbitrary,

δJ(f, g)(x0)

δf
= 0,

δJ(f, g)(y)

δg
= 0 .

They gained the second order condition as∫
∂

∂f

δJ(f, g)(x0)

δf
δf2(x0) dx0 ≥ 0∫

∂

∂g

δJ(f, g)(y)

δg
δg2(y) dy ≥ 0 .

Using those results Tseng and Tang were able to determine a rule to update a function
given by a point representation. For ∂

∂x1

δJ(f,g)(x0)
δf = 0 the rule is given as

f(x0)← f(x0)− τ
δJ

δg
(f, g)(x0) (4.1)

otherwise by

f(x0)← f(x0)−
δJ
δg (f, g)(x0)∣∣∣ ∂

∂f
δJ
δf (f, g)(x0)

∣∣∣ . (4.2)

Figure 4.6.: Noise occurance in
reached function.
Taken from [28]

Applying this rule leads to the function plots as for
example shown in Figure 4.6. As to see, those plots
include noise points that seem to do not converge
against the true solution. [28]

To address this problem, Tseng and Tang added a
denoising step, wherein they take the noised values
as input and then optimize the function locally for
a fixed g. This leads to the cost function

CX(a, x0) = k2(a− x0)
2

+

∫
(a− g(y))2fx(x0)fν(y − a) dy

29

(a) Best function for σ = 5, k = 0.2. Taken
from [28]

(b) Step plateau for k = 0.733. Taken
from [28]

Figure 4.7.: Functions gained by Tseng and Tang

and therefore to the denoising rule

f(x0)← argmin
x′∈Br(x0)

CX(f(x′), x0) .

Applying the search based on the necessary criteria and the denoising step, leads to
cost value of 0.1668797 which is the best known up to now. The function determined
for σ = 5, k = 0.2 is shown in Figure 4.7 (a). Another interesting results Tseng and
Tang gained, is shown in Figure 4.7 (b). There, it might be seen that for k = 0.733 the
plateaus of the steps are not affine. It might be seen that curved plateaus occure, which
is a quite new observation. [28]

30

5. Implementation of the Cost Functional

Gaining an efficient as well as reliable method to approximate the cost functional is one
of the main goals in this thesis. In this Chapter, we will develop a method fulfilling the
requirements and report about the implementation.

5.1. Implementation of the Cost Function
As Witsenhausen showed, it is valid that

J(f)− k2E[(x− f(x))2] = 1− 4

∫ (
d

dy

√
Df (y)

)2

dy, (5.1)

whereby
Df (y) =

∫
fν(y − f(x))fx(x)dx (5.2)

[29]. We want to approximate the integral as well as the derivative in one step. Moreover,
we need an estimator for the error that follows by the approximation we use. If the
error becomes too large, we have to decrease the step size. We assume we know the
intervals [x`, xu] and [y`, yu] that have to be considered when integrating with respect to
x respectively y.

As the right side of Equation (5.1) consists out of an integral and a derivative with
respect to y, we want to approximate both in once. This will be done by using spline
interpolation.

5.2. Principle of Approximating the Integrand

As to see in Equation (5.2) the integrand
(

d
dy

√
Df (y)

)2
in Equation (5.1) is defined as

an improper integral and we first need a way to handle it. We choose to approximate√
Df with a function that can be handled easily and for which the derivative, the square

and the integral can be obtained analytically. Moreover, we do not want to restrict our
method on a special class of functions for f as for example Lee et al. did in [19] for
the class of step functions. By doing this, we cannot use an analytical expression for
the integrand which results in higher costs for determining it. As the approximation
for
√

Df is chosen in a way the integration can be handled analytically, the evaluation

31

of the second integral is much cheaper than in a way where just the integrand can be
expressed analytically.

The approximation of
√
Df is done by spline interpolation. Therefore, easy to handle

functions are gained as well as there is a better stability for small distances between the
points interpolated. We use cubic splines which results in a representation

s(x) =



C1(x), x0 ≤ x ≤ x1

. . .

Ci(x), xi−1 < x ≤ xi

. . .

Cn(x), xn−1 < x ≤ xn

(5.3)

= C1(x)1x0≤x≤x1(x) +

n∑
i=2

Ci(x)1xi−1<x≤xi(x) (5.4)

(cf. [9]) for a approximation of
√
Df , whereby Ci(x) = ai + bix+ cix

2 + dix
3. For each

cubic polynomial Ci the conditions

1. ∀i = 1, . . . n : Ci(xi−1) =
√
Df (xi−1), Ci(xi) =

√
Df (xi)

2. ∀i = 1, . . . , n− 1 : C ′
i(xi) = C ′

i+1(xi)

3. ∀i = 1, . . . , n− 1 : C ′′
i (xi) = C ′′

i+1(xi)

must be fulfilled. Moreover, the boundary conditions

4. C ′′′
1 (x1) = C ′′′

2 (x1)

5. C ′′′
n−1(xn−1) = C ′′′

n−1(xn−1)

are chosen as there is no knowledge about the derivative or the bendings (cf. [27]).

The next section will give information about how to choose the grid points xi. For this
moment, we assume there are n ∈ N grid points known and the spline interpolation s
was figured out. Then, we can determine the integrand of the integral in Equation (5.1)
for each Ci, i = 1, . . . , n analytically. We obtain(

d

dx

√
Df (x)

)2

=

(
d

dx
s(x)

)2

+ ε, ε ∈ R . (5.5)

As we know the shape of s, we get for xi−1 < x < xi(
d

dx
s(x)

)2

=

(
d

dx

(
ai + bix+ cix

2 + dix
3
))2

=
(
bi + 2cix+ 3dix

2
)2

.

This representation of the integrand is easy to handle and results in a simple way to
approximate the integral.

32

5.3. Adaptive Choice of Grid Points
In the previous section the grid points xi, i = 1, . . . , n were god given. Of course, this
is not the case and a way to choose them properly must be found. For this reason we
remember ε from Equation (5.5). This variable characterizes the local error made by
the approximation s in a position x. As the quality of the approximation of the integral
in Equation (5.1) will depend on the quality of s, we will try to control ε by the way we
choose the grid points.

1st Iteration

x
(1)
0

x
(1)

n
(1)
x

t
(1)
0

t
(1)

n
(1)
t

2nd Iteration

x
(2)
0

x
(2)

n
(2)
x

t
(2)
0

t
(2)

n
(1)
t

3rd Iteration

x
(2)
0

x
(2)

n
(2)
x

t
(2)
0

t
(2)

n
(1)
t

Final grid

x1 xn

Figure 5.1.: Grid finding algorithm, problematic areas are colored red.

The concept chosen for this is really easy and depicted in Figure 5.1. We start with n
(1)
x

initial grid points x(1)i , i = 1, . . . , n
(1)
x . Moverover, we use n(1)

t test points to determine an
estimator for ε. In the first iteration, n(1)

x = n
(1)
t /2 and the grid points t(1)i , i = 1, . . . , n

(1)
t

are uniform sampled on the interval to consider. Therefore, every second ti also is covered
by a xj . We call {(

x
(j)
i ,

√
Df (x

(j)
i)

) ∣∣∣ i = 1, . . . , n(j)
x

}

33

the j-th interpolating set and{(
t
(j)
i ,

√
Df (t

(j)
i)

) ∣∣∣ i = 1, . . . , n
(j)
t

}
the j-th test set.

In each iteration, we determine a cubic spline sj , as described in the previous section,
using the j-th interpolation set. Then, we evaluate the spline for each position given in
the j-th test set and compare it to the value gained by evaluating the original function.
We get the local error by

e
(j)
i =

∣∣∣∣sj(t(j)i)−
√
Df (t

(j)
i)

∣∣∣∣ , i = 1, . . . n
(j)
t .

As we want to control the local error, we have to set a threshold εmax where e
(j)
i > εmax

leads to a sharpening of the grid at this position.

If a sharpening at position t
(j)
k is needed, the tuples(

t
(j)
k − hl,

√
Df (t

(j)
k − h)

)
,

(
t
(j)
k + hr,

√
Df (t

(j)
k + hr)

)
,

whereby
hl = tjk − (tjk − tjk−1)/3, hr = tjk + (tjk+1 − tjk)/3,

are added to the (j + 1)-th test set. This test set also contains all tuples the j-th test
aready included. Then, the j-th test set becomes the (j + 1)-th interpolation set.

This procedure is repeated until there is no more sharpening needed and all positions
have a deviation less than εmax. Finally, the cubic spline that will be used is gained
by interpolating the test set gained last. The positions in the final grid are named
xi, i = 1, . . . , n.

5.4. Determining the Integral needed
As we now have a method to choose the grid points and also know how to gain a spline
interpolating of these points, we have to think about how to determine the right side of
Equation (5.1).

Therefore, we look at the representation of the spline we found in Equation (5.4). We
add all polynomials Ci and therefore can cover the whole area [x0, xn]. We need to
differentiate, square and integrate this expression and therefore get∫

s(x) dx =

∫
C1(x)1x0≤x≤x1(x) +

n∑
i=2

Ci(x)1xi−1<x≤xi(x) dx.

34

We assume, we can reduce the improper integral on an area (`, u), whereby [x0, xn] ⊂
[`, u], and use that the Lebesgue measure of a point is zero. This yields to∫ u

`

(
d

dx
s(x)

)2

dx =

∫ u

`

(
d

dx

[
C1(x)1x0≤x≤x1(x) +

n∑
i=2

Ci(x)1xi−1<x≤xi(x)

])2

dx

=

∫ u

`

(
d

dx
C1(x)1x0≤x≤x1(x)

)2

dx

+

n∑
i=2

∫ u

`

(
d

dx
Ci(x)1xi−1<x≤xi(x)

)2

dx

=

∫ x1

x0

(
d

dx
C1(x)

)2

dx+

n∑
i=2

∫ xi

xi−1

(
d

dx
Ci(x)

)2

dx

=

n∑
i=1

∫ xi

xi−1

(
d

dx
Ci(x)

)2

dx.

Using that Ci(x) = ai + bix+ cix
2 + dix

3, we get
n∑

i=1

∫ xi

xi−1

(
d

dx
Ci(x)

)2

dx =

n∑
i=1

∫ xi

xi−1

(
bi + 2cix+ 3dix

2
)2

dx

=
n∑

i=1

∫ xi

xi−1

9d2ix
4 + 12cidi x

3 + 6bidix
2 + 4c2ix

2 + 4bicix+ b2i dx

=

n∑
i=1

[
9di

2x5

5
+ 3cidix

4 +

(
6bidi + 4ci

2
)
x3

3
+ 2bicix

2 + bi
2x

]xi

xi−1

.

This expression can be evaluated really cheap and will be used for determining the
integral in the used implementation.

5.5. Implementation Details
In the second part of this thesis, we will focus on how to determine an approximation for
the optimal controller function. For this optimization, the amount of evaluations of the
cost functional will easily reach a few thousand evaluations per optimization. For this
reason, it is mandatory that the evaluations might be done in the least possible amount
of time. A few details on the implementation of the cost functional will be introduced
in this section.

5.5.1. Approximating Integrals for possibly non-smooth Functions
The function that Witsenhausen used in his counterexample, as well as nearly all func-
tions that have been published as the “best function for Witsenhausen’s counterexample

35

for the moment”, had discontinuities. As most usual integration methods may run into
troubles for those functions, this issue is addressed in this subsection.

Performing the integration on a possibly non-smooth function, involves two steps:

1. Detect discontinuities

2. Use common integration method considering discontinuities

Detecting the discontinuities is done by applying the definition of right-continuity. There
we call a position xd ∈ R a discontinuity of a function f if

lim
x→x+

d

f(x) 6= f(xd) .

In our case we express discontinuity by a threshold with

|f(xd)− f(xd + δ)| > ε, δ, ε > 0 .

Numerical experiments indicate that δ = 10−6 and ε = 0.5 are appropriate values.
Choosing a relatively large value for ε is reasonable, given that the functions, cur-
rently known for being the best controllers for Witsenhausen’s counterexample, have
step heights bigger than 0.5. This method is implemented as a grid search which results
in run times less than 0.001 seconds to detect the step positions.

For the integration two cases are handled differently. The first case considers the uncrit-
ical part of the cost functional, which means

J1(f) =

∫
k2fx(x) · (f(x)− x)2 dx .

As this expression just has to be evaluated once to determine J , we just choose a modified
scipy wrapper of the QUADPACK package. There we pass the determined positions of
discontinuity as breakpoints to ensure the right grid points are chosen. This leads to the
needed accuracy.

The more critical integral expression is

Df (y) =

∫
fν(y − f(x))fx(x) dx ,

which is also part of the integral expressing J2, the second part of the cost functional.
For this reason, the expression is evaluated hundreds of times just to determine the cost
value once. Therefore, the evaluation of this integral is done on the GPU. This is done
by using the Python package PyTorch. PyTorch is primarily known in the Machine
Learning and Deep Learning community, where it is widely used and for this reason,
offers extensive tools for developing, training and evaluating such networks. Moreover,
it provides a flexible and efficient way to access the GPU enabling us fast numerical
computations in a familiar environment. [26]

36

Since no package offers an integration method that allows us to specify the breakpoints
for PyTorch, we created an own implementation. This is also done by using a quadrature
rule. In our case, we use the Gauß-Legendre Quadrature as basis method. Therefore,
the weights are used from the scipy library and then transferred to the GPU using the
PyTorch implementation. Then, the interval, the integration is performed on, is divided
into subintervals with length 1. Moreover, those intervals are divided at the step positions
determined before. For those intervals the weights and nodes are obtained. Afterwards,
the multidimensional node array is flattened to be able to evaluate the function in one
dimension at once on the GPU. Doing this, we minimize the GPU overhead occurring
because of the data transfer between CPU and GPU. After evaluating the function, the
results are reshaped back to the old shape. Then, we are able to perform the needed
matrix multiplications on GPU and gain the value of the integral.

5.5.2. Gaining Borders for the Integrals
In the previous sections, we assumed how to get areas [u, `] that can be considered
instead of solving improper integrals. In practice, this assumption works, and there are
ways to justify it.

If we have a look on the cost function J , we get

J(f, g) = E
[
k2(x− f(x))2

]
+ E

[
(f(x)− g(f(x) + ν))2

]
.

As the random variables x and ν have Gaussian distribution, we know there are probabil-
ity densities fx and fν . Since E[x] = E[ν] = 0, these densities are strictly monotonously
decreasing on (0,∞) respectively strictly monotonously increasing on (−∞, 0). There-
fore, we can find [`x, ux] and [`ν , uν] such that

fx(`x) < εx, fx(ux) < εx,

fν(`ν) < εν , fν(uν) < εν .

In Section 5.3, we chose an upper boundary εmax for the local error. It seems logi-
cal that we have to integrate at least above an area [u, `] such that fν(u) < εmax and
fν(`) < εmax. On the other hand, we have to consider that fν(u) > machine epsilon,
fν(`) > machine epsilon as otherwise the results can become arbitrary. Using this, we
can find intervals wherein u as well as ` should be found. In this work, the described
procedure is applied in every case where improper integrals representing estimation val-
ues based on a Gaussian distribution arise, in order to determine appropriate integration
boundaries. An exception is made when the resulting boundaries do not cover the inter-
val [−50,50][−50,50]; in such cases, this interval is used instead.

5.5.3. Results in Performance and Precision
To have a look on the performance as well as the precision gained by using this method,
two examples discussed in the original article by Witsenhausen will be discussed. There-
fore, we define the default benchmark, whereby σ = 5 and k = 0.2.

37

First of all, we want to look on the optimal affine solution he chose in his article. For
an affine function

fa(x) = λx, λ > 0

he derived that the cost function can be expressed for the optimal chosen g∗a by

J(fa, g
∗
a) = k2σ2(1− λ)2 +

λ2σ2

1 + λ2σ2

[29]. Choosing λ arbitrary with 0.158 and estimating the expression for the given bench-
mark in Maple with up to 16 digits, we get 1.0932383673419124. Using the algorithm
described before using εmax = 10−15, we get 1.0932383673419135 which yields a precision
of 14 digits.

Moreover, we want to consider the function, Witsenhausen used to proof there is a better
solution than the affine one. This function is given by

f(x) = σ sgn(x)

[29]. As there is just an upper bound for the cost functional J for this f , we have to
consider the results from another paper to compare our results. We take the results from
the paper of Lee et al. [19]. They gained the value 0.404253198895. As this value just
contains 13 digits, we will choose εmax = 10−14. This yields 0.4042531988953495, which
is exactly the same up to the 13-th digit.

In Figure 5.2 the ratio of the needed compute time and the reached absolute error is
shown. As to see, the algorithm always reaches the needed accuracy in a time less than
10 seconds. For accuracies below 10−8 the compute time is less than a second. All
tests were performed on an office computer with an Intel® Core™ i7-14700 CPU and a
NVIDIA GeForce GTX 1650 GPU.

−6−8−10−12−14−16

0

5

10

Absolute error [log10]

co
m

pu
tin

g
tim

e
[s]

Scaling on affine f

−6−8−10−12

0

5

10

Absolute error [log10]

co
m

pu
tin

g
tim

e
[s]

Scaling on Witsenhausen’s f

Figure 5.2.: Performance of the algorithm obtained

38

Part II.

Optimization using Variational
Analysis

39

6. Introduction to Variational Analysis

We want to build an optimization method based on variational analysis. Therefore, in
this Chapter, the needed theory is introduced. The theory is illustrated at the well
known example of the Brachistochrone.

6.1. The Quarrel of two Brothers or
The Problem of the Brachistochrone
The title of this section may sound a little sensational. Well, on the one hand, there is
this quarrel between the brothers Johann and Jakob Bernoulli, but on the other hand,
this quarrel gave rise to one of the first problems of the calculus of variations.

The family history of the two brothers did not start out so combative. Both brothers
shared a talent for and love of mathematics, as well as the fate of being forbidden by
their father to study mathematics. Jakob, who studied philosophy and theology but
secretly attended mathematics lectures, taught his little brother Johann and set him

A

B

Figure 6.1.: Searching the way the ball
needs the lowest amount of time

mathematical challenges. Even if they
shared the same fate and together they
found a way to deal with it, the broth-
ers became rivals. To show the world his
mathematical brilliance, Johann Bernoulli
in 1696 published the Brachistochrone
Problem knowing, he may solve it and
prompts the most brilliant mathemati-
cians in the world to solve it. The problem
asks the question which way a ball has to
choose in a vertical plane to get from a
position A to a position B just by using
the force of gravity. [12]

After some time, several mathematicians have responded to the publication and found
the optimal solution using various ways. We want to focus on the way Johann Bernoulli
published. As the concept of calculus of variations was invented in the 18th century,
Bernoulli chose a different way based on Fermat’s principle.

40

6.1.1. Mathematization of the Problem
Before we may solve the problem, we have to find a way to express the given question
in a mathematical way. We know from the Pythagorean theorem that

∆s =
√
∆x2 +∆y2

= ∆x

√
1 +

(
∆y

∆x

)2

, ∆x 6= 0 , (6.1)

whereby ∆s is the change in the distance, ∆x the change in the x-coordinate and ∆y the
change in the y-coordinate. To keep things easy, the friction is ignored and the starting
point is chosen as A = (0, 0). Then, the law of conservation of energy tells us

m · g · y + 1

2
m · v2 = const ,

whereby m is the mass of the ball, g the gravitational force, y < 0 the y-coordinate and
v the current speed of the ball. As we chose the ball to start in A = (0, 0), we get

m · g · y + 1

2
m · v2 = 0

in this position. Using this and the definition of speed, we get

v =
√

2g
√
−y =

∆s

∆t

⇔∆t =
∆s√

2g
√
−y

. (6.2)

Inserting the results from equation (6.1) into equation (6.2), we obtain

∆t =
1√
2g

∆x

√
1 +

(
∆y
∆x

)2
√
−y

.

For ∆t→ 0, we get
∆y

∆x
→ y′ .

Doing many little steps i ∈ I with the step widths ∆xi, ∆yi, we get in the limit

T (y) = lim
∆t→0

1√
2g

∑
i∈I

√
1 +

(
∆yi
∆xi

)2
√
−yi

∆xi =
1√
2g

∫ xB

0

√
1 + y′(x)2√
−y(x)

dx ,

for the time the ball needs to get from A = (0, 0) to B = (xB, yB). As we want to
minimize this time, we want to find a y∗ : R→ R such as

T (y∗) = min{T (y) | y : R→ R}

is fulfilled. (cf. [24])

41

6.1.2. Johann Bernoullis’ Solution - Not Knowing the Calculus of Variations
As mentioned, Bernoullis’ idea is based on Fermats’ principle. The principle says that
light does not take the shortest way from one position to another but the way it takes
the light least time. Today, such a method would be called discretization of the solution.

x

y

x0 x1 x2 x3 x4

y0

y1

y2

y3

y4

A

B

vi

vi+1

Layer i

Layer i+ 1

∆yi

∆xi

αi

αi+1

Figure 6.2.: Fermat’s principle used by Johann Bernoulli, like in [24]

As to see in Figure 6.2, there are several layers yi, i = 0, . . . , N where the light is
refracted and reaches another transmission medium vi+1 with another speed of light
ci+1, i = 1, . . . , N . The light now takes the refraction angle that minimizes the time
needed.

To keep the notation simple, we have a look on the light going from a point Ã to a point B̃
through a point X that has to be chosen as it minimizes the time to reach B̃. Above X the

v1 = c1

v2 = c2

Ã

B̃

a

b

d

x d− x
α1

α2

Figure 6.3.: Situation to choose X,
like in [24]

speed of the light is given by c1, below by c2. If
the distances are given like in Figure 6.3, we get
for the covered distance in the upper medium

s1 =
√

x2 + a2

and for the covered distance in the lower medium

s2 =
√
(d− x)2 + b2 .

Knowing the speed of the light in each medium, we
get the time to get from Ã to B̃ by evaluating

f(x) =

√
x2 + a2

c1
+

√
(d− x)2 + b2

c2
.

To get the optimal point X∗, we have to minimize f , which leads us to a common

42

optimization problem, we may solve. We get

0 = f ′(x) =
1

c1
· 2x

2
√
x2 + a2

− 1

c2
· 2(d− x)

2
√
(d− x)2 + b2

=
1

c1
· x
s1
− 1

c2
· d− x

s2

=
sin(α1)

c1
− sin(α2)

c2
.

This relation may be written as
sin(α1)

sin(α2)
=

c1
c2

. (6.3)

As f ′′(x) > 0 is valid for all x, solving this, leads to a global minimum.

We may apply this concept to the layers y0, . . . , yN . As we started in the point A = (0, 0),
the speed in the i-th medium is given by

ci =
√

2g
√
−yi .

Inserting this into Equation (6.3), we get

sin(αi)

sin(αi+1)
=

√
−yi√
−yi+1

.

For sin(αi) we may also write

sin(αi) =
∆xi√

∆x2i +∆y2i

=
1√

1 +
(

∆yi
∆xi

)2
which leads us to

√
−yi√
−yi+1

=

√
1 +

(
∆yi+1

∆xi+1

)2
√
1 +

(
∆yi
∆xi

)2
⇔
√
−yi+1

√
1 +

(
∆yi+1

∆xi+1

)2

=
√
−yi

√
1 +

(
∆yi
∆xi

)2

.

As the right side just depends on variables in i+ 1 and the left side just on variables in
i, we know that

√
−yi

√
1 +

(
∆yi
∆xi

)2

= const > 0, ∀i = 1, . . . , N .

43

x

y

f

∆x

∆y

α

(a) Relation slope – tangens

x

y

A

B

(b) Optimal Brachistochrone

Figure 6.4.: Illustration of the described theory

For N →∞, respectively ∆xi → 0, ∆yi → 0, we get

const =
√
−y(x)

√
1 + y′(x)2 := C > 0, ∀x > 0

⇔y(x)
[
1 + y′(x)2

]
= −C2 =: −2r ,

which is an ordinary differential equation. (cf. [24, pp. 26 – 28])

The solution of this differential equation may be gained in its parametric shape. First,
for an easier notation, we write K = −2r and get

y
[
1 + y′2

]
= −2r = K .

As it is known and also illustrated again in Figure 6.4 (a), the slope may be written as

y′ = tan(α) .

As tan(α) = cot(90− α) with ϕ = 90− α, we may also write

y′ = cot(ϕ) .

Moreover, we know
1 + cot2(ϕ) =

1

sin2(ϕ)
,

which leads us to

y
[
1 + y′2

]
= K ⇔y

[
1 + cot2(ϕ)

]
= K

⇔y

[
1

sin2(ϕ)

]
= K

⇔y = K sin2(ϕ) .

44

By differentiating this expression, we get

y′ = 2K sin(ϕ) cos(ϕ)ϕ′

⇔ cot(ϕ) = 2K sin(ϕ) cos(ϕ)ϕ′ .

As sin(x) cos(x) = cot(x) sin2(x), this is equivalent to

cot(ϕ) = 2K cot(ϕ) sin2(ϕ)ϕ′

⇔ 1 = 2K sin2(ϕ)
dϕ

dx
.

Moreover, we know that sin2(x) = 1
2 −

1
2 cos(2x), which brings us to

dx = 2K

[
1

2
− 1

2
cos(2ϕ)

]
dϕ

= K [1− cos(2ϕ)] dϕ .

We may integrate both sides and get∫
1dx =

∫
K [1− cos(2ϕ)] dϕ

⇔ x+ C1 = K

[
ϕ− 1

2
sin(2ϕ)

]
+ C2

⇔ x = K

[
ϕ− 1

2
sin(2ϕ)

]
+ C

and therefore
x(ϕ) = K

[
ϕ− 1

2
sin(2ϕ)

]
+ C .

As we start in A = (0, 0), we know that x(0) = 0 and therefore C = 0. Now, using the
definition of y and knowing that sin2(x) = 1

2 −
1
2 cos(x), we get

y = K sin2(ϕ)

= K(
1

2
− 1

2
cos(2ϕ)) =

K

2
(1− cos(2ϕ)) .

Defining t = 2ϕ and using K = −2r, we have

x = K(ϕ− 1

2
sin(2ϕ))

=
K

2
(2ϕ− sin(2ϕ) =

K

2
(t− sin(t))

= −r(t− sin(t))

and

y =
K

2
(1− cos(2ϕ))

=
K

2
(1− cos(t)) = −r(1− cos(t)) .

45

Therefore, the optimal solution in its parametric shape is given by

x(t) = −r(t− sin(t)), y(t) = −r(1− cos(t)) .

Letting the ball run into the positive x direction, leads to the more intuitive way

x(t) = r(t− sin(t)), y(t) = −r(1− cos(t)) ,

which is shown in Figure 6.4 (b). For t ∈ [0, T] the T > 0 and the r > 0 must be chosen
as as (x(T), y(T)) = B. Hereby, r represents the radius of the cycloid. [30, pp. 385
–387]

The solution chosen by Johann Bernoulli seems very elegant. But it requires many steps,
and the method cannot be applied to many problems. This is the reason why a general
way to handle the optimization of functionals is needed and was invented a few years
later. We will get to know this general way and then come back to the brachistochrone
problem.

6.2. Theory on using Variational Analysis for Optimization
In this section, the theory needed to understand how to optimize a functional using
variational analysis is introduced. Unless otherwise stated, the definitions, theorems
and proofs follow those in the book of Hansjörg Kielhöfer’s [18]. To keep things short,
explicit citations will be provided only for deviations or additional references not found
in this source.

6.2.1. Basic Theory on Variational Analysis
We want to focus on functionals of the shape

J(f) =

∫ b

a
L(x, f, f ′) dx , (6.4)

whereby
L : [a, b]× R× R→ R

is the Lagrangian function and assumed to be continuous on [a, b]× R× R. The shape
of the functional J may be used to cover the cost function, appearing in Witsenhausen’s
counterexample, later.

We have to assume a few things. Let J : D ⊂ X → R be a functional and X a normed
vector space. Moreover, we assume that for f ∈ D and for η ∈ X fixed also y+ hη ∈ D,
whereby h ∈ (−ε, ε) ⊂ R. Last, we define g : (ε, ε)→ R as g(h) = J(f + hη).
Definition 6.2.1 (Gâteaux Differentiability)
A functional J is Gâteaux differentiable in y ∈ D in direction η ∈ X if the expression

g′(0) =
d

dh
J(f + hη)

∣∣∣
h=0

= lim
h→0

J(f + hη)− J(f)

h

46

exists in R. The derivative g′(0) is called dJ(f, η).

Knowing Gâteaux differentiability, we are now able to define the first variation. A
separate definition is necessary as the linearity of dJ is not mandatory.
Definition 6.2.2 (First Variation)
If dJ(f, η) exists in R for f ∈ D ⊂ X, η ∈ X and dJ(f, η) is linear in η, dJ(f, η) is
called first variation. In this case, we write

dJ(f, η) = δJ(f)η.

If this is valid for all η ∈ X0 ⊂ X, whereby X0 is a subvector space of X, the mapping

δJ(f) : X0 → R

is a linear functional.

As we know the first variation, we are now able to define the functional derivative.
Definition 6.2.3 (Functional Derivative)

If a functional δJ
δf fits the condition

dJ(f, η) =

∫ b

a

δJ(f)

δf(x)
(x)η(x) dx ,

it is called the functional derivative of J in f . [11]

We will now obtain an important theorem that will help us to explicitly determine the
first variation of a functional. But before, we need to define function sets and norms to
work on them.
Definition 6.2.4
In the following, we use the terms

Cpw[a, b] = {f | f : [a, b]→ R, f ∈ C[xi−1, xi], i = 1, . . . ,m},
C1,pw[a, b] = {f | f ∈ C1[xi−1, xi], i = 1, . . . ,m}, a = x0 < x1 < · · · < xm = b,

C1,pw
0 [a, b] = {f ∈ C1,pw[a, b] | f(a) = 0, f(b) = 0} ,

with a = x0 < x1 < · · · < xm = b.

Remark 6.2.1
Attentive readers may have recognized, that the definition of the function space Cpw[a, b]
is mathematically not completely precise. If a mapping f ∈ Cpw[a, b] has a jump at one
of the positions xi, i = 1, . . . ,m, f does not define a function. To keep things simple,
we ignore this fact, as it does not affect the further work.

47

Definition 6.2.5
From now on, for the norms we use the terms

‖f‖0 = ‖f‖0,[a,b] = max
x∈[a,b]

|f(x)|, f ∈ C0[a, b]

‖f‖1 = ‖f‖1,[a,b] = ‖f‖0,[a,b] + ‖f ′‖0,[a,b], f ∈ C1[a, b]

‖f‖1,pw = f‖1,pw,[a,b] = ‖f‖0,[a,b] + max
i∈{1,...,m}

{‖f ′‖0,[xi−1,xi]}, f ∈ C1,pw[a, b] .

Theorem 6.2.1
Let the functional

J(f) =

∫ b

a
L(x, f, f ′) dx

be defined on D ⊂ C1,pw[a, b]. Moreover, we assume that the Lagrangian function L is
continuous on [a, b]×R×R and partially differentiable in f and f ′. For all η ∈ C1,pw

0 [a, b]
and y ∈ D we assume that f + hη ∈ D for h ∈ (−ε, ε) ⊂ R which may depend on η.
Then, for all f ∈ D and all η ∈ C1,pw

0 [a, b] the Gâteaux derivative exists and is given by

δJ(f)η =

∫ b

a
Lf (x, f, f

′)η + Lf ′(x, f, f ′)η′ dx ,

where Lf , Lf ′ name the partial derivatives.

Proof : To proof the statement, we first have to assume that

lim
h→0

L(x, f + hη, f ′ + hη′)− L(x, f, f ′)

h

converges uniformly against the derivative. We will proof that assumption later. First, we want
to determine against what the expression converges. To do this, we may write it as

m(h) = (L ◦ g)(h)

with L : R3 → R and g : R → R3, g(h) = (x, f(x) + hη(x), f ′(x) + hη′(x)). This enables us to
write the limit as

d

dh
m(h)

∣∣
h=0

= m′(0) .

The multidimensional chain rule tells us that the derivative is given by the matrix product

m′(h) = JL◦g(h) = JL(L(g(h))) · Jg(h)

[10, p. 304]. With ∂i as the partial derivative with respect to the i-th component and gi as the
i-th component of the function g, we may determine the Jacobians as

JL◦g(h) = (∂1L(g(h)), ∂2L(g(h)), ∂3L(g(h)))

Jg(h) = (g′1(h), g
′
2(h), g

′
3(h))

>
= (0, η(x), η′(x))

>
.

48

This leads us to

m′(0) = ∂1L(g(h)) · 0 + ∂2L(g(h)) · η(x) + ∂3L(g(h)) · η′(x)
= Lf (x, f(x), f

′(x))η(x) + Lf ′(x, f(x), f ′(x))η′(x).

Considering our assumption that this limit converges uniformly, we are allowed to swap the order
of integration and determining the limit [10, p. 67] and obtain

lim
h→0

J(f + hη)− J(f)

h
= lim

h→0

m∑
i=1

∫ xi

xi−1

1

h

(
L(x, f(x) + hη(x), f ′(x) + hη′(x))

− L(x, f(x), f ′(x))
)
dx

=

m∑
i=1

∫ xi

xi−1

lim
h→0

1

h

(
L(x, f(x) + hη(x), f ′(x) + hη′(x))

− L(x, f(x), f ′(x))
)
dx

=

m∑
i=1

∫ xi

xi−1

Lf (x, f(x), f
′(x))η(x) + Lf ′(x, f(x), f ′(x))η′(x) dx

=

∫ b

a

Lf (x, f(x), f
′(x))η(x) + Lf ′(x, f(x), f ′(x))η′(x) dx .

To show that the term really converges uniformly we look at the expression where the limit is
applied and a clever zero is added, which leads to

1

h
[L(x,f + hη, f ′ + hη′)− L(x, f, f ′)] (6.5)

=
1

h

∫ h

0

d

ds
[L(x, f + sη, f ′ + sη′)− L(x, f, f ′)] ds

=
1

h

∫ h

0

Lf (x, f + sη, f ′ + sη′)η(x) + Lf ′(x, f + sη, f ′ + sη′)η′(x) ds

=
1

h

∫ h

0

Lf (x, f + sη, f ′ + sη′)η(x) + Lf ′(x, f + sη, f ′ + sη′)η′(x) ds

+ Lf (x, f, f
′)η(x) + Lf ′(x, f, f ′)η′(x)

− 1

h

∫ h

0

Lf (x, f, f
′)η(x) + Lf ′(x, f, f ′)η′(x) ds η(x)

= Lf (x, f, f
′)η(x) + Lf ′(x, f, f ′)η′(x)

+
1

h

∫ h

0

Lf (x, f + sη, f ′ + sη′)− Lf (x, f, f
′) ds η(x) (6.6)

+
1

h

∫ h

0

Lf ′(x, f + sη, f ′ + sη′)− Lf ′(x, f, f ′) ds η′(x) .

As we consider h → 0, we may restrict s to the interval
[
− ε

2 ,
ε
2

]
. As [xi−1, xi] is compact,

f, η, f ′, η′ continuous and therefore also their linear combinations, we may conclude, using the
Extreme Value Theorem [14, p. 226], that these linear combinations are limited and therefore

f(x) + sη(x) ∈ [−c, c],

f ′(x) + sη′(x) ∈ [−c′, c′], s ∈
[
−ε

2
,
ε

2

]
, x ∈ [xi−1, xi], i = 1, . . . ,m,

49

with c, c′ ∈ R+. Using this, we may obtain{
(x, f(x) + sη(x), f ′(x) + sη′(x)

∣∣∣x ∈ [xi−1, xi], s ∈
[
−ε

2
,
ε

2

]}
⊂ [xi−1, xi]× [−c, c]× [−c′, c′] .

As this area is compact, we may conclude from the continuity of LF and Lf ′ that they are
uniformly continuous as well. This leads us, for x ∈ [xi−1, xi] and ε̃ > 0, to the estimation

|Lf (x, f(x) + sη(x), f ′(x) + sη′(x))− Lf (x, f(x), f
′(x))| < ε̃

if

i) |s|(|η(x)|+ |η′(x)|) < δ(ε̃)

ii) |s| < ε
2

are valid. Using the norm, we can say

|η(x)|+ |η′(x)| ≤ ‖η‖0,[xi−1,xi] + ‖η
′‖0,[xi−1,xi] ≤ ‖η‖1,pw,[a,b] = ‖η‖1,pw.

The conditions i) and ii) are fulfilled, if |s| < min
{

ε
2 ,

δ(ε̃)
|η(x)|+|η′(x)|

}
and therefore especially when

|s| < min

{
ε

2
,

δ(ε̃)

‖η‖1,pw

}
.

As the same estimation is valid for Lf ′ , this leads us to an estimation for Equation (6.6). We
obtain

1

h
[L(x,f(x) + hη(x), f ′(x) + hη(x)′)− L(x, f(x), f ′(x))]

= Lf (x, f(x), f
′(x))η(x) + Lf ′(x, f(x), f ′(x))η′(x)

+
1

h

∫ h

0

Lf (x, f(x) + sη(x), f ′(x) + sη′(x))− Lf (x, f(x), f
′(x)) ds η(x)

+
1

h

∫ h

0

Lf ′(x, f(x) + sη(x), f ′(x) + sη′(x))− Lf ′(x, f(x), f ′(x)) ds η′(x)

≤ Lf (x, f(x), f
′(x))η(x) + Lf ′(x, f(x), f ′(x))η′(x)

+
1

h

∫ t

0

ε̃ds η(x) +
1

h

∫ t

0

ε̃ ds η′(x)

= Lf (x, f, f
′)η(x) + Lf ′(x, f, f ′)η′(x) + ε̃(η(x) + η′(x))

for 0 < h < min
{

ε
2 ,

δ(ε̃
‖h‖1,pw

}
. Using the definition of Equation (6.6), we get∣∣∣ 1

h
(L(x, f(x) + hη(x), f ′(x) + hη′(x))− L(x, f(x), f ′(x)))

− (Lf (x, f(x), f
′(x))η(x) + Lf ′(x, f(x), f ′(x))η′(x))

∣∣∣
≤ ε̃(η(x) + η′(x)) ≤ ε̃‖η‖1,pw < ε̂ ∈ R+

for 0 < ε̃ < ε̂
‖η‖1,pw

. This fits the definition of the uniformly convergence, which means, that

lim
t→0

(
1

t
(L(x, f(x) + hη(x), f ′(x) + hη′(x))− L(x, f(x), f ′(x)))

)
= Lf (x, f(x), f

′(x))η(x) + Ff ′(x, f(x), f ′(x))η′(x), x ∈ [xi−1, xi], i = 1, . . . ,m

converges uniformly. Therefore, the assumption from the beginning of the proof is valid.

50

6.2.2. The Euler-Lagrange Equation
As we have introduced the basic idea of variational analysis, we want to use it to de-
termine criteria for extrema of a functional. One main result is the Euler-Lagrange-
Equation. The criterion to search for an extremum is based on it. In the beginning of
this subsection, we will give a definition on how we expect an extremum of a functional
to look like and then look for criteria.

We now want to define the local minimum of a functional.
Definition 6.2.6 (Local Minimizer of a Functional)
A function f ∈ D ⊂ C1,pw[a, b] represents a local minimizer of a functional J, if

J(f) ≤ J(f̃), ∀f̃ ∈ Dwith ‖f − f̃‖1,pw < d,

with d > 0 fixed.

To see the analogy to classical optimization problems on functions in R, we include
another result from a lecture of Annette A’Campo-Neuen [2].
Theorem 6.2.2
Let J : D → R, D ⊂ C1,pw[a, b], be a functional which is Gâteaux differentiable on

complete D. If f ∈ D is a local minimizer or a local maximizer the equation

dJ(f, η) = 0

must be valid for all η ∈ C1
0 [a, b].

Proof : We may fix f ∈ D, η ∈ C1
0 [a, b]. Then, we just have to look at the function g : (−ε, ε)→

R from the introduction. This leads us to

dJ(f, η) = 0⇔ g′(0) = 0.

g′(x0) = 0 exactly fits the necessary condition for a local extremum of g in x0 = 0.

As solving the equation dJ(f, η) = 0 for an infinite number of functions η is no option,
we have to look for an alternative criterion. This will guide us to the Euler-Lagrange-
Equation.

To be able to proof the Euler-Lagrange-Equation, we first need a couple of auxiliary
results.
Lemma 6.2.1
Let f ∈ Cpw[a, b]. If it is valid that

∫ b

a
f(x)η(x) dx = 0 (6.7)

51

for all η ∈ C∞
0 [a, b], we may conclude that f(x) = 0 for all x ∈ [a, b].

Proof : We assume that there is a function f ∈ Cpw[a, b], f(x) 6= 0 for a specific x ∈ [a, b], that
fits Equation (6.7). Because of the continuity of f , there is an open interval I with

f(x) 6= 0, ∀x ∈ I.

Now, we choose η ∈ Cpw
0 [a, b], as it fits supp(f) ⊂ I and

sgn(f(x)) = sgn(η(x)), ∀x ∈ supp(f) ,

whereby
supp(f) = {x ∈ [a, b] | f(x) 6= 0}.

Assuming this, we know
f(x)η(x) ≥ 0, ∀x ∈ [a, b]

and f(x)η(x) continuous. Equation (6.7) then implies that f(x)η(x) = 0 on [a, b]. This is a
contradiction as we assumed that there are x ∈ I wherefore η(x) 6= 0 and f(x) 6= 0.

Lemma 6.2.2
Let f ∈ Cpw[a, b]. If the equation∫ b

a
f(x)η′(x) dx = 0

is fulfilled for all η ∈ C1,pw
0 [a, b], we may conclude that f(x) = c, c ∈ R for all x ∈ [a, b].

Proof : We choose the c ∈ R as

c =
1

b− a

∫ b

a

f(x) dx =
1

b− a

m∑
i=1

∫ xi

xi−1

f(x) dx

and

η(x) =

∫ x

a

(f(s)− c) ds.

Then, we know that η ∈ C[a, b], η(a) = η(b) = 0 and

η′(x) = f(x)− c ,

whereby on the borders the one sided derivatives have to be used. This implies that η ∈ C1
0 [a, b].

Using the assumption from this Lemma, it must be valid that∫ b

a

(f(x)− c)η′(x) dx =

∫ b

a

f(x)η′(x) dx− c

∫ b

a

η′(x) dx

= 0− c (η(b)− η(a)) = 0 .

Then, we know that ∫ b

a

(f(x)− c)η′(x) dx =

∫ b

a

f(x)η′(x) dx .

52

Using the way we constructed our η, we obtain∫ b

a

f(x)η′(x) dx =

∫ b

a

(f(x)− c)η′(x) dx =

∫ b

a

(f(x)− c)(f(x)− c) dx

=

∫ b

a

(f(x)− c)2 dx =

m∑
i=1

∫ xi

xi−1

(f(x)− c)2 dx .

This shows that f(x) = c ∈ R for x ∈ [a, b].

Lemma 6.2.3 (Fundamental Lemma of Calculus of Variations)
Let f, g ∈ Cpw[a, b]. If now∫ b

a
f(x)η(x) + g(x)η′(x) dx = 0

is valid for all η ∈ C1,pw
0 [a, b], we know g ∈ C1,pw[a, b] ⊂ C[a, b] and g′ = f piecewise.

Proof : We choose
F (x) =

∫ x

a

f(s) ds.

Then F ∈ C[a, b] and for x ∈ [xi−1, xi], i = 1, . . . ,m it is valid that

F ′(x) = f(x),

whereby the one sided derivatives have to be taken on the boundaries. Therefore, we know that
F ∈ C1[a, b]. Using partial integration, we obtain∫ b

a

f(x)η(x) dx =

∫ b

a

F ′(x)η(x) dx

= F (x)η(x)
∣∣∣b
a
−
∫ b

a

F (x)η′(x) dx

= (F (b)η(b)− F (a)η(a))−
∫ b

a

F (x)η′(x) dx

= 0−
∫ b

a

F (x)η′(x) dx

= −
∫ b

a

F (x)η′(x) dx , ∀η ∈ C1,pw
0 [a, b].

Then, it is true that∫ b

a

f(x)η(x) + g(x)η′(x) dx =

∫ b

a

f(x)η(x) dx+

∫ b

a

g(x)η′(x) dx

= −
∫ b

a

F (x)η′(x) dx+

∫ b

a

g(x)η′(x) dx

=

∫ b

a

(g(x)− F (x))η′(x) dx, ∀η ∈ C1,pw
0 [a, b].

53

As g ∈ Cpw[a, b] and therefore also g−F ∈ Cpw[a, b] we may apply Lemma 6.2.2 to this expression
and obtain

g(x)− F (x) = c⇔ g(x) = c+ F (x).

Per construction, we see that g ∈ C1,pw[a, b] and get

g′(x) = f(x)

piecewise.

Remark 6.2.2
The piecewise equality of f and g′ may be understood as that for f ∈ C[xi−1, xi] follows
that g′(x) = (x) for x ∈ [xi−1, xi], i = 1, . . . ,m.

Remark 6.2.3
Having a look on the proof of Lemma 6.2.3, we see that the statement g ∈ C1,pw[a, b] fol-
lows from the construction g′(x) = f(x). Therefore, if g, f ∈ C[a, b] and the assumption
is valid, we may conclude that g ∈ C1[a, b] and therefore g = f ′ on [a, b].

Using all these Lemmas, we are able to proof that the Euler-Lagrange-Equation is a
valid criterion for a function being a local minimizer or a local maximizer. We reach the
final result.

Before that, we have to assume that, for f ∈ D ⊂ C1,pw[a, b], the first variation δJ(f)η
exists for all η ∈ C1,pw

0 [a, b]. Then, we may conclude that for all η ∈ C1,pw
0 [a, b] and for

all h ∈ (−ε, ε), f + hη ∈ D, whereby ε > 0 might depend on η. This can be seen as the
first variation exists, wherefore J(f + hη) must be defined. As J : D → R, this is just
the case if f + hη ∈ D.
Theorem 6.2.3 (Euler-Lagrange Equation)
If f ∈ D ⊂ C1,pw[a, b] is a local minimizer for the functional defined in Equation 6.4

and the Lagrange equation L : [a, b]× R× R→ R is continuous as well as continuously
differentiable in the two last variables, we know

i) Lf ′(·, f, f ′) ∈ C1,pw[a, b]

ii) d

dx
Lf ′(·, f, f ′)− Lf (·, f, f ′) = 0 piecewise on [a, b].

For f ∈ C1[a, b], we get Lf ′(·, f, f ′) ∈ C1[a, b] and d
dxLf ′(·, f, f ′) − Lf (·, f, f ′) = 0 on

[a, b].

Proof : For sufficiently small h > 0, it must be valid that

‖hη‖ < d, h ∈ (−ε, ε), d > 0 .

If f is a local minimizer, the function

g(t) = J(f + tη), t ∈ R

54

must have a local minima in t = 0 for all η ∈ C1,pw
0 [a, b]. As shown in Theorem 6.2.1, the

Gâteaux-differential exists and as seen in the proof of Theorem 6.2.2,

g′(0) = 0

must be valid. This leads us to

δJ(f)η =

∫ b

a

Lf (x, f, f
′)η(x) + Lf ′(x, f, f ′)η′(x) dx = 0, ∀η ∈ C1,pw

0 [a, b] .

Using Lemma 6.2.3 we conclude

d

dx
Lf ′(·, f, f ′) = Lf (·, f, f ′)

⇔ d

dx
Lf ′(·, f, f ′)− Lf (·, f, f ′) = 0 .

The lemma also says that Lf ′(·, f, f ′) ∈ C1,pw[a, b]. The statement that, for f ∈ C1[a, b],
g′(x) = f(x) for x ∈ [a, b], immediately follows from Remark 6.2.3.

6.2.3. Second Order Condition
In the previous subsection, we derived a necessary criterion to decide whether a point
may be a local minimum or maximum. As we are looking for local minimizers, we need
a second condition that ensures, we really obtained a local minimizer.

Before we define such a criterion, we need to obtain the second variation.
Definition 6.2.7 (Second variation)
Let the functional

J(f) =

∫ b

a
L(x, f, f ′) dx

be defined on D ⊂ C1,pw[a, b], whereby L is two times partially continuous differentiable
in f and f ′. If for all f ∈ D ⊂ C1,pw[a, b], η ∈ C1,pw

0 [a, b] and h ∈ (−ε, ε) the function
g(h) = J(f + hη) is defined, then

d2

dh2
g(h)

∣∣∣∣
h=0

= δ2J(f)(η, η)

is the second variation of J at f in direction η. For the given assumptions it is valid
that

δ2J(f)(η, η) =

∫ b

a
Lff (x, f, f

′)η(x)2 + 2Lff ′(x, f, f ′)η(x)η(x)′ + Lf ′f ′(x, f, f ′)η′(x)2 dx .

Proof : The interchangeability of taking the limit and determining the integral may be shown
as in Theorem 6.2.1. Therefore, this step is skipped. Knowing about this, we obtain, using the

55

multidimensional chain rule,

d2

dh2

∫ b

a

L(x, f + hη, f ′ + hη′) dx

∣∣∣∣∣
h=0

=

∫ b

a

d2

dh2
L(x, f + hη, f ′ + hη′) dx

∣∣∣∣∣
h=0

=

∫ b

a

d

dh
(Lf (x, f + hη, f ′ + hη′)η(x) + Lf ′(x, f + hη, f ′ + hη′)η′(x)) dx

∣∣∣∣
h=0

=

∫ b

a

Lff (x, f, f
′)η2(x) + Lff ′(x, f, f ′)η(x)η′(x)

+ Lff ′(x, f, f ′)η(x)η′(x) + Lf ′f ′(x, f, f ′)η′(x)2 dx

=

∫ b

a

Lff (x, f, f
′)η2(x) + 2Lff ′(x, f, f ′)η(x)η′(x) + Lf ′f ′(x, f, f ′)η′(x)2 dx .

Knowing the second variation, we are able to obtain a criterion to check whether an
extremum is a local maximum or a local minimum.
Theorem 6.2.4 (Second-Variation Condition)
If f ∈ D ⊂ C1,pw[a, b] is a local minimizer of a functional of the shape of Equation (6.4),
it must be valid that

δ2J(f) ≥ 0 ,

for all η ∈ C1,pw
0 [a, b]. [6, p. 226]

Proof : Using Taylor’s expansion around 0, we may write g(h) as

g(h) = J(f + hη)

= g(0) + hg′(0) +
h2

2
g′′(0) +O(h3) .

As we know g′(0) = 0 for a local extremum, we get

g(h)− g(0) =
h2

2
g′′(0) +O(h3) .

Then we know
lim
h→0

O(h3)

h2
= 0 .

Using the knowledge above the limit and assuming g′′(0) 6= 0, we get for sufficiently small h > 0∣∣∣∣O(h3)

h2

∣∣∣∣ < 1

2
|g′′(0)| ⇔ |O(h3)| < 1

2
h2|g′′(0)| .

Therefore, we know that the sign of g(h)− g(0) for sufficiently small h > 0 is given by

sgn (g(h)− g(0)) = sgn

(
h2

2
g′′(0) +O(h3)

)
= sgn (g′′(0)) .

56

6.3. Solving the Problem of the Brachistochrone using
Calculus of Variations

As we have introduced the calculus of variations in the previous section, we would like
to use it, to solve the problem of the brachistochrone. We will do this in this section. In
the first part, we will do this analytically in the second using a numerical way.

6.3.1. Analytical Solution
We saw in Theorem 6.2.3 that if a function minimizes a functional, it has to fit the
Euler-Lagrange-Equation, which is given by

0 = Ly −
d

dx
Ly′ .

In section 6.1.1, we derived as the cost functional

J(f) =

∫ xB

0

1√
2 · g

√
1 + y′(x)2√
−y(x)

dx .

As this fits the shape of the cost functional in Equation 6.4, we know that in our problem
the Lagrangian function L is given by

L(x, y, y′) =
1√
2 · g

√
1 + y′(x)2√
−y(x)

.

Multiplying with y′ and adding a clever zero, we see that the Euler-Lagrange Equation
is equivalent to

0 = y′(Ly −
d

dx
Ly′) = y′Ly − y′

d

dx
Ly′

⇔0 = y′Ly + Ly′y
′′ − Ly′y

′′ − y′
d

dx
Ly′ .

As multidimensional chain rule tells us that

d

dx
L = Ly · y′ + Ly′ · y′′

and we know
d

dx
Ly′ · y′ = y′

d

dx
Ly′ + y′′Ly′ ,

from the product rule, we may write the expression as

0 = y′Ly + Ly′y
′′ − Ly′y

′′ − y′
d

dx
Ly′

⇔0 =
d

dx

(
L− Ly′ · y′

)
.

57

Therefore,
L− Ly′y

′ = const =: C̃ .

Inserting the definition of L, we get

C̃ =
1√
2 · g

[√
1 + y′2√
−y

− y′2√
1 + y′2

√
−y

]

⇔C :=
√

2 · g · C̃ =

√
1 + y′2√
−y

− y′2√
1 + y′2

√
−y

⇔C ·
√
−y ·

√
1 + y′2 = (1 + y′2)− y′2 = 1 .

This leads us to
√
−y
√
1 + y′2 =

1

C
⇔ −y(1 + y′2) =

1

C2
=: 2r

and we get the differential equation

−y(x) · (1 + y′(x)2) = 2r ⇔ y(x)(1 + y′(x)2) = −2r .

This is the same equation we derived in section 1 and had the parametric solution

x(t) = r(1− sin(t)), y(t) = −r(1− cos(t)) ,

we already know. [30, pp. 384 – 386]

This solution is much shorter than the solution Bernoulli chose. Moreover, it is gained
by just solving the conditions we obtained from the calculus of variations.

6.3.2. Numerical Solution
We saw in the analytical solution that solving the differential equation we obtained by
solving the Euler-Lagrange equation is not trivial to solve and we have to switch to a
parametric solution. Instead of doing this, we have a look on solving it numerically.
Different to other papers like [3] or [22], that focused on directly minimizing the cost
functional, we want to just look on the Euler-Lagrange-Equation, which, as you may
see, simplifies the task.

x

y

Figure 6.5.: Chosen CS

Before we may solve the Euler-Lagrange Equation, we as-
sume a few things. We assume that our coordinate system
looks like shown in Figure 6.5. Doing this, the cost func-
tional, we derived in the beginning, changes to

T (y) =
1√
2g

∫ xB

0

√
1 + y′(x)2√

y(x)
dx .

58

As 1√
2g

just scales the term, we may ignore it to find an optimal solution. To obtain
the Euler-Lagrange Equation, we have to identify the L from the cost functional. In our
case we have

L(x, y, y′) =

√
1 + y′(x)2√

y(x)
.

This leads to the Euler-Lagrange Equation

EL(L, y, y′, x) =
d

dx
Lf ′(x, y, y′)− Ly(x, y, y

′) = 0

⇔ d

dx

(
y′(x)√

y′(x)2 + 1 ·
√
y(x)

)
+

√
y′(x)2 + 1

2 · (y(x))
3
2

= 0

⇔ y′(x)2 + 2 · y′′(x)y(x) + 1

2 ((y′(x)2 + 1)y(x))
3
2

= 0 .

We may simplify this to

y′(x)2 + 2 · y′′(x)y(x) + 1 = 0 ,

which is the equation we have to solve. As the expression has to be zero for all x ∈ [0, xB],
we have to approximate the solution in N > 0 positions. Let the positions, where we
approximate, be given by

0 = x1 < x2 < · · · < xN = xB .

We name the approximation of the minimizing function

y(xi) = yi, i = 0, . . . , N ,

whereby y0 = 0, yN = yB. In order for some terms to cancel out, we choose for the
approximation of the first derivative the forward difference quotient

y′i =
yi+1 − yi

h

and for the second derivative the central difference quotient

y′′i =
yi+1 − 2yi + yi−1

h2
.

As mentioned, several terms cancel out and we get the approximation of our Euler-
Lagrange Equation in a position xi with

h2 − 3y2i + 2yiyi−1 + y2i+1

h2
= 0

⇔h2 − 3y2i + 2yiyi−1 + y2i+1 = 0 .

As we know y0 and yN and do not have to determine them, we may obtain a nonlinear
equation system by

h2 − 3y2i + 2yiyi−1 + y2i+1 = 0, ∀i ∈ {1, . . . , N − 1} .

In our case, the system of equations is solved using the Python library Scipy and in
particular using a function that uses the Krylov approximation for the inverse Jacobian

59

Figure 6.6.: Approximated Brachistochrone,
dashed: exact, solid: approximated

used in the function. This method
suits the size of the system of equa-
tions and the case that we have a kind
of tridiagonal shape.

Looking on the results, we first con-
sider the problem, with

(xA, yA) = (0, 0), (xB, yB) = (2,−1) .

Solving the equation system for N =
100, we get the results in Figure 6.6,
whereby the dashed line is the exact
solution and the solid line is the ap-
proximated function. For N = 100
the maximum residuum is 0.0225191.
As to see in Figure 6.7 the approximation also works for different (xB, yB).

Figure 6.7.: Approximated Brachistochrones, dashed: exact, solid: approximation

60

7. A Variational Perspective on
Witsenhausen’s Counterexample

After introducing variational analysis in the previous sections and applying it on the
well known example from Bernoulli, we will come back to the real world problem, we
want to solve. In this section, we may see that Witsenhausen’s counterexample may be
seen as a typical problem from variational analysis.

7.1. From Variational Analysis to a numerical Criterion
Before we may use variational analysis to obtain an approximation for the optimal
function, we need to show that Witsenhausen’s counterexample may be seen as a problem
in variational analysis. When this is done, we will start to derive a criterion, we may
evaluate numerically.

7.1.1. Showing, Witsenhausen’s Counterexample may be handled using
Variational Analysis

First, we show that Witsenhausen’s counterexample may be seen as part of problems
from variational analysis. Therefore, we first look on the original problem, stated in the
60s of the last millennium.

Before we do this, we introduce a new notation. From now on

Ez1,z2,...[·]

means the expected value of · for the random variables z1, z2, This notation is used,
as in this chapter, not necessarily all random variables, are meant by an expected value.
Remark 7.1.1
For the random variables x ∼ N (0, σ2), ν ∼ N (0, 1) and k > 0, the cost functional
derived by Witsenhausen is given by

J(f, g) = Ex,ν [k
2(f(x)− x)2 + (f(x)− g(f(x) + ν))2] .

Knowing for a fixed f the optimal g∗f , we obtain the cost functional by

J(f) = Ex,ν [k
2(f(x)− x)2 + (f(x)− g∗f (f(x) + ν))2] .

61

One may ask, how this may be seen as a shape of a functional seen in the theory of
variational analysis. The following lemma will help us to derive such a form.
Lemma 7.1.1 (Witsenhausen’s cost Functional fits needs for Variational Analysis)
For bounded f and g, the cost functional

J(f, g) = Ex,ν [k
2(f(x)− x)2 + (f(x)− g(f(x) + ν))2]

introduced by Witsenhausen, may be approximated up to a precision ε > 0 by

J̃(f, g) =

∫ xu(ε)

xl(ε)
fx(x)

(
k2(f(x)− x)2 + Eν [(f(x)− g(f(x) + ν))2]

)
dx ,

whereby xl(ε), xu(ε) determine the needed borders such as |J̃(f) − J(f)| < ε and fx
means the density of the random variable x.

Proof : As x ∼ N (0, σ2), with density fx, we know

J(f, g) =

∫ +∞

−∞
fx(x)

(
k2(f(x)− x)2 + Eν [(f(x)− g(f(x) + ν))2]

)
dx .

Moreover, from the properties of the normal distribution, we may conclude that lim|x|→∞ fx(x) =
0. Using the properties of the integral, we get

J(f, g) =

∫ +∞

−∞
fx(x)

(
k2(f(x)− x)2 + Eν [(f(x)− g(f(x) + ν))2]

)
dx

=

∫ xu(ε)

xl(ε)

fx(x)
(
k2(f(x)− x)2 + Eν [(f(x)− g(f(x) + ν))2]

)
dx

+

∫ +∞

xu(ε)

fx(x)
(
k2(f(x)− x)2 + Eν [(f(x)− g(f(x) + ν))2]

)
dx

+

∫ xl(ε)

−∞
fx(x)

(
k2(f(x)− x)2 + Eν [(f(x)− g(f(x) + ν))2]

)
dx

⇔ J(f, g)− J̃(f, g) =

∫ +∞

xu(ε)

fx(x)
(
k2(f(x)− x)2 + Eν [(f(x)− g(f(x) + ν))2]

)
dx

+

∫ xl(ε)

−∞
fx(x)

(
k2(f(x)− x)2 + Eν [(f(x)− g(f(x) + ν))2]

)
dx

=: ER(xl(ε), xu(ε)) .

As f and g are chosen as sufficiently bounded and we saw that fx tends to zero in the limit, we
may see, that we find xl(ε) and xu(ε) such as∣∣∣∣∣

∫ +∞

xu(ε)

fx(x)
(
k2(f(x)− x)2 + Eν [(f(x)− g(f(x) + ν))2]

)
dx

∣∣∣∣∣ < ε

2∣∣∣∣∣
∫ xl(ε)

−∞
fx(x)

(
k2(f(x)− x)2 + Eν [(f(x)− g(f(x) + ν))2]

)
dx

∣∣∣∣∣ < ε

2
.

62

Therefore,
|ER(xl(ε), xu(ε))| < 2 · ε

2
= ε .

Knowing this Lemma, we may derive the form needed, by using the properties of the
conditional expectation.
Theorem 7.1.1
For bounded f , the cost functional J may be approximated up to a precision ε > 0 by

J̃(f) =

∫ xu(ε)

xl(ε)
fx(x)

(
k2(f(x)− x)2 + Eν [(f(x)− g∗f (f(x) + ν))2]

)
dx ,

with fx density of x and xl(ε), xu(ε) the chosen integral boundaries as the needed
precision is achieved.

Proof : For f and g chosen as they are bounded, we already know from Lemma 7.1.1, that
we may get an approximation with an error smaller than a given ε > 0. Now, we just have a
bounded f and determine the g∗f given on the f . Therefore, we have to show that our g∗f is
bounded on the interval [xl(ε), xu(ε)]. We know that g∗f is given by

g∗f (y) = Ex,ν [f(x) | f(x) + ν = y] .

As our f is bounded, we know that
‖f‖∞ <∞ .

Using that for X ∈ Lp for p ∈ [1,∞] also E[X|G] ∈ Lp, for G sub σ-algebra of the before used
σ-algebra [32], we get

Ex,ν [f(x) | f(x) + ν] ∈ L∞ ,

which means g∗f is bounded and therefore, we may apply Lemma 7.1.1.

7.1.2. Deriving a numerical Criterion for local Minimizers
Based on the results from the last section, we want to derive a criterion for a local
minimizer in the case of Witsenhausen’s counterexample.

As we saw that the given cost functional may be handled using variational analysis, we
use the Euler-Lagrange equation as a necessary criterion for a local minimizer. Therefore,
we first extract the Lagrangian function.
Remark 7.1.2
In Witsenhausen’s counterexample, the Lagrangian function is given by

L(x, f, f ′) = fx(x)
(
k2(f(x)− x)2 + Eν [(f(x)− g(f(x) + ν))2]

)
.

63

As in the end the expected value in our Lagrangian is given by an improper integral, we
again have to find a way to handle it.
Remark 7.1.3
We may write the expected value as an integral with

Eν [(f(x)− g(f(x) + ν))2] =

∫ +∞

−∞
fν(ν)(f(x)− g(f(x) + ν))2 dν ,

whereby fν is the density of ν. Knowing lim|ν|→∞ fν(ν) = 0 and f as well as g∗f is
bounded, we see that we may find boundaries νl(ε) and νu(ε) such as∣∣∣∣∣Eν [(f(x)− g(f(x) + ν))2]−

∫ νo(ε)

νl(ε)
fν(ν)(f(x)− g(f(x) + ν))2 dν

∣∣∣∣∣ < ε .

As we now have boundaries, we can approximate the integral expression using Gauss-
Legendre quadrature. Let wi be the Gauss-Legendre weights and νi the supporting
points, each scaled to the integration area [νl(ε), νo(ε)], then we get as an approximation
for n steps

L̃(x, f, f ′) = fx(x)

(
k2(f(x)− x)2 +

n∑
i=1

wifν(νi)(f(x)− g(f(x) + νi))
2

)

that we may use in further steps. We choose the n as the approximation fulfills the
precision ε̃ ≥ ε, such as ∣∣∣L(x, f, f ′)− L̃(x, f, f ′)

∣∣∣ ≤ ε̃ .

Having the results from the prior remarks, we are able to define a approximative criterion
for local minimizers.
Theorem 7.1.2 (Approximated Criterion for local Minimizers)
If a function f that is bounded is a local minimizer, it has to fulfill the condition

k2(f(x)−x)+

(
n∑

i=1

fν(νi)wi(g
′(f(x) + νi)− 1)(g(f(x) + νi)− f(x))

)
= 0, ∀x ∈ [xl(ε), xu(ε)]

up to a precision ε̂.

Proof : In Remark 7.1.3, we have seen, we may approximate the Euler-Lagrange equation for
Witsenhausen’s counterexample properly by

fx(x)

(
k2(x− f(x))2 +

n∑
i=1

wifν(νi)(f(x)− g(f(x) + νi))
2

)
.

As this term does not depend on f ′ and we have a sum instead of an integral, deriving the approx-
imated Euler-Lagrange equation from this term becomes much easier. Partially differentiating

64

for f(x) leads to

2fx(x)

(
−k2(x− f(x)) +

(
n∑

i=1

fν(νi)wi(g
′(f(x) + νi)− 1)(g(f(x) + νi)− f(x))

))
.

Therefore, we get for the approximated Euler-Lagrange equation with

0 =
d

dx
L̃f ′(·, f, f ′)− L̃f (·, f, f ′)

⇔ 0 = −2fx(x)

(
−k2(x− f(x)) +

(
n∑

i=1

fν(νi)wi(g
′(f(x) + νi)− 1)(g(f(x) + νi)− f(x))

))

⇔ 0 = k2(f(x)− x) +

n∑
i=1

(fν(νi)wi(g
′(f(x) + νi)− 1)(g(f(x) + νi)− f(x))) . (7.1)

As the error for the derivative may become bigger than ε, we have to allow an deviation from
the Euler-Lagrange equation with ε̂ > ε.

In the following sections, for a given function f , the approximated Euler-Lagrange value
from Equation 7.1 at position x will be called EL(f, x). Further, for fixed f we call

max |EL| := max
x∈R
|EL(f, x)| .

7.2. Euler-Lagrange Values of known Attempts to the
Counterexample

Before we might look on new attempts to minimize the cost functional, we want to have
a look on previous results and if they fulfill the criterion gained from variational analysis.
We will look on three well known attempts and focus on the well known benchmark,
wherein

σ = 5, k = 0.2 .

7.2.1. Witsenhausen’s Attempt

Figure 7.1.: EL for Witsenhausen’s f

The function pointed out in Witsenhausen’s
counterexample is given as

fW (x) = σ · sgn(x)

and reached a cost value of 0.4042. Looking
on the Euler-Lagrange value for this function,
we get a maximum absolute value of 0.9999 in
the interval [−30, 30]. The resulting plot may
be seen in Figure 7.1. In the plot it is easy to
see that an increasing absolute x value leads
to an increasing Euler-Lagrange value as well.

65

7.2.2. Deng’s and Ho’s Attempt

Figure 7.2.: EL for Deng’s and Ho’s f

In 1995 Deng and Ho published a paper
wherein they obtained a 2-step function given
by

fDH(x) =


−9.048 x < −6.41
−3.168 −6.41 ≤ x < 0

3.168 0 ≤ x < 6.41

9.048 x ≥ 6.41

which reached a cost value of 0.19011.
The maximum absolute value for the Euler-
Lagrange value is given by 0.9539 which means a light improvement to the function
given by Witsenhausen. It may be seen in Figure 7.2 that for increasing absolute x
the Euler-Lagrange value increases slower, which is an explanation for the improved
Euler-Lagrange value in the given interval.

7.2.3. 3.5-step function from Lau’s, Lee’s and Ho’s attempt

Figure 7.3.: EL for 3.5-step function

In 2001 Lau, Lee and Ho published a paper,
where they added segments and slopes to given
step functions. In this paper they obtained the
best result initially using a 3.5-step function,
which is given by

fLLH(x) =


0 0 ≤ |x| < 3.25

sgn(x) · 6.5 3.25 ≤ |x| < 9.9

sgn(x) · 13.2 9.9 ≤ |x| < 16.65

sgn(x) · 19.9 16.65 ≤ |x|

and results in a cost value of 0.1713. Again also the maximum absolute Euler-Lagrange
value decreases to now 0.9486 in the interval [−30, 30], which may be seen in Figure 7.3.

In the end, we may say that approaches obtaining a lower value for the cost functional
also obtain lower absolute values for the Euler-Lagrange equation. But we can also see
that none of the functions looked at, resulted in a Euler-Lagrange equation near zero on
the interval considered.

1Determined by Monte Carlo simulation with standard deviation 0.01

66

8. Applying Variational Methods to
Witsenhausen’s Counterexample

We have seen that the problem stated by Witsenhausen may be seen as a problem from
variational analysis. Moreover, we know the Euler-Lagrange value is a criterion that can
be used to determine, whether a function can might be a local minima or not. We want
to use this criterion and obtain a method using it.

In this chapter, we will introduce the method and focus on the benchmarking case
wherefore σ = 5 and k = 0.2.

8.1. Concept for a Methodology based on Variational Analysis
As we saw in the previous section, it seems like the Euler-Lagrange value of a function
has an impact on the value of the cost functional. Therefore, it seems reasonable to
build a function out of basis functions for which the Euler-Lagrange value is zero.

This means two steps for us to perform:

1. Define an initial function and make it fit the Euler-Lagrange equation (from now
on we will call this process rooting).

2. Stack multiple of those rooted basis function beyond each other to determine our
final function.

Before we consider the method to apply, we remind one result Witsenhausen pointed
out in his publication.
Remark 8.1.1
We know from previous chapters that for the well known problem, pointed out, exists
an optimal solution f∗, for which it is valid, that

Ex[f
∗(x)] = 0 .

This remark and knowing, previous papers most of the time yielded even functions, lead
us to the assumption that the function we are looking for also is even. For this reason,
we just consider even functions and just optimize the functions for x ≥ 0, which as a
side effect speeds up the calculation immensely.

67

bh · h1

bw · w1

bh · h2

bw · w2

bh · h3

bw · w3

Figure 8.1.: Construction of optimized step function

Having the main idea and just optimizing for x ≥ 0, our function, gained by stacking
the basis functions might look like in Figure 8.1. There, we see the basis function (even
if the functions in the Figure do not fit the Euler-Lagrange equation) in green, red and
blue. Those step like basis function are scaled in x- and y-direction to minimize the
cost functional and then stacked beyond each other, as the end point of the i-th basis
function is the first of the (i+ 1)-th basis function.

We generalize our idea. We assume our basis function has width bw and height bh. To
perform an optimization on the cost value from Witsenhausen’s publication, we add
parameters to each basis function. This means, the i-th stacked basis function is scaled
by wi in the x- and hi in the y-direction. Moreover, we have to add an displacement
to each basis function as the first value of the added basis function has to be the last
of the previous (or zero in the case the stacked function is the first). Therefore, the
x-displacement dix and the y-displacement diy are chosen with

dix =
i−1∑
j=1

wi · bw, d1x = 0

diy =
i−1∑
j=1

hi · bh, d1y = 0 .

In the sections following, we will now focus on how to determine such a basis function

68

and then stack it using different algorithms.

8.2. Gaining a Basis Function by Rooting a 2-step Function
In this section, we obtain a basis function by rooting a 2-step function and extracting
one step.

Figure 8.2.: Initial 2-step function

Therefore, we first define a 2-step func-
tion, as to see in Figure 8.2. We initially
choose step width 5 and step height 8, as
the form of the steps is relevant, not the
width or height. As this shape does not fit
the Euler-Lagrange equation, we have to
root it. Therefore, we perform two steps.

1. Fix two points (marked in purple)
in each jump discontinuity and root
the function.

2. Root function without fixed points.

This means in step one the chosen method
tries to reach

EL(fi, xi) = 0, xi ∈ {x1, . . . , xn}\{xk1 , xk2 , . . . , xk2j}, 0 ≤ x1 < x2 < · · · < xn ≤ xu(ε) ,

whereby the fi are the f -values, we want to root, the xi the grid positions, we want the
fi to optimize on and the xkj the j fixed positions we chose before. The grid is chosen,
as a desired step width is approximately fit and still all the fixed positions are hit. In
the second step, we then optimize on all grid positions, as we want our method to find
fi as

EL(fi, xi) = 0, xi ∈ {x1, . . . , xn}, 0 ≤ x1 < x2 < · · · < xn ≤ xu(ε) .

In the first iteration, the points have to be fixed, as otherwise the solution did not
converge against a step function. The result from step one may be seen in Figure 8.3,
where also the reached Euler-Lagrange values may be seen. As to see in the plot, this still
leads to wiggles in the approximated function. Performing step two, solves the problem,
keeps the 2-step form and leads to Euler-Lagrange values near zero, what might be seen
in Figure 8.3 (b).

The extracted step may be seen in Figure 8.4. We will use the extracted step further.
Moreover, in the plot might be seen that differently to the previous initial step function
the rooted function now is strictly monotonously increasing, which is condition for a
function minimizing the cost functional, like it was shown in [31] and mentioned before.
In the next sections, we will use this basis function to obtain a function minimizing the
cost functional pointed out.

69

Figure 8.3.: Optimization steps performed

(a) Optimized with fixed points (b) Optimized without fixed points

Figure 8.4.: Extracted step from 2-step function

8.3. Combine Basis Functions using scipy Built-Ins
In the first attempt, we perform the optimization of the parameters

wi, hi, i = 1, . . . , n

for n stacked basis functions by just using scipy built-ins.

Therefore, we perform two steps:

70

1. Optimization using differential evolution

2. Optimization using BFGS

Figure 8.5.: Functions and Euler-Lagrange values obtained by scipy built-ins

Steps max |EL| J

1 0.0919 0.20534669
2 0.0936 0.16771291
3 0.4610 0.16733274
4 1.3919 0.16734572
5 0.8361 0.16729103
6 2.4673 0.16720541

Table 8.1.: Values reached by
scipy built-ins

In the first step, it is assumed that

wi, hi ∈ [0, 2], i = 1, . . . , n ,

which leads to the boundaries for the differential
evolution search for the optimum. After deriving
the parameters from step one, they are used for
further optimization in step two by using BFGS.
As mentioned, the implementations of those meth-
ods are taken from the well known Python library
scipy.

The obtained functions and their corresponding
Euler-Lagranges values may be seen in Figure 8.5.
Moreover we report the achieved cost values and the maximum absolute Euler-Lagrange
value over the interval the stacked basis functions were optimized. Those values are
shown in Table 8.4.

Even when the achieved cost value 0.16714 outperforms any result published before
2001, for more than 3 stacked basis functions the maximum absolute value of the Euler-
Lagrange equation increases drastically. Moreover, we observe in this case the appear-
ance of one particularly flat step that does not fit to the pattern of the others. This
seems to be caused by the chosen optimization method, which makes it necessary to
choose another.

71

8.4. Combine Basis Functions using a Grid Search Method
As we saw in the previous section, another method is necessary to optimize the stacking
of the basis functions. This method will be presented in this section, along with the
results.

Grid search itself may be called an inefficient method of finding a global minimum.
Even with 4 stacked basis functions, each with two parameters, and considering 5 pos-
sible values for each parameter, there are 390, 625 parameter combinations to consider.
Performing the evaluations with a precision of 10−6 one operation takes about 0.74846
seconds. For 390, 625 combinations this leads to a compute time of about 81.21 hours
just for the first iteration in the grid search.

The parameters obtained using scipy built-in methods are listed in Table 8.2. Ignoring
the flat steps, the values appear to lie within the interval [0.95, 1.7]. Furthermore, step

No. wopt
1 wopt

2 wopt
3 wopt

4 hopt1 hopt2 hopt3 hopt4

1 1.0709 1.0641
2 0.9996 0.9607 0.9938 1.0188
3 0.9923 1.0202 1.5423 0.9966 1.0240 1.0069
4 0.9871 1.0496 1.5898 1.7522 0.9977 1.0347 1.1845 0.2606

Table 8.2.: Scaling factors obtained with scipy built-ins

height and width tend to increase or at least do not decrease significantly with increasing
x. This observations lead us to the assumption that

wopt
i+1 − wopt

i ≥ −0.15 ,
hopti+1 − hopti ≥ −0.15 , i = 1, . . . , n .

Moreover, we assume the best parameters to fulfill

wopt
i , hopti ∈ [0.7, 1.7], i = 1, . . . , n .

Using [0.5, 0.75] as the area to search each parameter in and the first assumption as
a filter criterion, we may reduce the number of combinations that has to be tested
immensely. As this in the second iteration of the grid search leads to a huge number of
possible combinations (for 5 stacked basis functions there are 702, 240 combinations to
consider) and further restrictions do not seem to deteriorate the result, the selection of
considered combinations is restricted to the assumptions

wopt
i+1 − wopt

i ≥ 0 ,

hopti+1 − hopti ≥ 0 , i = 1, . . . , n

72

and

wopt
i , hopti ∈ [0.5, 1.5], i = 1, . . . , n .

Using this more restricted assumptions as filter, in the first grid search iteration, we get
for 1 to 5 stacked basis functions the number of considered combinations listed in Ta-
ble 8.3. Beside the grid search, the before introduced scipy built-in methods are used in

No. Before After

1 25 25
2 625 225
3 15625 1225
4 390625 4900
5 9765625 15876

Table 8.3.: No. combinations before/af-
ter filtering

additional optimization steps. This leads to a
3-step optimization method performing:

1. Optimization using grid search.

2. Optimization using differential evolu-
tion.

3. Optimization using BFGS.

The resulting grid search algorithm is de-
scribed in the Nassi-Shneiderman diagram in
Figure 8.6. We perform the optimization using
both the less as well as the more restricted filters. Due to the

Figure 8.6.: Nassi-Shneiderman diagram for the grid search algorithm

needed compute time for the less restricted parameters, the optimization is just per-
formed for n = 1, . . . , 4 stacked basis functions. For the more restricted parameter set,
the optimization is performed for n = 1, . . . , 5 stacked basis functions.

As to see in Table 8.4, the reached values for the Euler-Lagrange value as well as

73

Steps max |EL| J

1 0.0915 0.20535737
2 0.0904 0.16759650
3 0.0898 0.16714794
4 0.2686 0.16713079
5 – –

(a) Grid search less restricted

Steps max |EL| J

1 0.0919 0.20534150
2 0.0889 0.16758893
3 0.0880 0.16713560
4 0.2227 0.16713515
5 0.5846 0.16713460

(b) Grid search more restricted

Table 8.4.: Values reached by grid search in different parameter configurations

the cost value are nearly similar for both parameter restrictions. Moreover, the best
reached value 0.16713079 outperforms any value determined before and in 2001 [19].

Author Year J

Tseng et al. [28] 2017 0.166897
Mehmetoglu et al. [21] 2014 0.16692291

Karlsson et al. [17] 2011 0.16692462
Li et al. [20] 2009 0.1670790

Value just presented 2025 0.16713079
Lee et al. [19] 2001 0.167313205

Baglietto et al. [4] 2001 0.1701

Table 8.5.: Comparison to prior results

How the obtained value compares to more re-
cent results can be seen in Table 8.5. The cor-
responding plots for each parameter configura-
tion are presented in Figure 8.8 and Figure 8.7.

We see that the values obtained already reach
the top 5 of the values obtained before. We
also see that the Euler-Lagrange value de-
creases to 0.2686 in the case of the best cost
value reached. The Euler-Lagrange as well as
the value reached still should be reduced what
we will do in the sections following.

8.5. Refining Step Profiles through Smoothing Functions

−2 −1 1 2

−2

−1

1

2

x

y f
smoother

Figure 8.9.: Idea adding a smoother

In the previous Section, we stacked the basis
functions obtained before and already reached a
minimum cost value of 0.16713079 with a Euler-
Lagrange value of 0.2686. This values will be
reduced in this section.

In their publication Tseng et al. found parameter
configurations wherefore the optimal step shape
seems to be not an affine function but slightly
curved [28]. Especially for bigger values of k this
seems to happen. As the general shape for differ-
ent k seems to have similarities, this could be the
case for smaller k, too. This lead to the idea that
both named values might be minimized by adding
a smoothing function upon the step functions

74

Figure 8.7.: Functions and Euler-Lagrange values obtained by grid search (less restricted
parameter set)

Figure 8.8.: Functions and Euler-Lagrange values obtained by grid search (more re-
stricted parameter set)

75

determined before. As smoothing functions, we choose 11 different functions. Those
functions are listed in Equation 8.1 named as s1, . . . , s10 and shown in Figure 8.10,
whereby Φ names the distribution function of the normal distribution.

Again, we assume that the optimal function is even and for this reason just optimize for
x ≥ 0. To simplify the optimization we introduce two parameters for each step covered.
Therefore, for our smoothers si we just consider x ∈ [−1, 1] and x = 0 as the center of a
step plateau as it it shown in Figure 8.9. Then, we choose a parameter αj ∈ [−0.1, 0.1]
for the height of the added smoother and βj to cut just a part of the smoother to add it
on to the plateau. In formulas this may be written as

αj · si(βj · x), αj ∈ [−1, 1], βj ∈ [−0.1, 0.1], x ∈ [−1, 1] .

By just considering x ≥ 0, we run into the situation that the first plateau as well as

Figure 8.10.: Smoother functions s1, . . . , s9

the last is just a half plateau. This might be easier to understand looking on Figure 8.9
again. The first plateau is associated with the smoother in the interval [−1, 0] the last
with the interval [0, 1]. Therefore, we just consider x ∈ [−1, 0] respectively [0, 1] as input
for the smoothing functions for the first/last plateau.

76

Steps max |EL| J

2 0.0837 0.16741087
3 0.2181 0.16694973
4 1.3885 0.16694962
5 2.5931 0.16694900

(a) Smoother: s1

Steps max |EL| J

2 0.0838 0.16741097
3 0.1701 0.16695058
4 1.2070 0.16695070
5 2.6739 0.16694965

(b) Smoother: s2

Steps max |EL| J

2 0.0779 0.16741069
3 0.1612 0.16694980
4 1.2085 0.16694891
5 2.6405 0.16694818

(c) Smoother: s3

Steps max |EL| J

2 0.0775 0.16741090
3 0.1695 0.16694922
4 1.2082 0.16694872
5 2.6210 0.16694821

(d) Smoother: s4

Steps max |EL| J

2 0.0738 0.16741425
3 0.1730 0.16694937
4 1.2091 0.16695002
5 2.6387 0.16695053

(e) Smoother: s5

Steps max |EL| J

2 0.0779 0.16741070
3 0.1681 0.16694921
4 1.2071 0.16694892
5 2.6868 0.16694824

(f) Smoother: s6

Steps max |EL| J

2 0.0781 0.16741072
3 0.1717 0.16694920
4 1.2080 0.16694895
5 2.6471 0.16694828

(g) Smoother: s7

Steps max |EL| J

2 0.0781 0.16741077
3 0.1490 0.16695000
4 1.2076 0.16694884
5 2.6261 0.16694824

(h) Smoother: s8

Steps max |EL| J

2 0.0782 0.16740780
3 0.2153 0.16695086
4 1.2068 0.16694926
5 2.7474 0.16694826

(i) Smoother: s9

Steps max |EL| J

2 0.0780 0.16741067
3 0.1680 0.16694920
4 1.2073 0.16694905
5 2.6230 0.16694851

(j) Smoother: s10

Table 8.6.: Cost and Euler-Lagrange values reached by performing smoothing on previ-
ous known step function

77

s1(x) = Φ(0.5 · (x+ 1)) s2(x) = arctanh(x)

s3(x) = arctan(x) s4(x) =
1

1 + exp(−x)
− 0.5

s5(x) =
x

1 + |x|
s6(x) = tanh(x)

s7(x) = 3x2 − 2x3 − 0.5 s8(x) =
x√

1 + x2

s9(x) = log

(
x

1− x

)
s10(x) = arctan(x)− 0.05x

(8.1)

Those parameters αj , βj , j = 1, . . . , n have to be optimized for all n plateaus in a
function.

Figure 8.11.: Plots of functions obtained by using smoother s3

Author Year J

Tseng et al. [28] 2017 0.166897
Mehmetoglu et al. [21] 2014 0.16692291

Karlsson et al. [17] 2011 0.16692462
Value just presented 2025 0.16694818

Li et al. [20] 2009 0.1670790
Lee et al. [19] 2001 0.167313205

Baglietto et al. [4] 2001 0.1701

Table 8.7.: Comparison to prior results

This will be done by using scipy built-ins.
This means performing the steps:

1. Perform optimization using differen-
tial evolution.

2. Perform optimization using BFGS.

The results of the different smoothing func-
tions are listed in Table 8.6. It might be seen
that smoother s3 reaches the best cost value
with 0.16694818 for 5 stacked steps. This out-
performs the value gained in the previous sec-

78

tion and any value obtained before 2009 [20].
How this result performs compared to previous results is shown in Table 8.7. Moreover,
the functions obtained by using this smoother are shown in Figure 8.13.

Against the expectation, for the lower cost values the Euler-Lagrange values increased
for most of the compared values. Therefore, we extend the search idea from this section
and present it in the next.

8.6. Combining Search for Optimal Stacked Basis Functions
and Smoothing of the Step Functions

In the two previous sections, we used different optimization approaches:

1. First, we determined an optimal step function, by stacking basis steps.

2. Afterwards, we added a smoothing function onto those step functions.

As the optimal step function to smooth could be a different one than the optimal un-
smooth step function, we optimize step 1 and 2 at once. Therefore we perform:

1. Gain best stacking parameters as before.

2. Gain best smoothing parameters as before.

3. Vary gained parameters simultaneously.

For bopt, the optimal parameters for stacking the basis function and sopt, the optimal
parameters for smoothing the step function, we perform the variation of them using grid
search. Therefore, we choose the input ranges

bopt
i ± 0.08, sopt

i ± 0.08, bopt
i ∈ bopt, sopt

i ∈ sopt
i .

We perform this optimization for the smoothers s1 and s3. The results for both smoothers
are shown in Table 8.8 (a) and 8.8 (b). The plots in Figure 8.12 and 8.13.

Steps max |EL| J

1 0.0940 0.20510975
2 0.0779 0.16740211
3 0.0776 0.16692911
4 0.6999 0.16692930
5 12.3134 0.16692928

(a) Combinated search with s1

Steps max |EL| J

1 0.0884 0.20510987
2 0.0764 0.16740023
3 0.0763 0.16692968
4 0.7084 0.16692912
5 12.1954 0.16692859

(b) Combinated search with s3

Table 8.8.: Values reached by combinated optimization

79

Figure 8.12.: Plots of functions obtained by optimizing stacking and smoothing process
with s1

Figure 8.13.: Plots of functions obtained by optimizing stacking and smoothing process
with s3

80

The values gained using this optimization method, outperform the values we reached
using the prior method and yields for σ = 5, k = 0.2 the value 0.16692859. This
value reaches, as shown in Table 8.9, number 4 in the global ranking for the named

Author Year J

Tseng et al. [28] 2017 0.166897
Mehmetoglu et al. [21] 2014 0.16692291

Karlsson et al. [17] 2011 0.16692462
Value just presented 2025 0.16692859

Li et al. [20] 2009 0.1670790
Lee et al. [19] 2001 0.167313205

Baglietto et al. [4] 2001 0.1701

Table 8.9.: Comparison to prior results

benchmark. The difference to the currently
known best is given by around 3.159 · 10−5.

However, it is surprising that the Euler-
Lagrange value becomes � 0 for such good
results. Especially for more than 3 steps, it
seems like the 4-th step initiates a huge in-
crease of the value. This was not the case when
we were not using the smoothing functions.
Why this happens or if there are other irreg-
ularities regarding the Euler-Lagrange value
could be topic of further works.

8.7. Evaluating the Algorithm for different k

As it was done in [28] we want to consider different parameter combinations for σ, k.
We keep σ = 5 fixed and then vary k in the interval [0.1, 1.5]. We just focus on 3-step
functions.

(a) k = 0.1 (b) k = 0.3 (c) k = 0.4

(d) k = 0.5 (e) k = 0.7 (f) k = 0.9

Figure 8.14.: Reached functions for various k

The algorithm is applied as described in Section 8.6. This means, the basis functions
determined for k = 0.2 are chosen. Therefore the expected result is that the algorithm

81

performs better for k near 0.2. To be able to compare the results gained, we use the
values Tseng et al. reached in [28].

82

k Tseng et al. [28] Our result

0.1 0.052292 0.053621
0.2 0.166897 0.166928
0.3 0.314824 0.314867
0.4 0.477652 0.477801
0.5 0.640974 0.642165
0.7 0.916458 0.971008
0.9 0.961454 1.274045
1.5 0.961498 1.696058

Table 8.10.: Values reached for various k

The expected behavior occurs and in Ta-
ble 8.10 we see that for k > 0.7 the reached
value differs at least by 0.31 to the values
gained in [28]. On the other hand, the
algorithm for all tested k ∈ [0.1, 0.7] devi-
ates from the test values by a maximum
of 0.054542.

Similar to the results in [28], in our results
also the slope as well as the curvature of
the steps seems to increase with k increas-
ing, as to see in Figure 8.14.

83

9. Conclusion and Outlook

This master’s thesis focused on two major topics:

1. Obtaining an efficient method to evaluate the cost functional.

2. Obtaining a method optimizing functions to minimize the cost functional.

First, the method for evaluating the cost functional was developed. Therefore, in Chapter
5 a representation, based on the Fisher information, Witsenhausen developed, was used.
Therefore, first a adaptive method choosing the grid points was developed and adapted
into the method. Then, the integration was build especially for the given cost function.
The integrand was expressed using spline interpolation. As derivatives and integrations
that occur then can be expressed analytically, this reduces the computational effort.
To reduce compute time further, integral evaluations that have to be done thousands
of times for each cost evaluation, were ported onto the GPU. As for Witsenhausen’s
counterexample often step functions are used as controllers, the integration method
was improved for functions including discontinuities. This was realized by creating an
algorithm looking for discontinuities and considering them for the integration. As no
integration method for discontinuous functions was implemented for the used PyTorch
package, a specialized Gauss-Legendre integration method, running on the GPU was
created. Performing those steps, a method was gained, evaluating the cost functional in
less than a second for 8 decimal places. Moreover, the method performed for up to 15
decimal places for known benchmark values.

To perform the function optimization, first in Chapter 6 the needed theory on variational
analysis was introduced. Then, this theory was used in Chapter 7 to show that Witsen-
hausen’s counterexample is a problem from variational analysis. Moreover, a necessary
criterion for a local minimizer of the known cost functional was obtained. This criterion
was then adapted to become a numerical criterion that might be used in the numerical
optimization. Afterwards, in Chapter 8, this criterion was used to determine a step
shaped basis function, fulfilling the gained criterion. Then, those gained basis functions
were stacked to gain a n-step function. To perform an optimization of the stacking
parameters a grid search was implemented, applying a filter function on the considered
parameter combinations. Using this grid search method already results in the 5-th best
value known. Considering results from [28] lead to the idea to use smoother step func-
tion. Therefore, various functions were used to smooth the step function. Performing an
optimization of the stacked basis function and the added smoothers at once, lead to the
4-th best value known for the usual benchmark. At the same time, the reached value
just differs by around 3.212 · 10−5 to the currently known best value.

84

Finally, it might be said that a method was developed that is able to evaluate the cost
functional fast and up to a high precision. Moreover, an optimization method was gained
that reached the 4-th best value known, with a difference of around 3.159 · 10−5 to the
currently known best.

9.1. Outlook
The methods presented in this thesis have yielded promising results, but there is still
room for improvement and exploration of new approaches.

The first question which might be interesting to discuss is, why it is possible to improve
the reached cost value while the maximum deviation from the gained necessary criterion
increases. This was observed in Chapter 8 and does not fit into the expected behavior.
Here, one could also ask if the reached results could be improved, if the optimization
would reach a function, fulfilling the necessary criterion at all.

Moreover, the idea of adding the gained necessary criterion as a penalty term to other
optimization attempts could be considered. This could lead to better results, as the
gained functions should fit the necessary criterion and therefore could be local minimiz-
ers. This idea also overcomes the fixed basis functions and gives more flexibility to the
optimization.

Another idea, keeping the basis function idea, could be based on choosing smoothed
basis functions, as they fulfill the necessary criterion. This could address the problem
that adding the smoothers, sometimes leads to a massive increasing of the deviation
from the necessary criterion.

85

Bibliography

[1] Mei (May) Deng and Yu-Chi Ho. “An ordinal optimization approach to optimal
control problems”. In: Automatica (1999), pp. 331–338.

[2] Annette A’Campo-Neuen. Vorlesung: Differentialgleichungen. Universität Basel,
2020.

[3] John C. Vassberg Antony Jameson. “Studies of alternative numrtical optimization
methods applied to the brachistochrone problem”. In: (2000).

[4] M. Baglietto, T. Parisini, and R. Zoppoli. “Numerical solutions to the Witsen-
hausen counterexample by approximating networks”. In: IEEE Transactions on
Automatic Control (2001), pp. 1471–1477.

[5] Rajesh Bansal and Tamer Başar. “Stochastic teams with nonclassical information
revisited: When is an affine law optimal?” In: Automatic Control, IEEE Transac-
tions on (1987), pp. 554–559.

[6] Bruce van Brunt. The Calculus of Variations. Springer Verlag, 2004.
[7] Wei Cao et al. “On Nonparametric Estimation of the Fisher Information”. In: 2020

IEEE International Symposium on Information Theory (ISIT). 2020, pp. 2216–
2221.

[8] Pedro Comesaña, Fernando Pérez-González, and Chaouki T. Abdallah. “Witsen-
hausen’s Counterexample and Its Links with Multimedia Security Problems”. In:
Digital Forensics and Watermarking. Springer Berlin Heidelberg, 2012, pp. 479–
493.

[9] Cubic Spline Interpolation - Wikiversity. Accessed: 2025-06-03. url: https://en.
wikiversity.org/wiki/Cubic_Spline_Interpolation.

[10] Oliver Deiser. Analysis 2. Accessed: 2025-06-01. Online Publication, 2024. url:
https://www.aleph1.info/?call=Puc&permalink=analysis2.

[11] Reiner Dreizler and Eberhard Engel. Density Functional Theory: An Advanced
Course. Springer Verlag, 2011.

[12] “Ein Streit unter Brüdern führte zum wichtigsten Prinzip der Physik”. In: Spek-
trum: Die fabelhafte Welt der Mathematik (2024).

[13] Encyclopedia of Mathematics. Real analytic function. Accessed: 2025-08-11. url:
https://encyclopediaofmath.org/wiki/Real_analytic_function.

[14] Harro Heuser. Lehrbuch der Analysis: Teil 1. Vieweg+Teubner Verlag, 2003.
[15] Y.-C. Ho and J.T. Lee. “Granular optimization: An approach to function opti-

mization”. In: Proceedings of the 39th IEEE Conference on Decision and Control
(Cat. No.00CH37187). 2000, 103–111 vol.1.

[16] Investopedia. Nash Equilibrium. Accessed: 2025-08-13. 2025. url: https://www.
investopedia.com/terms/n/nash-equilibrium.asp.

86

https://en.wikiversity.org/wiki/Cubic_Spline_Interpolation
https://en.wikiversity.org/wiki/Cubic_Spline_Interpolation
https://www.aleph1.info/?call=Puc&permalink=analysis2
https://encyclopediaofmath.org/wiki/Real_analytic_function
https://www.investopedia.com/terms/n/nash-equilibrium.asp
https://www.investopedia.com/terms/n/nash-equilibrium.asp

[17] Johannes Karlsson et al. “Iterative source-channel coding approach to Witsen-
hausen’s counterexample”. In: Proceedings of the 2011 American Control Confer-
ence. 2011, pp. 5348–5353.

[18] Hansjörg Kielhöfer. Variationsrechnung: Eine Einführung in die Theorie einer
unabhängigen Variablen mit Beispielen und Aufgaben. Vieweg+Teubner Verlag,
2010.

[19] J.T. Lee, E. Lau, and Yu-Chi Ho. “The Witsenhausen counterexample: a hierarchi-
cal search approach for nonconvex optimization problems”. In: IEEE Transactions
on Automatic Control (2001), pp. 382–397.

[20] Na Li, Jason R. Marden, and Jeff S. Shamma. “Learning approaches to the Wit-
senhausen counterexample from a view of potential games”. In: Proceedings of the
48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th
Chinese Control Conference. 2009, pp. 157–162.

[21] Mustafa Mehmetoglu, Emrah Akyol, and Kenneth Rose. “A deterministic anneal-
ing approach to Witsenhausen’s counterexample”. In: 2014 IEEE International
Symposium on Information Theory. 2014, pp. 3032–3036.

[22] Aditya Mittal. “Numerical Solution to the Brachistochrone Problem”. In: (2008).
[23] Lothar. Papula. Mathematische Formelsammlung [E-Book] : für Ingenieure und

Naturwissenschaftler. Vieweg+Teubner Verlag / GWV Fachverlage GmbH, Wies-
baden, 2009.

[24] Hans Josef Pesch. Schlüsseltechnologie Mathematik: Einblicke in aktuelle Anwen-
dungen der Mathematik. Teubner Verlag, 2002.

[25] Hossein Pishro-Nik. Introduction to probability, statistics, and Random Processes.
Kappa Research, LLC, 2014.

[26] PyTorch. https : / / pytorch . org / projects / pytorch/. Accessed: 2025-08-06.
2025.

[27] scipy.interpolate.CubicSpline — SciPy v1.13.0 Manual. Accessed: 2025-06-03. url:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.
CubicSpline.html.

[28] Shih-Hao. Tseng and Ao Tang. “A Local Search Algorithm for the Witsenhausen’s
Counterexample”. In: 2017 IEEE 56th Annual Conference on Decision and Control
(CDC) (2017), pp. 5014–5019.

[29] Hans S. Witsenhausen. “A counterexample in stochastic optimum control”. In:
SIAM Journal on Control and Optimization (1968), pp. 131–147.

[30] Martin Wohlgemuth, ed. Mathematisch für fortgeschrittene Anfänger. Weitere be-
liebte Beiträge von Matroids Matheplanet. Spektrum Verlag Heidelberg, 2010.

[31] Yihong Wu and Sergio Verdú. “Witsenhausen’s counterexample: A view from op-
timal transport theory”. In: (2011), pp. 5732–5737.

[32] Gordan Žitković. Lecture Notes on: Theory of Probability I. accessed: 2025-06-18).
2023. url: https://web.ma.utexas.edu/users/gordanz/notes/conditional%
5C_expectation.pdf.

87

https://pytorch.org/projects/pytorch/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html
https://web.ma.utexas.edu/users/gordanz/notes/conditional%5C_expectation.pdf
https://web.ma.utexas.edu/users/gordanz/notes/conditional%5C_expectation.pdf

	Introduction, Relevance and Methodology
	Relevance
	Methodology

	Introduction to the Counterexample and Computation of the Cost Value
	Introduction and theoretical Results
	Introduction and Mathematization of the Problem
	Theoretical Results
	Existence of an optimal Solution
	Determining the optimal g* for fixed f
	Computation Rule of the Second Part of the Cost Functional
	Monotonicity of the optimal Function

	Witsenhausen's Counterexample
	Deriving the best affine Solution
	Two-point distributed Variables
	Witsenhausen's Counterexample

	Historical Results
	Gaining a 2-step Function: Results from Deng and Ho dengho1999
	Gaining a 3.5-step Function: Results from Li et al. limardenetal
	Gaining a Sloped 4-step Function: Results from Karlsson et al. karlssonetall
	Gaining a Curved Step Function: Results from Tseng and Tang Tseng2017

	Implementation of the Cost Functional
	Implementation of the Cost Function
	Principle of Approximating the Integrand
	Adaptive Choice of Grid Points
	Determining the Integral needed
	Implementation Details
	Approximating Integrals for possibly non-smooth Functions
	Gaining Borders for the Integrals
	Results in Performance and Precision

	Optimization using Variational Analysis
	Introduction to Variational Analysis
	The Quarrel of two Brothers or The Problem of the Brachistochrone
	Mathematization of the Problem
	Johann Bernoullis' Solution - Not Knowing the Calculus of Variations

	Theory on using Variational Analysis for Optimization
	Basic Theory on Variational Analysis
	The Euler-Lagrange Equation
	Second Order Condition

	Solving the Problem of the Brachistochrone using Calculus of Variations
	Analytical Solution
	Numerical Solution

	A Variational Perspective on Witsenhausen’s Counterexample
	From Variational Analysis to a numerical Criterion
	Showing, Witsenhausen's Counterexample may be handled using Variational Analysis
	Deriving a numerical Criterion for local Minimizers

	Euler-Lagrange Values of known Attempts to the Counterexample
	Witsenhausen's Attempt
	Deng's and Ho's Attempt
	3.5-step Function from Lau's, Lee's and Ho's Attempt

	Applying Variational Methods to Witsenhausen’s Counterexample
	Concept for a Methodology based on Variational Analysis
	Gaining a Basis Function by Rooting a 2-step Function
	Combine Basis Functions using scipy Built-Ins
	Combine Basis Functions using a Grid Search Method
	Refining Step Profiles through Smoothing Functions
	Combining Search for Optimal Stacked Basis Functions and Smoothing of the Step Functions
	Evaluating the Algorithm for different k

	Conclusion and Outlook
	Outlook

