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CNS cancers are complex, difficult-to-treat malignancies that remain insufficiently understood and mostly incurable,
despite decades of research efforts. Artificial intelligence (AI) is poised to reshape neuro-oncological practice and
research, driving advances in medical image analysis, neuro—molecular-genetic characterisation, biomarker discovery,
therapeutic target identification, tailored management strategies, and neurorehabilitation. This Review examines key
opportunities and challenges associated with Al applications along the neuro-oncological care trajectory. We highlight
emerging trends in foundation models, biophysical modelling, synthetic data, and drug development and discuss
regulatory, operational, and ethical hurdles across data, translation, and implementation gaps. Near-term clinical
translation depends on scaling validated Al solutions for well defined clinical tasks. In contrast, more experimental
Al solutions offer broader potential but require technical refinement and resolution of data and regulatory challenges.
Addressing both general and neuro-oncology-specific issues is essential to unlock the full potential of AI and ensure
its responsible, effective, and needs-based integration into neuro-oncological practice.

Introduction

Primary CNS tumours are the second most common can-
cers in adolescents and young adults and the eighth most
common cancer in older adults.! Secondary CNS tumours—
ie, brain metastases—are the most common type of brain
tumour, affecting 10-26% of individuals who die from
cancer.? The associated burden on the health-care system is
substantial owing to the high morbidity and mortality
rates in affected individuals.'* Overall, CNS neoplasms
have a poor prognosis, as their unique and complex
pathomechanisms hinder the development of effective
therapies.

Advances in precision diagnostics and assessments,"**
therapeutic options,*® and translational neuroscience—
particularly the emerging field of cancer neuroscience’*—
have been accompanied, and, in part, enabled by remarkable
innovations in machine learning, including foundation
model-based applications.”™ A plethora of artificial intelli-
gence (Al) studies in neuro-oncology highlight the potential
of Al in assisting neuro-oncologists across the entire care
spectrum and providing scientific insights into the com-
plexities of CNS tumours (figure 1). However, the clinical
applicability of Al in neuro-oncology hinges on

Search strategy and selection criteria

understanding the specific capabilities and limitations of
every method, including where and how the methods can be
used (panel 1). In this Review, we discuss specific Al
applications across the neuro-oncological care trajectory—
from prevention to rehabilitation—along with associated
challenges and limitations, and the emerging opportunities
that have yet to permeate translational and clinical neuro-
oncology (for in-depth discussions of specific topics, see
resources listed in the appendix [p 3]).

Epidemiology and prevention

Primary CNS tumours have a global age-standardised inci-
dence rate of 4-63 per 100 000 person-years;'2 brain metas-
tases of common systemic cancers (lung, breast, prostate,
melanoma) occur with an estimated incidence of 9-17%.2
The prevention of primary brain tumours is exceptionally
difficult given the low numbers of actionable oncogenic
germline mutations."" Besides ionising radiation exposure
and rare hereditary syndromes, no other risk factors,
including smartphone use, have been conclusively identi-
fied." Nonetheless, the growing wealth of molecular data
from pan-cancer whole-genome sequencing studies,' along
with advances in modelling higher-order molecular

References for this Review were identified from searches of PubMed, ArXiv, and Google Scholar with predefined MeSH term-based search
phrases and terms, including “glioma”, “glioblastoma”, “machine learning”, “radiomics”, “foundation model”, and “omics”, from

Jan 1, 2020, to Dec 7, 2024. We built python wrappers around the PubMed and ArXiv APIs to automate retrieval of article title, abstract,
publication date, authors, affiliations, journal, number of citations, and DOI (appendix p 1). Due to legal restrictions on automated
retrieval from Google Scholar, the corresponding search was performed manually. English articles were screened for relevance based on
exclusion and inclusion criteria, defined separately for clinical and experimental studies (appendix pp 1-2). Due to the large number of
studies and reference constraints, preference was given to multicentre clinical studies with large patient cohorts, studies representative of
key emerging trends within medical artificial intelligence or neuro-oncology, and those published in high-impact journals. After two
rounds of screening, 275 publications were evaluated in depth. After the exclusion of 234 articles and manual addition of 11 articles of
high relevance, 52 original articles were included (figure 2). The distribution of papers per category is shown in figure 3. The current
literature is dominated by studies on clinical imaging and radiomics as well as deep learning and classic statistical methods, which are also
prominently used for omics studies; few studies have investigated niche modalities and advanced techniques (figure 3).
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interactions and inferring molecular traits from non-
invasive imaging biomarkers, suggests future Al use in
predicting clinico-molecular risk factors. For instance,
Al-based brain metastasis risk scores derived from bulk
RNA-seq data have revealed metastasis-associated epithelial
cells in primary lung adenocarcinoma as potential meta-
static origins. Given the high brain metastasis incidence
rates, similar risk stratification approaches might inform
screening and CNS prophylaxis strategies.

Early detection and diagnosis

Imaging-based diagnosis

MRI is routinely used to detect and assess disease type,
location, and extent via macrostructural anatomical infor-
mation provided by pre-contrast and post-contrast-
enhanced T1-weighted and T2-weighted MRI.! Structural
MRI-trained AI models have been used across all standard
preprocessing and diagnostic tasks, including denoising,
registration, artifact correction, tumour detection, seg-
mentation, classification, and grading.’>'* Al-assisted
diagnosis might reduce difficulties associated with the
detection of lesions of small size, heterogeneity, and
ambiguous clinical-radiographic presentation, mitigating
inter-rater variability and risks from invasive diagnostic
procedures.”® Multicentre studies recently showed that
deep learning-informed CNS tumour detection and
classification improves the classification accuracy and
volumetric assessment of neuroradiologists.'>'** However,
in most instances, performance is only shown in small,
homogeneous cohorts, and prospective, continuous, and
multicentre validation and consecutive translation into
clinical practice remain largely unmet needs.’ Although
most applications are developed for well delineated tasks
on a single imaging modality, models simultaneously
trained on multiple modalities or for multiple tasks are
increasingly emerging, with initial results suggesting non-
inferiority to unimodal models on selected neuro-oncological
tasks.”

Besides tumour type, grade, and extent visible on clinical
imaging, the molecular-genetic and metabolic profiles of
primary CNS tumours, brain metastases, and treatment-
related adverse effects profoundly affect management
strategy and prognosis,"' as reflected in the revised WHO
classification of tumours of the CNS published in 2021.*
Hence, Al-based translational inference of molecular
characteristics from structural neuroimaging data has gar-
nered considerable interest as a cost-effective, non-invasive
alternative to conventional tissue-based diagnosis.'®*?!
Radiomics (extraction of predefined quantitative medical
image descriptors), radiogenomics (radiomics-based
prediction of molecular traits), and, more recently, deep
learning (panel 1) have shown promise in predicting
clinically relevant genetic alterations (eg, isocitrate dehydro-
genase mutation and 1p/19q co-deletion) and epigenetic
profiles (eg, O°methylguanine-DNA methyltransferase
[MGMT] promoter methylation status) from structural and
diffusion-weighted MRIV2 and 6-'#F-fluoro-; -DOPA PET.2!

Although radiomics or learned features used for transla-
tional inference sometimes have morphological or clinical
correlates, the data-driven nature of Al necessitates tissue-
based corroboration and biological annotation to validate
imaging-based studies for improved clinical utility.*? This
approach can entail molecular annotation of Al-extracted
features via correlation with histological or immunohis-
tochemical traits—eg, tumour immune microenvironment
macrophage infiltration”® or tumour subtype-specific
differentially modulated pathways potentially implicated in
pathogenesis. 2%

Beyond neuroimaging-informed prediction of histo-
molecular tissue properties via translational inference, Al
might catalyse the utilisation of non-standard or non-
human-interpretable imaging modalities—eg, ultrasound
radio frequency signals for intraoperative molecular
glioma diagnosis® or glioma grade-specific cerebrovascular
dysregulation biomarkers extracted from blood oxygen
level-dependent functional MRIL.>

If data are noisy, scarce, or unavailable, generative
models can be trained to produce synthetic images, such
as super-resolved magnetic resonance spectroscopy images
for improved metabolic characterisation of isocitrate
dehydrogenase-mutant gliomas'® or post-contrast structural
MRIs generated de novo from pre-contrast images for CNS
tumour grading.” However, a lack of underlying mechan-
istic or causal models present a fundamental upper bound
to the explanatory power of association-based approaches.
Instead, biophysical or physics-constrained models
of medical image generation processes might not only
produce realistic synthetic data but also confer causally
grounded explainability to extracted imaging features;
corresponding inverse models can then be endowed with
physically plausible structural constraints, as shown for
chemical exchange saturation transfer MRI (table).?

Digital neuropathology

Digital neuropathology aims to semi-automate manual
histological or immunohistochemical assessment, includ-
ing precision diagnosis, molecular characterisation, and
neuropathological workflow optimisation. Deep learning-
based digital pathology trained on whole-slide images has
shown utility across various standard diagnostic tasks,
including tumour localisation, segmentation, grading, and
molecular classification,****** with the area under the
receiver operating characteristic curve (AUC) often exceed-
ing 0-9 (table). As neuropathological assessments cannot
exhaustively inform molecular diagnosis, translational
inference can enable spatially resolved profiling via infer-
ence of histomolecular tissue properties from standard
whole-slide images, such as patch-wise prediction of glio-
blastoma transcriptional subtypes, revealing survival-related
regional gene expression programmes.*

Besides biopsy-based precision diagnosis, rapid molecu-
lar diagnosis is paramount for guiding the resective risk—
benefit strategy. Stimulated Raman histology**** (table) or
nanopore methylation sequencing data® enable deep
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Figure 1: Mapping key machine learning-based technologies along the neuro-oncological care trajectory. Al=artificial intelligence.

learning-based rapid molecular classification, assisting
neurosurgeons with intraoperative tumour margin assessment
and epigenetic subtyping.

Neuropathological evaluation is often complicated by
ambiguous presentation of treatment-related adverse
effects (eg, pseudoprogression and tissue necrosis).
Although Al-assisted tools can augment diagnostic certainty
in ambivalent cases, lack of consensus definitions and ref-
erence standards, sampling bias, and frequent presence of
mixed lesions (containing both tumour cells or foci and
treatment-related pathology) remain principal barriers.*

Despite considerable potential for automating arduous
histopathological tasks or enhancing diagnostic consistency
and granularity, neuropathological datasets are typically too
large for cost-effective digitisation, storage, and manual
labelling; even if digitised and annotated, general applic-
ability of these datasets remains limited by differences in
acquisition protocols across institutions and high inter-rater
variability. Hence, neuropathology might broadly benefit
from the development of foundation models—deep neural
networks that are pretrained task agnostically on vast data-
sets in a weakly or self-supervised manner and consecutively
adaptable to specific downstream tasks (panel 2). Although
not yet validated in the context of autolabelling pipelines, a
prospective multicentre clinical trial showed that a founda-
tion model trained on annotation-free stimulated Raman
histology images was superior compared with standard-of-
care surgical adjuncts in identifying glioma infiltration
during surgery.*® Despite encouraging preliminary results,
pervasive foundation model adoption is limited by
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prohibitive resource requirements and ethical and regula-
tory hurdles.

Molecular-genetic tumour characterisation

Most CNS neoplasms are characterised by high histo-
molecular intertumoural and intratumoural heterogeneity.
Molecular data analysis is fraught with difficulties, includ-
ing high data dimensionality, presence of confounders, and
non-linear higher-order interactions between molecular
covariates,” implicating some AI techniques as viable
alternatives to more classic statistical approaches, whenever
appropriate. The data-type agnosticism (panel 1) of
Al enables the prediction of molecular modalities, for
instance, predicting transcription factor binding affinity for
the identification of modulatory single nucleotide
polymorphisms* or inferring major genetic alterations
(isocitrate dehydrogenase, TERT promoter, and ATRX
mutation status, and 1p/19q co-deletion status) from global
DNA methylation levels in gliomas, with prediction
accuracies exceeding 0-9.*

Beyond molecular alterations, concomitant systemic
effects of CNS tumours on the nervous system (local tissue
innervation changes and modulatory effects on tumour
phenotype, facilitating or enabling hallmark capability
acquisition)® suggest that particular tumour subtype
characteristics manifest in differential connectivity and
electrophysiological profiles (both ipsilesionally and con-
tralesionally).?**”* Indeed, experimental brain metastasis
models show atypical calcium-dependent activity in the
tumour microenvironment and differentially expressed
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Figure 2: PRISMA flow diagram

genetic profiles, suggesting a delicate interplay of molecular
programmes and neural activity patterns (table).*' These
insights showcase the potential for Al-based activity or
connectivity fingerprinting in identifying novel biomarkers
and associated precision treatments. The integration of
electrophysiological and connectomic characteristics of
tumours and affected neural structures derived from intra-
operative electrocorticography or magnetoelectrography—
shown to be prognostic in glioblastoma®”*—might inform
future neural activity-based risk stratification.

Neuro-oncological treatment

Treatment administration

Resection followed by radiotherapy and chemotherapy is
recommended for the therapeutic management of most
malignant and several benign CNS tumours’ All
approaches fundamentally rely on imaging and digital data
processing to delineate the therapeutic target (panel 3).
These approaches primarily include radiation treatment
planning and delivery.® In recent years, Al-based segmen-
tation models have been implemented in routine clinical
practice to delineate healthy anatomical structures (organs
at risk) and avoid their exposure to radiation. Ongoing
research aims to apply Al for delineation of tumour target
structures, including gliomas and brain metastases.” In
morphologically straightforward instances without consid-
erable anatomical distortion or alteration from previous
treatments, these approaches might improve workflow
efficiency, allowing for greater consistency and quality in
routine practice or clinical trials. However, standardisation
of Al algorithm development and imaging input in defining
all biologically relevant regions for treatment, especially for
patients with infiltrative malignant gliomas, remains an
unmet need.” This challenge also has implications for

surgical approaches, as removal of the tumour portion
beyond the contrast-enhancing core has been associated
with increased survival in patients with glioblastoma.!
Nevertheless, distinguishing non-enhancing tumour from
oedema with only scattered tumour cells remains a salient
discussion point.* Advanced imaging with Al-assisted ana-
lysis can eventually guide resection extent by predicting
tumour extent beyond contrast enhancement on preoperative
imaging.

Al-assisted imaging guidance is already being used in the
operating room, with feedback systems analysing operative
video in real time.*? Such analyses might eventually provide
haptic or acoustic feedback on tissue areas with a higher
likelihood of harbouring tumour, interpret signals from
outside the immediate surgical field (eg, fluorescent signals
from tumour remnants or electrophysiological monitoring),
or yield early warnings when unnecessarily risky steps are
taken. Based on label-free optical imaging methods or
methylation profiles, deep neural networks have also been
used to intraoperatively diagnose molecular glioma sub-
types, further guiding the resective risk—benefit strategy
(table).**** Optimal imaging methods preserving the cyto-
architecture can detect tumour cells in morphologically
unremarkable brain parenchyma in real time, enabling
tailored resection according to the intraoperative (tissue-
based) delineation of the expansive tumour. Further redu-
cing the margin for human error in a high-stress clinical
environment, robotic systems performing stereotactic
sampling, image-guided microsurgery, or placement of
spinal hardware have been shown to be non-inferior to
conventional techniques.”*** The role of Al in radiation
treatment planning has also been investigated for stereo-
tactic radiosurgery and conventionally fractionated external
beam radiation therapy. To date, these studies report
variable feasibility and clinical acceptability. Incorporation
of clinical outcomes, including tumour control, toxicity, and
functional neurological status, should be emphasised in
prospective studies of Al implementation.

Systemic treatment and therapeutic target identification
Although delaying of tumour progression is achievable,
curative treatment options remain elusive for high-grade
adult-type diffuse gliomas; glioblastoma and H3 K27M-
altered diffuse midline gliomas (DMGs) are largely unre-
sponsive to chemotherapy. Despite many trials, no novel
agents have been approved in the past decade, and the utility
of targeted agents remains limited to small patient subsets.!

As few genetic alterations with clinically validated thera-
peutic implications are known,'*> identification of patient
strata responsive to some therapeutic approaches might
help to improve patient management towards tailored
therapy recommendations. Unsatisfactory outcomes in
glioblastoma treatment with immune checkpoint inhibitors
(ICIs) have prompted efforts to select ICI-responsive patient
subgroups based on glioblastoma stemness using Al-based
stemness predictors from RNA-seq profiles (table). High-
stemness tumours are associated with increased
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programmed death-ligand 1 (PD-L1) inhibitor susceptibil-
ity, improved overall survival, greater genomic instability,
and distinct tumour immune microenvironment profiles.”
Al-based prediction of single-sample gene enrichment
analysis scores of selected signatures along histomorpho-
logic glioblastoma niches and subsequent clustering iden-
tified a proteomic MYC-KRAS-hypoxia programme
promoting intratumoral heterogeneity. The axes correlate
with aggressiveness, differential drug sensitivities, and
relative chemoresistance.*® Notably, pharmacological drug
sensitivities were explained better by these protein-defined
axes than by established transcriptional subtypes, implicat-
ing immune checkpoint protein CD276 (vasculature) as a
potential ICI target rather than PD-L1.°° A cross-type
proteogenomic study comparing low-grade glioma and
glioblastoma identified IDH1 and EGFR to be mutationally
exclusive and highlighted tumour type-specific kinase
preference, signalling the potential targets in differentially
enriched pathways.*’

Despite vast numbers of suggested druggable targets,
their respective roles in contributing to phenotypic tumour
variations remain unclear. Identification of nexus molecules
orchestrating these phenotypic variations is pivotal.* Stud-
ies have shown the utility of Alin inferring kinase-substrate
phosphosite interactomes?? in glioblastoma, leading to the
identification of highly active master kinases* in functional
glycolytic or plurimetabolic subtypes, and in proliferative or
progenitor glioblastoma subtypes (table).”> To inform
patient allocation for prospective clinical trials, functional
glioblastoma subtypes were predicted using RNA-seq data
from frozen tissue samples (AUC >0-83 for all classes).”
Target identification, in combination with Al-driven de
novo compound design, could profoundly accelerate the

Al methods versus data modality
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Figure 3: Distribution of machine learning methods (x-axis) per neuro-oncological data type (y-axis)

The circle size is proportional to the number of abstracts referencing method-data-type pairs in the 2675 filtered
articles. Our search revealed that the current literature is largely dominated by studies on clinical imaging and
radiomics as well as deep learning and classic statistical methods, which are also prominently used for omics studies;
few studies have investigated niche modalities and advanced techniques. Raw data are provided in the appendix (p 4).
Blue indicates clinical imaging, purple indicates neuropathology, and green indicates omics. Al=artificial intelligence.

development of novel therapies. However, as the first drugs
developed using Al are only now entering clinical trials,
their effectiveness remains to be confirmed (appendix p 3).

A plethora of other therapeutic avenues is on the horizon,’
including, but not limited to, novel immunotherapies,

chimeric antigen receptor T cells, oncolytic virotherapy,
multimodal combination therapies, optimised therapy
sequencing, and drugs targeting neural-cancer cross-talk
and nervous system cancer networks.” Clinical trials on
tumour network disconnection strategies targeting
gap junctions in glioblastoma and inhibition of gluta-
matergic neuron-to-glioma synapses are ongoing,’ war-
ranting investigations into Al-assisted identification of
structural and molecular drivers of nervous system cancer
network function, novel biological agents, and the utility of
electrophysiological or neural signalling biomarkers.

Prognostication, response prediction, and
assessment

Molecular-genetic risk stratification and prognosis

In addition to general clinical prognostic factors such as age
and clinical status, tumour-specific risk stratification is pri-
marily guided by histomolecular characteristics (eg, MGMT
promotor methylation status and H3K27M mutation in

www.thelancet.com/digital-health Vol 7 September 2025

dMRI=diffusion MRI.

DMGs). Translational inference from structural MRI and
diffusion tensor imaging can improve outcome predictions,
such as overall survival and progression-free survival, and
has been linked to risk score-specific differentially enriched
pathways and histomolecular signatures. 2>

However, current stratification schemes often do not
capture the relevant morphometric, epigenetic, and tran-
scriptomic tumoural intragroup heterogeneity, warranting
efforts to refine established imaging-derived or molecular—
genetic strata.’®**** For example, Al-derived cytoarchitec-
tonic features from whole-slide images in low-grade
gliomas correlate with overall survival, revealing poor
prognosis subtypes characterised by high mutational load,
frequent copy-number alterations, and substantial tumour-
infiltrating lymphocyte presence.* In some tumour entities,
such as high-grade astrocytoma with piloid features
(HGAP), morphometric subclasses alone offer limited
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Panel 1: A primer on machine learning for neuro-oncologists and allied health professionals

ML is a subdiscipline of Al, although the two terms are used quasi-synonymously. ML is the data-driven optimisation of (parametric) functions with respect to
predefined optimisation objectives. A plethora of ML techniques are used across neuro-oncology, with selected techniques becoming part of the standard
armamentarium of a neuro-oncological Al researcher or practitioner.

Clinical imaging-based Al studies are dominated by DNNs and radiomics. DNNs are universal function approximators, ie, they can, in principle, approximate arbitrarily
complicated piecewise continuous non-linear mappings, provided sufficient parameters, data, and computational resources are available. This capability is
independent of data type, resulting in data and function agnosticism, leading to extreme versatility of DNNS. In practice, DNN optimisation is constrained by various
factors beyond resource limitations, and deep learning practitioners have limited control over which dependencies between covariates in the data are learned.
However, in most cases, these challenges do not result in obvious errors—ie, DNNs tend to fail silently. The fundamentally data-driven nature of the optimisation
results in difficulties in interpreting the outputs of DNNs and estimating how well they can generalise beyond the data they have been optimised (trained) on. Even
when an algorithm seems to work on a given validation cohort, a theoretical guarantee that the algorithm will perform comparably on another does not exist,
underlining the importance of extensive, multicentre validation studies before introducing Al-based solutions into routine clinical practice. Radiomics is fundamentally
different from deep learning because it relies on the extraction of predefined statistical features from images, and subsequent mapping of selected features to a desired
target variable (sometimes using DNNs after feature extraction). Predefining and selecting features can, but does not ubiquitously, improve performance, potentially
warranting a balanced side-by-side evaluation of purely deep learning-based and radiomics feature extraction.

In contrast to imaging-based studies, histomolecular and multiomics studies tend to integrate various ML techniques at key steps of extensive data analysis pipelines,
which are often equally populated by classic statistical and specialised bioinformatics techniques. As opposed to most ML methods, these techniques can have strong
biological priors and might only be applicable to specific data or problem types. ML is often used when classic statistical approaches face difficulties owing to high data
dimensionality, the presence of many confounders, non-linear interactions between covariates, and unknown functional relations between covariates of interest. In
analyses with thousands of covariates, the sample sizes needed to control for spurious correlations with statistical techniques are exceedingly large. Clustering and
dimensionality reduction techniques have become standard tools in a bioinformatician’s repertoire to discover low-dimensional structures in high-dimensional data.
Clustering identifies groups of data points that are close to each other based on a user-defined distance metric, while dimensionality reduction maps high-dimensional
data points to a low-dimensional space, such that the information retained in the latent encodings captures an aspect of interest that is not visible in the
high-dimensional representation. Linking molecular layers by predicting potentially non-linear interactions between covariates is often framed as an ML problem. ML
models can use spurious correlations in the data for predictions, necessitating the explicit modelling of confounders using biological or structural priors to guide
optimisation—an area of active research.**

Al=artificial intelligence. DNN=deep neural network. ML=machine learning.

utility because intragroup differences evade standard
assessment. Nonetheless, hierarchical clustering of
epigenetic profiles in HGAP reveals clinically salient sub-
types, such as a neurofibromatosis type 1-mutated hyper-
methylated HGAP subtype with reduced tumour purity and
poor progression-free survival.® Beyond HGAP, clustering
and dimensionality reduction approaches (panel 1) delin-
eate distinct epigenetic subclasses in DMGs and glioblast-
omas,*** characterised by atypical histomolecular features
and differential clinical outcomes. For instance, H3.3K27M-
mutated DMGs tend to have poor overall survival and are
unresponsive to chemotherapy,! whereas H3.3K27M
tumours with BRAF or FGFR1 co-mutations form a distinct
epigenetic—transcriptomic cluster with divergent histology
and slightly favourable prognosis.? Glioblastoma further
shows how transcriptional difference can complicate prog-
nosis; the transcriptomic high-neural subtype shows hypo-
methylated CpG sites and upregulation of genes associated
with synaptic integration, fostering neuron-to-glioma
synapse formation negatively associated with overall sur-
vival and progression-free survival (table).”” This tran-
scriptional heterogeneity is a key driver of therapy
resistance in glioblastoma, as the co-existence of tran-
scriptional niches hinders effective targeting of subtype-
specific molecular alterations.* Mapping these regional
gene expression programmes to tumour morphology,

connectivity, and signalling in turn opens the door for
Al-driven identification of novel biomarkers in magneto-
encephalography, digital pathology, or blood serum—
enabling a spatially resolved understanding of molecular
programmes in glioblastoma (table).’>*” Ultimately, syn-
ergies between clinical imaging, deep molecular profiling,
and Al-powered stratification might foster the discovery of
novel prognostic biomarkers and associated tumour
subgroups, providing guidance for more personalised
prognostication and therapeutic management, including
targeted subgroup-specific interventions.

Response prediction and assessment

Sequential, rigorous, and methodical review of imaging in
neuro-oncology is essential for treatment decisions,
response assessments, and distinguishing treatment-
related adverse effects (eg, pseudoprogression, tissue
necrosis) from tumour progression. Al-assisted tumour
volume quantification in structural MRI has shown a sub-
stantial reduction in inter-rater variability of estimated time
to progression (table)' and increased reliability in detecting
pseudoprogression in high-grade gliomas.®® Similarly,
co-registered spherical-projected contrast-enhanced struc-
tural MRI integrated with dose maps enabled the prediction
of local control outcomes for brain metastasis following
stereotactic radiosurgery (AUC 0-89).5
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standardisation and reliability of response
assessment between evaluators compared
with standard RANO criteria

Utilisation of simulated CEST MR
fingerprinting for training a deep neural
network to detect and quantify apoptotic
response to oncolytic virotherapy

Therapeutic target identification via
multiomics characterisation of glioblastoma;
discovery of master kinases orchestrating
phenotypic hallmark acquisition in
glioblastoma functional niches

Introduction and clinical validation of a novel
stemness-based classification as prognostic
predictors for glioblastoma; utilisation of
multiomics analysis to reveal targetable
pathways; patient stratification to identify
glioblastoma cohorts responsive to ICls

Endpoints: molecular classification accuracy, F1 score
Data: whole-slide SRH images of fresh, unprocessed
gliomas of 373 patients with adult-type glioma; public
glioma genetic data of 2777 patients from six resources
(training) and 153 patients with diffuse glioma (testing)

Study type: retrospective multicentre study

Endpoints: metastasis type prediction accuracy

Data: electrophysiologically recorded neural activity

(LFPs from all groups recorded at 7 and 10 days

postimplantation) and categorical features from three
organotropic mouse brain cancer cell lines (482N1-BrM,

E0771-BrM, B16/F10-BrM) and one control
Study type: prospective, single-centre study

Endpoints: concordance correlation coefficient for time

to progression

Data: 3D T1w, 3D cT1w, 2D axial FLAIR, 2D axial T2w,
DWI with ADC maps from two imaging timepoints from

30 patients with diffuse glioma
Study type: retrospective multicentre study

Endpoints: not applicable

Data: CEST MRI 8-11 days after tumour implantation,
48 and 72 h after oncolytic virotherapy treatment in
U87AEGFR human glioblastoma orthotopic mouse

model and one healthy human control
Study type: prospective, single-centre study

Endpoints: glioblastoma subtype prediction AUC

Data: genetic, epigenetic, transcriptomic,

proteogenomic, metabolomic, lipidomic, and phospho-
proteomic data from 92 patients with IDH wild-type
glioblastoma from CPTAC and 282 patients with IDH

wild-type glioblastoma from TCGA
Study type: retrospective, multicentre study

Endpoints: stemness subtype predictor accuracy,

sensitivity, specificity, AUC

Data: predicted mRNA stemness index-associated

differentially expressed genes for two stemness

subtypes that were found via clustering and annotation
(literature) and clinical patient status from 868 patients
with glioblastoma from two databases (training and
validation); 388 patients with glioblastoma from one

database and one institute (testing)
Study type: retrospective, multicentre study

Image and genetic encoder training: CNN vision encoder pretrained on multilabel supervised contrastive loss
Genetic alteration prediction: transformer pretrained on vision and genetic embeddings for prediction of
masked genetic alterations

Molecular classification: accuracy of 0-947 (IDH), 0-941 (1p19q co-deletion), and 0-910 (ATRX); F1 scores of
0-963 (IDH), 0-966 (1p19q co-deletion), and 0-947 (ATRX)

Direct classification of SRH images into three WHO CNS5 classes: overall subgroup classification accuracy was
0-915; accuracy in patients 55 years or younger was 0-944

Effect of brain metastasis on neural activity: reduced cortical and hippocampal activity ipsilateral to metastasis
across all frequency bands; contralateral effects only in 482N1-BrM; activity differences not reflecting locomotor
activity or volume conduction effects; LFP differences not explained by mass effect or peritumoural
inflammatory milieu; correlation between metastasis type and transcriptomic programme

Metastasis type predicted using decision tree: PCA used for projection of features on linear subspace; decision
tree used for metastasis-type prediction 9-10 days after injection with a mean accuracy of 0-77 (SD 0-02) and
7 days after injection with a mean accuracy of 0-73 (SD= 0-09)

Performance improvement owing to Al-based decision support: CNN for computational skull stripping and
tumour segmentation; concordance between raters increased from 0-77 (95% CI 0-69-0-88) (RANO-based) to
0-91 (95% Cl 0-82-0-95) (Al-assisted). The effect was more pronounced for lower-grade glioma (CCC 0-70 to
0-90) than for glioblastoma (CCC 0-83 to 0-86). The inter-rater agreement on time to progression increased in
terms of standard deviation (ie, the SD decreased); evaluators with less years of experience rated the Al-based
decision support as more helpful than those with more years of experience.

Simulated CEST magnetic resonance fingerprinting and model training: numerical simulation of expected
signals for 70 million tissue parameter combinations (T1, T2, BO inhomogeneities, and four semisolid, amide
chemical-exchange parameters) for two acquisition protocols

Tissue parameter inference from simulated fingerprints: two small densely connected deep neural networks
trained to consecutively extract four chemical-exchange parameters from given simulated MRI

Treatment response monitoring: quantitative response maps from mouse models were compared at the three
different measurement timepoints; all signals were substantially altered in the tumour after OV inoculation (the
first three decreased; only the tumour amide proton exchange rate increased), which indicated reduced pH and
protein concentration, suggesting apoptosis

Tissue-based validation of molecular findings: histological stains (H&E, Coomassie) and immunohistochemistry
images (HSV, Caspase-3) were used to verify response maps

Validation in healthy human controls: after adaptation to a clinical 3 T MRI scanner, all maps were in agreement
with those reported in previous studies

Functional glioblastoma subtype discovery: k-nearest neighbours classifier trained on gene expression profiles
uncovered four functional glioblastoma subtypes

Kinase-substrate phosphosite interactome inference: ensemble of support vector machine classifiers trained on
known substrate-kinase pairs for interactome construction and model-based kinase activity prediction
identified PKC3 and DNA-PKcs master kinases in the functional glycolytic or plurimetabolic subtypes as well as in
proliferative or progenitor glioblastoma subtypes

BJE6-106 (PKCS inhibitor) and nedisertib (DNA-activated protein kinase inhibitor) were suggested as potential
targeted agents

Probabilistic IDH-wildtype glioblastoma prediction: multinomial regression model with lasso penalty trained on
RNA-seq to predict functional glioblastoma subtype (AUC 0-83)

mRNAsi annotations: mRNAsi was negatively correlated with immune infiltration levels, not correlated with
tumour purity, positively correlated with T-cell subsets, and negatively correlated with macrophage abundance;
high mRNAsi was associated with better OS (HR 0-80) and poorer PFS (HR 1-28); mRNAsi was independent of
other clinical variables; differential expression analysis revealed 130 DEGs

Stemness-based subtyping and annotation: k-means-based consensus clustering revealed two distinct subtypes
with different tumour immune microenvironments, immunogenomic patterns (subtype 1 had higher CNA and
mutation burden and was more sensitive to immunotherapy but resistant to TMZ), and clinical variables (eg,
young patients with subtype 1)

Identification of subtype-specific compounds: DEGs between subtypes and pathway annotation revealed

34 potential compounds for type 1 and 76 potential compounds for type 2

ML-based stemness predictor: (1) four different classifiers trained on stemness-associated DEGs to predict the
status of stemness subtype; (2) intersecting highly predictive genes identified; (3) final multivariate logistic
regression classifier trained on these genes to predict status, resulting in AUC of 0-96, accuracy of 0-93,
sensitivity of 0-91, and specificity of 0-94

(Table continues on next page)
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(Continued from previous page)

Wang Digital pathology-based molecular glioma

etal (2023)** diagnosis from annotation-free WSIs

Zheng Utilisation of spatial transcriptomics and deep

etal (2023)* learning to map WSls to glioblastoma
transcriptional subtypes; linking

transcriptional subtype to clinical outcomes;

uncovering OS-related regional gene
expression programmes

Kondepudi Fast and accurate detection of glioma

et al (2025)3‘5 infiltration in fresh, unprocessed surgical

tissues using a vision FM

Drexler Definition of epigenetically defined neural
et al (2024)*  signatures from transcriptomic profiles; linking
signatures to OS and PFS; characterisation and

potential biomarker identification

Endpoints: diagnostic AUC

Data: H&E WSIs and diagnostic class label of

1702 patients with diffuse glioma from one institute,
and 922 patients with diffuse glioma from three
institutes

Study type: retrospective, multicentre study

Endpoints: transcriptomic subtype prediction AUC
Data: 75 625 transcriptomic spots and 69 647 H&E WSI
patches from 22 patients with glioblastoma from three
public sources, and an additional eight patients and
312 patients with glioblastoma from two public sources
(training and validation); 98 patients with glioblastoma
from one public source (testing)

Study type: retrospective, multicentre study

Endpoints: degree of infiltration (mean AUC, MAE)
Data: 11 462 whole-slide SRH images of fresh,
unprocessed surgical specimens of 2799 patients with
adult-type glioma (pretraining); 3560 whole-slide SRH
images from 896 patients (testing); 767 IDH-mutant
and 659 IDH-wild-type diffuse gliomas resulting in 1130
total specimens (prospective clinical trial for testing)
Study type: prospective international multicentre
single-arm, non-inferiority, diagnostic clinical trial
Endpoints: OS, PFS, functional connectivity in
glioblastoma; stability of epigenetic neural classification
Data: multicohort, multiomics profiles (DNA
methylation, transcriptomics, proteomics, spatial
transcriptomics) of 5047 CNS tumours (including
1058 patients with glioblastoma from combined
cohorts and 187 from TCGA), additional single-cell and
patient-derived xenograft datasets, and a validation set
of 72 diffuse midline gliomas

Study type: retrospective, multicentre study

Pretraining and phenotype-based clustering: CNN pretraining on patch-level labels of 644 896 patches;
subsequent k-means clustering of output feature vectors (k=9)

Training of k separate CNN classifiers on patches from each cluster separately for prediction of six diagnostic
classes

Patient-level classifier training: three single-cluster classifiers were more performant than the all-cluster baseline;
training of final patient-level classifier on all patches from three clusters for patient-level classifier training
(275 741 patches), and aggregation of final patient-level results; the classifier achieved AUCs of 0-932-0-994 on
the internal testing cohort, 0-923-0-987 on external testing cohort 1, and 0-904-0-952 on external testing
cohort 2

Interpretation of class activation maps: regions of interest computed via class activation maps were evaluated by
pathologists and were well-aligned with pathological morphology (eg, highlighting necrosis and microvascular
proliferation)

Identification of spatially resolved transcriptional subtypes: NMF to identify five metagene modules associated
with known transcriptional glioblastoma subtypes

Subsequent training of CNN on H&E WSI patches to predict dominant transcriptional tumour cell type and
immune cell type per patch, achieving AUC of 0-93 (tumour), 0-80 (T cells), and 0-84 (macrophages)
Prognosis prediction from histology images and biological annotation: CNN training on H&E patches to predict
a composite score of C-index and Brier scores (aggressiveness), which significantly differed between
transcriptional subtypes (mesenchymal hypoxia type was the most aggressive and the oligodendrocyte
progenitor type was the least aggressive). Gene set analysis on a transcriptomics dataset revealed differentially
modulated genes related to high aggressiveness (eg, injury response) and low aggressiveness (eg, neuronal
development)

Vision FM training: patch feature extraction with hierarchical self-supervised learning; vision transformer
pretraining with contrastive loss

Subsequent fine-tuning with ordinal representation learning on a 100 times downscaled dataset, expert-
labelled for tumour infiltration degree

Prospective trial results: test mean AUC between 0-922 and 0-886 in three medical centres (USA and Europe)
Simulated interventional trial for FM as surgical adjunct: FM-based approach (0-981) outperformed standard-
of-care intraoperative surgical adjuncts FLAIR (0-763) and 5-ALA fluorescence (0-890)

Epigenetic neural subgrouping and prediction: IDH wild-type glioblastomas were stratified into high-neural and
low-neural groups derived from DNA methylation; high-neural tumours showed synaptic, stem-like states and
worse survival outcomes; the graph neural network was trained on spatial transcriptomic microenvironments to
predict neural signatures (F1-score 0-98); weighted correlation network analysis correlated gene expression
modules with neural signatures

Functional connectivity and invasion: high-neural tumours integrated into neuron-to-glioma networks
displayed increased peritumoural connectivity in MEG or fMRI and increased proliferation and migration in
co-culture and xenograft models

Spatiotemporal stability and surgical benefit: the neural signature remained stable across spatially distinct
biopsies and upon recurrence; high-neural glioblastomas benefitted less from near-complete resection
compared with low-neural glioblastomas; elevated serum BDNF concentrations were correlated with the high-
neural subgroup and increased seizure incidence; the high-neural signature in H3 K27-altered diffuse midline
gliomas was associated with worse outcomes

Consensus was reached among all co-authors to select papers for their emphasis on common pathologies, clinical relevance, methodological rigour, novelty, and potential impact on neuro-oncological practice and research. 3D=3-dimensional. 2D=2-
dimensional. ADC=apparent diffusion coefficient. Al=artificial intelligence. ALA=aminolevulinic acid. AUC=area under the receiver operating characteristic curve. BDNF=brain-derived neurotrophic factor. CCC=concordance correlation coefficient.
CEST=chemical exchange saturation transfer. CNA=copy number alteration. CNN=convolutional neural network. CPTAC=Clinical Proteomic Tumor Analysis Consortium. cT1w=contrast-enhanced T1-weighted MRI. DEG=differentially expressed gene.
DWiI=diffusion-weighted imaging. FLAIR=fluid-attenuated inversion recovery. FM=foundation model. fMRI=functional MRI. H&E=haematoxylin and eosin. HR=hazard ratio. HSV=Herpes simplex virus. ICI=simmune checkpoint inhibitor. IDH=isocitrate

dehydrogenase. LFP=local field potential. MAE=mean absolute error. MEG=magnetoencephalography. ML=machine learning. mRNAsi=messenger RNA stemness index. NMF=non-negative matrix factorisation. OS=overall survival. OV=oncolytic virotherapy.
PCA=principal component analysis. PFS=progression-free survival. RANO=response assessment in neuro-oncology. SRH=stimulated Raman histology. Tlw=T1-weighted MRI. T2w=T2-weighted MRI. TCGA=The Cancer Genome Atlas. TMZ=temozolomide.

WSl=whole-slide image.

Table: A selection of ten high-impact publications that highlight use cases of machine learning in different areas of neuro-oncology
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Panel 2: Generalist foundation models in neuro-oncology

Foundation models are DNNs that undergo weak or self-supervised pretraining on large-scale, possibly multimodal datasets (containing up to trillions of samples);
they can flexibly adapt to a diverse set of downstream tasks, either by supervised training on much smaller annotated datasets (fine tuning), or novel training schemes,
such as instruction fine tuning via natural language instructions. After (instruction) fine tuning, foundation models can adapt to novel tasks using only examples or
instructions (in-context learning).*** Such capabilities suggest a potential role of foundation model-based medical Al systems with truly generalist functionality. These
systems can assist clinicians across a broad spectrum of clinically relevant tasks, including medical question answering, image classification, radiology report generation
and summarisation, and genomic variant calling. Generalist foundation model-based assistants could, for example, suggest diagnoses, integrating molecular data into
its considerations, provide recommendations informed by the most recent literature and clinical trial data, assist in the operating room by delineating tumour
boundaries, recommend personalised treatments, and offer a prognosis based on the data collected at all previous steps, enabling human-Al collaboration.®*° Beyond
their role as conversational or agentic assistants, neuro-oncological foundation models can integrate non-human interpretable data, such as molecular or neural
activity data, directly into their training without encoding the data as natural language first, augmenting human capabilities rather than simply acting as assistant
technology. Foundation models are yet to be validated in real-world clinical contexts. The key challenges include limited reliability, misalignment with human intent
and values, unquantifiable extrapolation capabilities, privacy concerns related to potential reproduction of sensitive patient information, and the requirement for very

large training datasets alongside vast computational resources.

Al=artificial intelligence. DNN=deep neural network.

An exciting frontier accompanying advances in treatment
delivery is the development of novel imaging platforms
for the iterative evaluation of tumour status throughout the
course of conventional radiotherapy. An improved
understanding of the Dbiological relevance of changes
observed during the course of radiotherapy might enable a
shift from rigid treatment paradigms towards response-
adaptive radiotherapy, allowing responsiveness to emer-
ging treatment resistance during the course of radiotherapy
and improving the therapeutic ratio.” Similar approaches
have been applied to imaging-based disease monitoring of
patients with glioblastoma during post-radiation medical
treatment, with the depth and duration of response serving
as predictors for survival in glioblastoma.*®

However, substantial intragroup outcome heterogeneity
in large classes of CNS neoplasms is not yet reflected in
clinical management recommendations. Al-based therapy
response prediction might enable more granular risk and
sensitivity stratification, as shown for various entities
and therapies.?>?**>*7° Transcriptomic analyses of the
glioblastoma tumour immune microenvironment suggest
the utility of risk stratification and therapy response pre-
diction based on an Al-predicted stemness index** and
immune cell-associated long non-coding RNA.* Glioblast-
oma groups organised along the stemness axis, inferred and
predicted from gene expression data (AUC 0-96), are char-
acterised by a distinct mutational burden, tumour immune
microenvironment profiles, and immunogenomic patterns,
as well as differential sensitivity to ICIs (table).>* Radiomics
or radiogenomics was used for response prediction to tar-
geted therapies (eg, dabrafenib plus trametinib in
BRAFY*E mutant gliomas)* for low-grade and high-grade
glioma and ICI therapy (eg, predicting PD-L1 expression
levels), as shown in a study on molecular brain metastasis
profiling from structural MRIL.”® Notably, simulated chem-
ical exchange saturation transfer magnetic resonance fin-
gerprint images have been used to monitor apoptosis as an
early predictor of treatment response to oncolytic virother-
apy; a deep neural network could infer metabolic changes
from quantitative maps of chemical-exchange parameters in
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a glioblastoma orthotopic mouse model (table).” However,
whether changes in novel response parameters are clinically
meaningful warrants rigorous validation of clinical
effectiveness, inter alia, to mitigate overinterpretation.

Management and rehabilitation

Tumour-related and treatment-related complications
Management of tumour-related and treatmentrelated
adverse effects represents a growing neuro-oncological
challenge, given the recent improvements in cancer sur-
vivorship, particularly for patients with brain metastases.
The nature and burden of potential toxicities have sub-
stantially evolved with the increased utilisation of stereo-
tactic radiosurgery and adjuvant integration of targeted
therapies.*®® Late CNS toxicities include cognitive dysfunc-
tion, leukoencephalopathy, brain atrophy, cerebrovascular
complications, endocrinopathies, and brain tissue necro-
sis.®*”* Differential spatial radiographic patterns provide an
opportunity for Al-assisted monitoring of treatment-
induced tissue necrosis to circumvent unnecessary expos-
ure to antineoplastic therapies or treatments that under-
mine the effectiveness of systemic therapies. To elucidate
the molecular correlates of radiotoxicity, Al can be used to
predict radiotoxicity-associated gene expression signatures
that correlate with overall survival in glioblastoma.” Efforts
to prevent or mitigate CNS radiotoxicity are imperative.
Al can improve radiation field planning to spare proximal
organs atrisk and facilitate the development of reliable non-
invasive surveillance platforms for risk stratification, early
detection, and effective management of treatment-related
toxicities (appendix p 3).

Neurocognitive and motor rehabilitation

Tumour-related complications or adverse effects can be
progressive and irreversible, resulting in cognitive impairment
and permanent neurological disability, diminishing
quality of life and even affecting survival.” Al-assisted
neurocognitive rehabilitation has shown promising
results in individuals with paralysis and associated
speech and motor deficits. Existing approaches include
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Panel 3: Selected applications and associated key considerations for medical Al in neuro-oncology stratified by regulatory stage

Available with FDA 510(k) or equivalent regulatory clearance

Listed applications and publications were selected for didactic purposes, emphasising clinical relevance, novelty, proof of principle, and potential effect on neuro-
oncological practice and research. Applications with 510(k) clearance were identified by searching the FDA Al or machine learning-enabled medical devices list for
relevant FDA-approved Al-based medical devices (up until Jan 26, 2025).4¢

Applications

Automated visualisation, segmentation, registration, volumetric quantification, and labelling of brain structures from magnetic resonance images for diagnosis
and radiotherapy planning (eg, TeraRecon Neuro [TeraRecon, USA, 2022], ClearPoint Maestro Brain Model [ClearPoint Neuro, USA, 2022], NS-HGlio [Neosoma,
USA, 2022], VBrain [Vysioneer, USA, 2021] NeuroQuant [CorTechs Labs, USA, 2017])

Noise reduction in magnetic resonance images (eg, SubtleMR [Subtle Medical, USA, 2023])

Generation, visualisation, and evaluation of pseudo-CT from magnetic resonance images (eg, ART-Plan [TheraPanacea, France, 2023])

Barriers to clinical implementation
Disconnect between research and approval of medical devices or utilisation in routine clinical practice:

Data gap: lack of high-quality, annotated, centralised, anonymised, diverse, representative data for model development

Validation gap: lack of international, multicentre, prospective trials to show clinical viability of novel methods, accounting for potential transfer penalty or
performance deterioration over time

Implementation gap: disconnect between approval of medical device and active clinical use; successful reimbursement or financial viability often not guaranteed or
achieved despite approval; demonstration of improved outcomes crucial to success beyond formal approval

Clear pathway to regulatory approval and commercialisation
Applications

Identification, location, and characterisation of suspicious area(s) on digitised whole-slide images (eg, Paige Prostate [Paige.Al, USA, 2020]): approved in the
context of prostate tumour detection, feasibly transferable to neuro-oncological use cases
Foundation model-based application fine-tuned to specific use cases (eg, based on Health Developer Foundation)

Barriers to clinical implementation

Difficult or unclear recertification for improved models or different application of existing models
Licensing issues in the context of open-sourced models developed in research contexts (eg, foundation models); patentability of novel models developed on top of
open-source model or method

Unclear pathway to regulatory approval or commercialisation
Applications

Generalist, promptable models capable of zero-shot generalisation in novel contexts®3
Generative models for synthetic data generation?®

Barriers to clinical implementation

Need for novel regulatory frameworks for novel technologies (eg, foundation models or biophysical models that ensure safety, equity, and bias minimisation in
models with strong zero-shot generalisation abilities or trained to learn in-context)

Recertification infeasible for each new use case

Need for standardised protocols, prospective validation, and a shift towards federated learning to enable large, decentralised collaborations across institutions

Al=artificial intelligence. FDA=Food and Drug Administration.

intracortical brain—computer interfaces (BCIs) to decode
attempted handwriting movements from motor
cortex activity,”? subdural multielectrode arrays, and non-
invasive interfaces that can translate neural activity into
speech."” Conversely, it is conceivable that generative
models for BCIl-mediated or neurostimulation-mediated
manipulation of spatiotemporal neural activity could sup-
port restoration of complex motor or impaired higher-
order neurocognitive functions. Translating these con-
cepts to neuro-oncology can help to optimise brain health
through functional restoration, improved communication
abilities, enhanced societal participation, and better quality
oflife, especially in long-term survivors with cancer-related
neurocognitive impairments.

Opportunities, pitfalls, and future directions
Al-based decision support systems hold promise to assist
clinicians across the entire neuro-oncological care trajectory
(panel 4). Selected applications for well circumscribed
tasks can augment specialist care''® and, in some cases,
have received regulatory approval (panel 3). Insufficient
generalisability, poor reproducibility and data accessibility,
absence of consensus definitions and reference standards
for validation, ethico-legal issues, and regulatory hurdles
remain principal barriers to their broad applicability.*
Here, we highlight the progress in promising
emerging applications, including foundation model-based
neuro-oncological assistants, biophysical modelling, and
use of synthetic data for drug discovery and inverse
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Panel 4: Clinical challenges in artificial intelligence in neuro-oncology and associated future directions

Discovery of predictors of disease onset and performing preventive risk stratification

» Al-driven integration of genome-wide association study data'*> with other molecular layers, functional annotation for risk group
identification based on molecular profiling (eg, enabling identification of novel mutations or interacting gene modules,*® preventive
liquid biopsies, or structural MRI for identified risk groups)

» Prevention of metastatic spread via oncogenic driver identification'

+ Prediction of likelihood of treatment-related adverse effects

Reduction of human error and inter-rater variability in diagnosis and treatment response assessment

« Diagnostic neuroradiological assistance via CNS tumour detection, classification, grading, and segmentation, and synthetic data
generation’>*”>

» Multimodal models for longitudinal integration of clinico-molecular variables and care trajectory-wide assistance

Histomolecular precision diagnosis

« Inference of molecular alterations from non-invasive clinical imaging (MRI, CT, PET, ultrasound) or histological imaging (whole-slide
image, cryosections)620223303439

« Annotation of known histomolecular subtypes with differentially enriched pathways

« Discovery of novel histomolecular subtypes*>8-¢?

« Prediction of relevance of molecular alterations of unknown clinical significance

Personalised or agile treatment planning and delivery

« Radiation therapy planning*®

» Tumour segmentation, prediction of optimal resection margins, closed-loop surgical guidance systems*?

« Real-time intraoperative diagnosis based on ultrasound® or optical methods*

» Robotics-aided tissue sampling or microsurgery>*

» Personalised therapy recommendation based on Al-predicted response®®

« lterative status evaluation, response assessment, and monitoring by imaging-based volumetric assessment,*® metabolic imaging,?
discrimination of pseudoprogression from true progression,®® metastatic invasion, and agile treatment administration

Personalised risk stratification

« Overall survival, progression-free survival, treatment-related adverse effect prediction?#37¢

« Discovery of association between predicted risk score and molecular-genetic traits, such as intratumoral heterogeneity*”
« Introduction of novel risk stratification schemes based on immunological or molecular-genetic tumour traits*>

» Adverse event prediction and monitoring to prevent treatment-related complications

Restorative neurorehabilitation

« Non-invasive neural interfaces to mitigate loss of function due to tumour-related or treatment-related neurocognitive sequelae’

« Invasive brain-computer interfaces to mitigate or restore loss of sensory, motor, or cognitive function by recording and machine
learning-based decoding of neural activity, activity-based control of language interface, or neuroprosthetic devices*”?

Discovery of novel drug targets and biological agents

« Identification of phenotype-associated molecules as potential druggable targets*

« Generative de novo design of small molecules or proteins with predefined properties” and computational high-throughput testing
based on a biophysical model of agent-target interaction

Mechanistic models of disease
« Integrative molecular data analysis*>*
» Biophysical or causal models of disease dynamics’

Al=artificial intelligence.

problems, and critically examine the challenges related to
current data limitations, validation, and implementation

gaps.

Foundation model-based neuro-oncology assistants

An increasing interest in foundation models, particularly in
digital pathology, signals a shift towards generalist models
trained on large-scale, multimodal datasets and adaptable to

www.thelancet.com/digital-health Vol 7 September 2025

varied downstream tasks (panel 2). Using foundation models
as a backbone for well delineated applications** might con-
stitute a strategy to facilitate their regulatory approval. However,
reproducible validation studies and rigorous benchmarking
are essential to evaluate foundation model-based applications
against high-performing, task-specific models.

Contrastingly, instruction-fine-tuned foundation models
might aid practising clinicians across a broad range of
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tasks as generalist or agentic neuro-oncological assistants
(panel 2) that communicate through natural language
interfaces.” However, uncertain zero-shot generalisation
capabilities, potential biases, and inadequate alignment
hinder the development of pertinent regulatory pathways
for clinical adoption. Alongside the development and
implementation of foundation model governance guide-
lines,” technical advancements are required to ensure
truthfulness and strict adherence to ethical principles,
particularly in safety-critical scenarios. Existing access
inequities with respect to data access and Al model access—
potentially exacerbated by the vast data and computational
requirements of pretraining—require pre-emptive mitiga-
tion, prompting efforts to bridge the digital divide by
democratising access and enabling local deployment
through open-sourcing medical foundation model
parameters.*’

Biomarker discovery, biophysical modelling, and synthetic
data

The data-type agnosticism of Al (panel 1) facilitates the
identification of preventive, diagnostic, and prognostic
biomarkers; inference of histomolecular properties from
routinely performed clinical imaging for non-invasive
diagnosis or continual monitoring; and risk stratification
into known, refined, or novel diagnostic, therapeutic, and
prognostic groups.

However, if data are scarce or possess an inherent
domain-specific structure, this domain agnosticism can
hinder convergence towards satisfactory solutions. To
address this limitation, deep neural networks can be
endowed with inductive biases that encode domain-
inherent causal, relational, or semantic structures
(eg, symmetries, intrinsic dimensionality, biophysical,
geometric, or relational priors, and probabilistic or causal
structures).” Relational priors can support drug target
identification and spatial transcriptomics,” chemico—
physical priors can accelerate generative compound
design,”” and causal priors can help to disentangle treatment
effects from confounders.” These applications can expand
the neuro-oncological therapeutic armamentarium and
guide optimal patient allocation into prospective clinical
trials based on patient characteristics beyond the standard
inclusion criteria.®> Novel therapeutics demonstrating
activity for selected CNS tumours require prospective
evaluation alongside standard local therapies (eg, surgery,
radiation therapy) to ensure their translation into meaningful
improvements in clinical outcomes.

In the absence of data, generative models producing
synthetic datasets might offer a resourceful alternative to
extensive data collection; however, these models do not
inherently ensure data realism. Extensive clinical validation
can mitigate these concerns to some extent; nevertheless,
the absence of mechanistic or causal models in synthetic
data generation precludes unconditional generalisability. In
contrast, models incorporating strict biophysical inductive
biases might enable the parametrisation or simulation of

particular medical imaging modalities from first principles,
thereby opening avenues for solving associated inverse
problems such as recovering unknown parameters or states
from observed measurements (eg, in histomolecular par-
ameter estimation).?” Furthermore, concurrent simulation
of physiological and measurement processes (eg, neural
activity and electroencephalography) might enable in silico
experimentation with neural activity fingerprints in disease
models,”* akin to strategies already used in de novo compound
design and virtual screening.”

Mitigating data gaps, and balancing innovation and Al
regulation

Adopting and scaling up Al in neuro-oncology hinges
on closing a tripartite data gap: collection (absence,
scarcity, inaccessibility); standardisation (digitisation, storage,
harmonisation); and annotation.

In most institutions, large, representative, and high-
quality datasets are entirely absent, scarce (particularly for
rare disease subtypes), or inaccessible to the wider research
community owing to stringent data protection require-
ments. Collection and access of these datasets are crucial for
model development and validation in multicentre international
trials to ensure generalisability across institutions, regions,
and patient groups. To counteract the overutilisation of
small, biased samples—often in disfavour of minoritised
and vulnerable groups—and to leverage existing and
future Al applications in neuro-oncological care, broad
data collection, representative patient population selection,
and standardised dataset curation and processing are
essential. %

Existing data remain siloed due to inconsistent digitisa-
tion and the absence of standardised practices for recording,
storage, centralisation, harmonisation, and deidentification.
Variation between institutions, inconsistent data quality,
and selection bias hinder the rapid validation and integra-
tion of novel algorithms into clinical settings owing to
transfer penalties or performance deterioration upon
deployment. Hence, neuro-oncological stakeholder groups
promote the use of standardised data acquisition protocols
and implementation of standard storage, digitisation, and
processing practices.*

Most Al applications to date are supervised—ie, the
applications require annotated data for training. However,
data labelling is often costly, arduous, and prone to inter-
rater variability, particularly in neuropathology, in which
data annotation is not a part of standard clinical routine. This
annotation gap might be alleviated using Al-based auto-
labelling pipelines—eg, leveraging pretrained foundation
models adaptive to novel tasks with few annotated datapoints
(panel 2).

Al-based decision support systems require prospective
validation and seamless integration into routine neuro-
oncological practice. The wealth of neuro-oncological Al
research starkly contrasts with the conspicuous dearth of
prospective validation studies and the paucity of Al appli-
cations receiving regulatory approval. Efforts are under way
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to mitigate these validation and implementation gaps—eg,
by hosting research community-wide tumour segmentation
challenges as reported in a preprint paper,* open-sourcing
pretrained medical Al models,*”” and developing Al-based
medical devices for several key neuro-oncological tasks
(panel 3). Apart from validation studies, developers should
align with existing regulatory frameworks (WHO,*
UNESCO,* and the Organisation for Economic Co-operation
and Development)* to obtain regulatory approval and
provide evidence suggesting that novel technologies
indeed outperform existing workflows through meaning-
ful improvements in clinical outcomes. Fast-track approval
procedures by regulatory agencies (eg, the US Food and
Drug Administration breakthrough device designation)
offer opportunities for dynamic yet responsible innov-
ation. Existing medical devices might serve as a roadmap to
regulatory approval and financial viability for future
applications (panel 3); reimbursement strategies need to
balance patient outcomes and cost-effectiveness.® Devices
without a clear pathway to regulatory approval (eg, gener-
alist assistants) require the invention of flexible recertifi-
cation pathways and novel governance frameworks.
Guidelines should address fairness, reproducibility,
robustness, and adherence to predefined ethical standards—
anchored in human-centred, value-based, and equity-driven
principles®**—while promoting balanced regulation that
does not stifle innovation.

Conclusion

Integrating Al into neuro-oncological practice and research
holds tremendous potential, as shown in areas such as non-
invasive precision diagnosis and response assessment from
clinical and non-routine imaging; translational inference;
discovery of novel biomarkers and histomolecular tumour
subclasses; treatment administration and monitoring;
foundational research into druggable targets for incurable
CNS neoplasms; risk stratification; and development of
BClI-based neuro-rehabilitative devices. Exploratory future
opportunities entail (generalist and agentic) neuro-oncology
assistants, biophysical or causal modelling (eg, neural-
cancer interactions), synthetic data generation, drug and
drug target discovery, and patient stratification for the
administration of tailored therapies. Development and
deployment critically depend on addressing core challenges,
including data gaps; clinical validation of assistive tech-
nologies and Al-based classification schemes; tissue-based
corroboration of biomarkers; rooting generative models of
data and disease in causal and biophysical insights; valid-
ation of druggable targets; and resolving core ethical, legal,
and regulatory issues to ensure responsible, person-centred,
equitable, and needs-based integration of Al-based tools
into neuro-oncology.
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