
Mitigating the black-soil problem in the reflectance-to-fluorescence (R2F) 
relationship: A soil-adjusted reflectance-based approach for 
downscaling SIF

Peiqi Yang a,b,c,*, Zhigang Liu d, Dalei Han a,b,c, Runfei Zhang a,b,c,  
Bastian Siegmann e,k, Jing Liu a,b,c, Huarong Zhao f,g, Uwe Rascher e,l, Jing M. Chen h,i,j,  
Christiaan van der Tol k

a State Key Laboratory of Climate System Prediction and Risk Management, Nanjing, China
b Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing, China
c Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
d State Key Laboratory of Remote Sensing and Digital Earth, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
e Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
f Chinese Academy of Meteorological Sciences, Beijing 100081, China
g Hebei Gucheng Agricultural Meteorology National Observation and Research Station, Baoding 072656, China
h School of Geographical Sciences, Fujian Normal University, Fuzhou, China,
i Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fujian Normal University, Fuzhou, China,
j Department of Geography and Planning, University of Toronto, Toronto, Canada
k Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 217, Enschede 7500 AE, the Netherlands
l University of Bonn, Faculty of Agricultural, Nutritional and Engineering Sciences, Institute of Crop Science and Resource Conservation, Karlrobert-Kreiten-Strasse 13, 
53115 Bonn, Germany

A R T I C L E  I N F O

Edited by: Marie Weiss

Keywords:
Solar-induced chlorophyll fluorescence
Fluorescence escape ratio
Soil effects
Total emitted SIF
Structural and angular correction

A B S T R A C T

Solar-induced chlorophyll fluorescence (SIF) is an effective probe for photosynthesis, but this remote sensing 
signal is affected by multiple factors, including radiation intensity, canopy structure, sun-observer geometry, and 
leaf physiological status. The complex interplay among these factors causes substantial discrepancies among top- 
of-canopy (TOC) SIF, leaf-level average SIF and actual photosynthetic activity. Downscaling TOC SIF to the leaf- 
level and decoupling structural and physiological information remain major challenges in the use of SIF signals 
for remote sensing of photosynthesis. To address these challenges, the R2F (reflectance-to-fluorescence) theory 
was developed, grounded in the similarity in radiative transfer processes governing SIF and reflectance. This 
theory establishes a physical relationship between near-infrared reflectance (Rnir) and the far-red SIF scattering 
coefficient (σF). On this basis, SIF signals can be scaled from the canopy to the leaf level by normalizing σF , 
estimated from reflectance as σF = Rnir/i0, where i0 denotes canopy interceptance. However, the original R2F 
formulation assumes a non-reflective soil. This simplification breaks down in sparse canopies, where soil con
tributions are non-negligible—an issue referred to as the “black-soil problem”. Soil enhances both Rnir and σF , 
distorting their intrinsic relationship. In this study, we show that soil effects manifest through two main 
mechanisms: (1) direct soil reflection, which significantly increases Rnir but has minimal impact on σF , and (2) 
soil–vegetation multiple scattering, which affects both Rnir and σF but tends to have compensatory effects. 
Consequently, the dominant source of bias in the original R2F relationship is direct soil reflection that con
tributes to Rnir—a mechanism that had not been explicitly isolated in previous studies. This finding allows us to 
narrow down the “black-soil problem” in the R2F framework to the specific impact of soil single scattering on 
Rnir. To mitigate this bias, we propose a soil-adjusted R2F (saR2F) method, which estimates the direct soil 
contribution of Rnir using TOC red and blue reflectance. Correcting Rnir for the direct soil reflection results in a 
robust relationship between σF and soil-adjusted Rnir (saRnir), notably σF = saRnir/i0.

We evaluated the saR2F relationship using one field and two simulated datasets. In the field study, saR2F 
improved the estimation of σF from TOC reflectance, with R2 increasing ranging from 0.21 to 0.31 compared to 
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the original R2F. In the two simulations, saR2F consistently outperformed the original R2F, especially under 
sparse canopy conditions. We also compared saR2F with NDVI-based (NIRv) and FCVI-based R2F approaches. In 
the available field observations collected under specific conditions (i.e., varying viewing azimuth angles), the 
three approaches showed similar performance and were better than the original R2F in explaining the viewing- 
angle dependence of σF . However, across the broader range of simulated scenarios and for estimating the exact 
σF , saR2F demonstrated better stability than NIRv and FCVI-based R2F methods. The NIRv-based and FCVI-based 
R2F methods yielded relatively low RMSE (0.092 and 0.075, respectively) but weak explanatory power, with R2 

values below 0.41 for canopies with LAI < 3. In contrast, saR2F achieved a much stronger relationship (R2 =

0.80) and a low RMSE of 0.044. Furthermore, compared to the NIRv or FCVI-based approaches for R2F cor
rections, saR2F offers a more physically plausible and interpretable solution that can be applied to angular 
correction and total SIF estimation. The effective mitigation of the black-soil problem facilitates interpretation of 
raw SIF observations and enhances the monitoring of photosynthetic activity using SIF.

1. Introduction

Solar-induced chlorophyll fluorescence (SIF) emitted by plants dur
ing photosynthesis has been explored as a proxy of actual photosynthesis 
(Baker, 2008; Mohammed et al., 2019b). Remote sensing of SIF by 
hyperspectral sensors provides means to monitor photosynthetic activity 
from space. However, top-of-canopy (TOC) SIF is influenced not only by 
leaf-level physiological processes directly related to photosynthesis, but 
also by factors such as soil background, canopy structure, and sun- 
observer geometry. These non-physiological influences complicate the 
interpretation of TOC SIF and highlight the need for correction or 
decoupling strategies.

The effects of various factors on TOC SIF observations are summa
rized into three key processes according to the light use efficiency (LUE) 
model (Mohammed et al., 2019b): i) the absorption of photosyntheti
cally active radiation (PAR) by vegetation canopies, ii) the emission of 
fluorescence by photosystems, and iii) the scattering of SIF by soil and 
leaves after being emitted by photosystems. The impacts of these pro
cesses are quantified by fraction of absorbed PAR (fPAR), fluorescence 
emission efficiency (ΦF), and scattering coefficient of the emitted SIF 
(σF), respectively (Porcar-Castell et al., 2014; Yang and van der Tol, 
2018). Therefore, TOC observed SIF is expressed as 

SIF = PAR× fPAR×ΦF × σF (1) 

Vegetation canopy structure, leaf physiology, soil and sun-observer 
geometry affect TOC SIF via fPAR, ΦF and σF. Among these three vari
ables, fPAR is commonly used in the field of remote sensing of vegeta
tion and ecological studies. In contrast, σF and ΦF are unique variables 
used in SIF-related studies. The variable σF, describing the ratio of TOC 
directional SIF to total SIF emitted by photosystems, determines the 
angular variation in SIF, and affects the relationship between TOC SIF 
and gross primary productivity (GPP).

In a previous study, we established the link between the scattering 
coefficient of far-red SIF σF (also known as the escape probability of total 
emitted SIF, fesc) and near-infrared (NIR) reflectance Rnir at wavelengths 
close to the far-red SIF retrievals (e.g., around 740–780 nm), by 
comparing their respective radiative transfer processes (Yang and van 
der Tol, 2018). We found that for dense vegetation canopies, or for 
canopies situated above a non-reflecting soil surface, σF was propor
tional to Rnir and to the reciprocal of canopy interceptance (i0), i.e., σF =

Rnir/i0. This relationship is based on the physical principle that, for 
photons of the same frequency, their subsequent interactions within the 
canopy—such as scattering, absorption, or escape—are independent of 
whether the photons originate from leaf scattering (contributing to Rnir) 
or from leaf fluorescence emission (contributing to SIF). The simple 
Rnir − σF relationship is theoretically well-supported by multiple radia
tive transfer theories including the four-stream theory, the successive 
order of scattering theory, and the spectral invariant theory, as 
demonstrated in Yang and van der Tol (2018), and summarized in 
Section 2.1 of this study.

The relationship between Rnir and σF, hereafter referred to as the 
R2F (reflectance-to-fluorescence) relationship, has gained significant 

attention for its role in quantifying the impact of scattering and reab
sorption on TOC far-red SIF. It is crucial for estimating the total emitted 
SIF from vegetation canopies and correcting for the angular effects on 
SIF, both of which are important for improving GPP estimation (Hao 
et al., 2021b; Krämer et al., 2025; Li et al., 2018; Siegmann et al., 2021). 
For example, Lu et al. (2020) applied the R2F relationship in a 
deciduous-broadleaf-forest ecosystem to estimate the total canopy- 
emitted SIF. They found field-measured GPP had a stronger correla
tion with the estimated total SIF than TOC SIF, with R2 increasing from 
0.51 to 0.64. Liu et al. (2019) used the R2F relationship to downscale 
airborne TOC SIF observations to the photosystem level. Their findings 
revealed an enhanced relationship between SIF and absorbed PAR 
(APAR) after SIF downscaling. The R2F relationship also illustrates that 
far-red SIF and Rnir exhibit similar patterns of variation, often showing 
bowl-shaped or dome-shaped distributions as the viewing angle shifts 
from backward to forward scattering directions (He et al., 2017; Joiner 
et al., 2020; Liu et al., 2016). According to this similarity, various 
methods that incorporate multiple angular observations of TOC reflec
tance have been developed to mitigate directional effects on TOC SIF for 
improving GPP estimation (Zhang et al., 2020b).

However, practical applications of the R2F relationship still face at 
least two noteworthy challenges (Mohammed et al., 2019b; Yang et al., 
2020). First, the estimation of σF from Rnir needs the structural variable 
i0, which is not always available reliably. Second, the theoretical rela
tionship between σF and Rnir is formulated by assuming a non-reflective 
soil beneath the vegetation canopy where soil effects are disregarded. 
Consequently, this relationship becomes less reliable in sparse canopies 
where the contribution of soil cannot be ignored.

Regarding canopy interceptance (i0), researchers have sought to 
characterize its spatiotemporal variation using the canopy structural 
parameters. The variable i0 describes the probability that the incident 
photons will interact with leaves rather than going through the canopy 
via gaps (Smolander and Stenberg, 2005; Stenberg et al., 2016). It is 
closely linked with canopy gap fraction, which can be estimated by using 
canopy structural properties, such as leaf area index (LAI) and clumping 
index according to Beer’s law (Stenberg and Manninen, 2015). For 
instance, Lu et al. (2020) estimated the seasonal variations in i0 by using 
the field measurements of LAI, and calculated σF and total SIF emitted by 
canopies. Zhang et al. (2020a, 2019) estimated i0 at the global scale by 
using MODIS remote sensing products of LAI and clumping index. They 
further applied the R2F relationship and derived the total SIF from 
TROPOMI. Zeng et al. (2019) proposed to approximate i0 using fPAR 
products, which are generated from TOC reflectance spectra. Although 
these approaches remain questionable given the inherent uncertainties 
in LAI and fPAR estimation itself, they are still widely used as practical 
proxies for estimating i0 (Bendig et al., 2025; Yang et al., 2020).

In comparison to the amount of research on the estimation of canopy 
interceptance, the investigation of the soil effects has been relatively 
limited. A straightforward approach is to apply a threshold to exclude 
cases with pronounced soil effects, for example, the areas with low 
vegetation coverage. Beyond simple thresholding, NDVI, as an indicator 
of the fraction of vegetation coverage (FVC), has been used to mitigate 
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the soil effects on the R2F relationship. For example, Badgley et al. 
(2017) introduced NIRv as the product of Rnir and NDVI, and reported 
that NIRv, TOC SIF and GPP were strongly correlated via the vegetation 
coverage at the global scale. Researchers suggest that NIRv accounts for 
Rnir contributed by vegetation, and thus can be used to address the soil 
effects on the R2F relationship (Bendig et al., 2025; Hao et al., 2021b; 
Hao et al., 2021a; Zeng et al., 2019). This method leverages the negative 
correlation between NDVI and soil interference, as NDVI is inversely 
related to the fraction of exposed soil and thus to the soil’s contribution 
to Rnir (Wan et al., 2024). Hence, it is expected that the inclusion of NDVI 
in the R2F relationship leads to an improvement in estimated σF 
compared to the original R2F-based approach (i.e., σF = Rnir × NDVI/i0 
vs. σF = Rnir/i0). However, relying on NDVI in a semi-empirical 
approach to remove soil effects on vegetation NIR reflectance may not 
produce a reasonable soil-adjusted R2F relationship. This is because soil 
influences not only vegetation reflectance but also σF. The soil effects on 
σF are often not explicitly addressed in the NDVI-based approaches. 
Furthermore, NDVI is not always a reliable surrogate for FVC, and FVC 
alone cannot fully account for soil-induced variability in Rnir. This is 
because soil effects also depend on spectral variability in soil reflectance 
that is independent of FVC. Therefore, relying solely on NDVI to correct 
soil effects may not yield a physically consistent or accurate soil- 
adjusted R2F relationship.

In addition to NDVI, the fluorescence correction vegetation index 
(FCVI) is also used to estimate σF as FCVI/fPAR (Merrick et al., 2021; 
Siegmann et al., 2021). Yang et al. (2020) demonstrated that although it 
is difficult to estimate fPAR and σF individually by using just TOC 
reflectance, their product can be well approximated by a reflectance 
index, which is FCVI. FCVI is given as the difference of Rnir and broad
band visible (VIS, from 400 to 700 nm) reflectance acquired under 
identical sun-canopy-observer geometry of the SIF measurements. 
Several studies have found that estimating σF using FCVI (i.e., σF =

FCVI/fPAR) performs reasonably well even for sparse canopies (Bendig 
et al., 2025; Siegmann et al., 2021). This may be because the effects of 
soil on both FCVI and fPAR tend to offset each other. Nevertheless, the 
black-soil problem is not explicitly addressed in the development of 
FCVI, and its effectiveness in mitigating soil effects remains unclear.

Other more physically-based approaches have been developed to 
disentangle vegetation and soil contributions to canopy reflectance, 
including spectral unmixing techniques and radiative transfer modeling. 
For example, the NIRvH method estimates the Rnir of vegetation by 
decomposing hyperspectral signals, offering a way to minimize soil 
contributions (Bendig et al., 2025; Zeng et al., 2021). This method is 
based on the assumption of a linear mixture of soil and vegetation 
reflectance. However, when comparing the original NIRv and the more 
recent NIRvH approaches, a potential source of confusion arises. The 
original motivation for introducing NIRv was to account for soil back
ground effects associated with Rnir. Yet in NIRvH, an additional layer of 
soil correction is applied on top of NIRv.

Despite the practical success of both NDVI-based and unmixing- 
based correction strategies, the theoretical underpinnings of each 
remain insufficiently clarified. This ambiguity makes it difficult to 
interpret the reliability and generalizability of these methods. This is 
especially true for SIF-related studies, where quantities such as σF or 
total emitted SIF are nearly impossible to measure directly in the field. 
As a result, we must rely on clear and well-founded theoretical de
velopments to guide interpretation and methodological advances. 
Therefore, regardless of the correction strategy employed, a critical 
prerequisite for improving the performance of R2F (i.e., the Rnir -σF 
relationship) is a clear understanding of how soil influences this rela
tionship. Identifying the specific mechanisms—whether direct soil 
reflection or multiple scattering pathways—that affect both Rnir and σF 
is essential for developing targeted and physically meaningful correc
tions. Building on this understanding, appropriate correction strategies 
can then be devised to address the specific soil-induced effects.

In this study, we present a theoretical analysis of the impact of soil on 

TOC NIR reflectance, the scattering coefficient of far-red SIF, and their 
relationship. Further, we propose a way to account for the soil effects, 
and revise the R2F relationship to estimate the scattering coefficient of 
far-red SIF in sparse canopies. Field and simulated datasets are used to 
evaluate the performance of the soil-adjusted R2F (saR2F) relationship 
in estimating σF or correcting viewing-angle effects of TOC SIF.

2. Theory

2.1. A short review of the R2F relationship for black-soil canopies

The original R2F relationship is expressed as a simple function 

σ0
F =

πFtoc

Ftot
=

R0
nir
i0

(2) 

where Ftoc is TOC SIF and Ftot total emitted SIF. Rnir refers to NIR 
reflectance at wavelengths close to those used for far-red SIF in remote 
sensing applications. The superscripts ‘0’ indicate that the relationship 
holds when soil reflectance is zero (i.e., a black soil condition). Note that 
the superscript is applied to both σF and Rnir, as soil affects not only 
canopy reflectance but also the scattering of SIF—an influence that is 
often not considered.

The R2F relationship is based on the similarity in radiative transfer of 
the intercepted incident flux and the emitted SIF flux, which result in 
TOC NIR reflectance and SIF signals, respectively. A conceptual figure is 
provided to illustrate this relationship (Fig. 1). In canopies with black 
soil, the probability that the emitted SIF are scattered into the direction 
of the observer is denoted as σ0

F , which corresponds to the chance of 
fluxes transfer from F1 to F2 in Fig. 1a. Analogously, the probability that 
incoming solar photons are intercepted and scattered into the same di
rection is represented by R0

nir, corresponding to the probability of flux 
transfer from R0, R1 to R2 in Fig. 1a. Note both multiple scattering 
among leaves and single scattering are included in the paths of R1 to R2 
and F1 to F2. For a more complete derivation, please refer to Yang and 
van der Tol (2018).

Once incident photons from the top of canopy are intercepted with 
probability i0, and subsequently scattered with probability ωnir (i.e., the 
transition from R0 to R1 in Fig. 1a), their subsequent interactions with 
the vegetation canopy follow the same radiative transfer processes as the 
emitted SIF photons at the same wavelength. In other words, the prob
ability of a photon transferring from R1 to R2 is identical to the prob
ability of a photon transferring from F1 to F2. Therefore, the canopy 
reflectance R0

nir, which describes the radiative transfer from R0 to R2, is 
determined by the joint probability of the photon path from R0 to R1 
(with probability i0 × ωnir), and from R1 to R2 (with probability σ0

F): 
R0

nir = i0 × ωnir × σ0
F . Given that leaf albedo in the NIR region ωnir is 

typically close to 1, we obtain the relationship shown in Eq. 2.

2.2. Soil effects on the R2F relationship

When black soil is replaced by a reflective (non-black) soil, both σF 
and Rnir increase due to the enhanced probability that photons scattered 
by leaves are further redirected into the observer’s direction by the soil 
surface. This additional contribution from the soil is depicted by the 
dashed lines in Fig. 1b. Assuming an unchanged vegetation layer, 
increasing soil reflectance (Rsoil) generally leads to concurrent increases 
in both σF and Rnir. However, the soil-induced changes in σF and Rnir are 
not necessarily proportional. This discrepancy implies that the original 
relationship σF = Rnir

i0 , which holds true under black-soil conditions, may 
no longer be valid in the presence of non-black soils.

Soil enhances TOC NIR reflectance through two main mechanisms: 
(i) directly reflecting incoming solar radiation toward the sensor, 
following the path SR4 → SR5 → SR6 in Fig. 1b, and (ii) reflecting ra
diation scattered by leaves and further redirecting it toward the sensor 
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via SR1 → SR2 → SR3, including multiple scattering between soil and 
leaves. In contrast, soil affects the scattering coefficient of emitted far- 
red SIF primarily by reflecting SIF radiation emitted by leaves back 
into the canopy, thereby increasing the observed canopy SIF signals, as 
illustrated by the path SF1 → SF2 → SF3 in Fig. 1b. Owing to the simi
larity of radiative transfer at the same wavelength, the probability of 
photon transfer along SR1 → SR2 → SR3 is identical to that along SF1 → 
SF2 → SF3. The key distinction is the additional contribution of direct 
solar radiation to Rnir through SR4 → SR5 → SR6, a mechanism that does 
not apply to SIF, since SIF originates within the canopy rather than from 
solar input.

It is important to note that while soil can enhance total SIF emission 
by increasing the PAR absorbed by the vegetation canopy, this effect 
does not directly influence the scattering coefficient of SIF and thus does 
not affect the R2F relationship. Beyond the conceptual and pathway- 
based analysis presented in Fig. 1, we further employed the four- 
stream radiative transfer theory to quantitatively model the influence 
of soil on both σF and Rnir, and to assess its impact on the validity of the 
R2F relationship. The detailed mathematical derivation and model 
formulation are provided in Appendix A.

2.3. Soil adjustment of the R2F relationship

To revise the R2F relationship to account for soil effects, it is 
necessary to remove the contribution of direct soil reflection (denoted as 
ρs1

nir) from the TOC NIR reflectance. This leads to the soil-adjusted R2F 
relationship: 

σF =
Rnir − ρs1

nir
i0

(3) 

This formulation is consistent with the original R2F relationship for 
black-soil canopies, as presented in Eq. 2. Specifically, when the soil 
reflectance is zero, ρs1

nir becomes zero, and Eq. 3 simplifies to Eq. 2. For 
dense canopies, where the underlying soil is largely masked by the 
vegetation, ρs1

nir remains small and the difference between the adjusted 
and unadjusted relationships is negligible. However, for sparse canopies 
with bright soils, where ρs1

nircan be substantial, this correction becomes 
essential to accurately represent the relationship between σF and Rnir.

Yang et al. (2025) develop three approaches to estimate the direct 
soil reflection component ρs1

nir, based on distinct spectral signatures of 
soil and vegetation. The term ρs1

nir, is calculated as the product of the 
probability that the soil is both sunlit and visible to the sensor (Psoil

so ) and 

the soil reflectance in the NIR (Rs
nir). Two of the methods rely on known 

soil reflectance data: (1) a single-band approach using red reflectance 
(RBB), where Psoil

so is estimated as R675/Rs
675, and (2) a two-band 

approach based on the spectral contrast between red and blue bands 
(TBB), where Psoil

so is estimated as (R675 − R438)/
(
Rs

675 − Rs
438

)
. However, 

the applicability of these two methods is limited in practice due to their 
dependence on accurate soil reflectance measurements, which are not 
always readily available in heterogeneous or natural environments.

To address the limitation of requiring known soil reflectance, a third 
method was proposed that avoids this dependency by assuming a near- 
linear spectral dependence of soil reflectance between 400 and 1000 nm 
(LAB). Under this assumption, the contribution of direct soil reflection to 
TOC reflectance increases linearly with wavelength, given that Psoil

so is 
spectrally independent. 

ρs1
λ = Psoil

so ×(ksλ+ bs) (4) 

For green vegetation, leaf albedo in the blue and red spectral regions 
is close to zero, meaning that TOC reflectance at these wavelengths 
primarily originates from direct soil reflection. Because chlorophyll 
exhibits maximum absorption near 438 nm and 675 nm, the TOC 
reflectance at these bands can be used to approximate the corresponding 
direct soil contributions: 

ρs1
438 = Psoil

so ×(438ks + bs) = R438 (5a)  

ρs1
675 = Psoil

so ×(675ks + bs) = R675 (5b) 

where ρs1
λ represents the contribution of soil single scattering to TOC 

reflectance at wavelength λ in nanometers (nm); Psoil
so is the probability 

that the soil is illuminated by the sun and observed by the sensor; ks and 
bs are the slope and intercept of the linear fit between soil reflectance 
Rs(λ) and wavelength λ in the range of 400 nm to 800 nm, respectively; 
Rλ is the TOC reflectance at wavelength λ. Therefore, the contribution of 
direct soil reflection to TOC NIR reflectance can be predicted from blue 
and red TOC reflectance through linear extrapolation by combining Eq. 
4 and 5. For instance, at 770 nm, the direct soil reflection component can 
be estimated as: 

ρs1
770 = Psoil

so ×(770ks + bs) = 1.40R675 − 0.40R438 (6) 

By substituting Eq. 6 into Eq. 3, we obtain a semi-empirical R2F 
formulation that corrects for soil effects without requiring prior 
knowledge of soil spectral properties. 

Fig. 1. Diagram illustrating the radiative transfer of incident solar fluxes (black lines) and emitted SIF fluxes (red lines) for (a) black-soil canopies and (b) non-black- 
soil canopies. The text notations in the diagram—’R’, ‘F’, ‘SR’, and ‘SF’—represent photon positions associated with reflectance (R), SIF (F), reflectance contributed 
by soil (SR), and SIF contributed by soil (SF), respectively. The notations on the arrowed lines indicate the probability of flux transfer between different positions. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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σF =
R770 − 1.40R675 + 0.40R438

i0
(7) 

The saR2F relationship also aligns with the original R2F relationship 
for black-soil canopies in Eq. 2. When the soil reflectance is zero, the 
term 1.40R675 − 0.40R438 becomes negligible, and Eq. 7 reduces to Eq. 2. 
It is important to note that TOC reflectance at 770 nm was used as an 
approximation for the true value at 760 nm. This is because remotely 
sensed apparent TOC reflectance at 760 nm is often overestimated due to 
fluorescence effects, which can distort the actual signal. For conve
nience, we refer to Rnir − 1.40R675 + 0.40R438 as saRnir (soil-adjusted 
Rnir) hereafter. For detailed descriptions of the soil correction methods 
and their evaluation, the readers are referred to Yang et al. (2025).

3. Evaluation

3.1. Evaluation with field multi-angle experiment

Due to the inherent challenges of directly measuring σF or Ftot in the 
field, direct validation of the methods in Table 1 using these quantities is 
often unfeasible. To address this limitation, we conducted a dedicated 
multi-angular field experiment, i.e., field measurements under fixed 
canopy structure and illumination conditions, with only the viewing 
angle varying. Under these controlled conditions, both Ftot and i0 remain 
relatively constant, so the observed variation in Ftoc proportionally re
flects changes in σF: 

σF∝Ftoc (8) 

We assessed the methods listed in Table 1 by examining the corre
lation between Ftoc and the numerator of each R2F formulation, 
including Rnir, saRnir, NIRv and FCVI. We hypothesize that all four 
reflectance-based metrics should exhibit a positive correlation with Ftoc, 
as their angular responses are expected to follow a similar directional 
pattern. Moreover, under conditions of low vegetation cover, saRnir is 
expected to show a stronger correlation with Ftoc than Rnir, owing to its 
enhanced ability to account for soil background effects.

3.1.1. Study site and experimental setup
Field experiments on winter wheat (Triticum aestivum L.) were con

ducted on March 16 and 21, 2025, in Gucheng, Baoding City, China 
(39.14455◦N, 115.73785◦E). The experimental plot has a size of 24 ×
12 m with an average elevation of 15.2 m above sea level. The site ex
periences a mean annual temperature of 12.1 ◦C and an average annual 
precipitation of 479.6 mm.

Wheat was sown on October 17, 2024, in north–south-oriented rows 
at a density of approximately 700,000 plants ha− 1, corresponding to 6.8 
rows per meter perpendicular to the row direction, with a 5-cm inter- 

row spacing. During the measurement period, the canopy had an 
average height of ~12 cm and exhibited partial closure, with clearly 
visible row structure and exposed bare soil between rows. We deliber
ately selected a period with relatively low vegetation coverage for 
analysis, as higher coverage tends to reduce the variability of observed 
SIF across different viewing azimuth angles. Under such conditions, the 
differences in SIF signals observed from different viewing angles become 
less pronounced, making it difficult to evaluate the performance of the 
saR2F relationship through correlation analyses among relevant vari
ables, e.g., Ftoc from different viewing angles and Rnir.

3.1.2. Instrumentation and measurement protocol
The canopy observation system comprised a computer-controlled 

pan-tilt unit (PTU-E46, FLIR Systems, USA) mounted on a 2 m-high 
platform, integrating a dual-spectrometer measurement system. The 
PTU, driven by a stepper motor and rotating platform, executed 
software-controlled rotations in both azimuth and elevation to enable 
automated, multi-angular measurements. Two spectrometer probes, 
each with a 25◦ field of view, were affixed to the PTU to simultaneously 
measure canopy reflectance and SIF. Reflectance data were collected 
using an HR2000 spectrometer (Ocean Insight Inc., Dunedin, FL, USA), 
which covers the 300–1200 nm spectral range with a resolution of 3 nm. 
These data were used to compute the reflectance-based terms in the R2F 
formulations. For SIF retrieval, a QE65Pro spectrometer (Ocean Insight 
Inc., Dunedin, FL, USA) was employed, offering a higher spectral reso
lution of 0.7 nm over the 640–800 nm range with 1036 channels. Far-red 
SIF was calculated with the spectral fitting method (SFM, Cogliati et al., 
2019). Further details about the measurement system can be found in 
Yang et al. (2025).

Data collection was conducted near solar noon (11:30–13:30 local 
time) under stable illumination conditions. During the measurement 
period, the solar zenith angle (SZA) varied from 38◦ to 43◦. Angular 
sampling followed a structured protocol: each observation sequence 
comprised measurements at 13 predefined azimuth angles (ranging from 
60◦ to 300◦ in 20◦ increments), with zenith angles dynamically adjusted 
to match the real-time SZA, capped at a maximum of 40◦. This strategy 
yielded a sector-shaped observation footprint with an approximate 
radius of 2.6 m (see Fig. 2). Each observation sequence lasted ~6 min, a 
duration short enough to assume negligible variation in both total 
incoming radiation and the fraction of intercepted radiation (i0), and 
thus total emitted SIF (Ftot). One complete observation sequence was 
conducted every 30 min, resulting in four datasets collected per day 
during the selected time window.

Supporting biophysical parameters were collected to characterize 
canopy structure. LAI was quantified using a destructive sampling 
method. To calculate LAI, we first measured the total single-sided leaf 
area (SLA) from wheat leaves sampled along a 0.3-m row segment. The 
leaf area per unit row length (LA, in m2⋅m− 1) was then calculated as: LA 
= SLA/0.3. To upscale to plot-level LAI, we considered the number of 
rows per meter in the cross-row direction (6.8 rows⋅m− 1) and the total 
plot dimensions (M × N, in meters), where M is the row length and N is 
the cross-row width. The leaf area per row is LA × M, and the number of 
rows in the plot is N × 6.8. Hence, the total leaf area over the entire plot 
is given by: LA × M × 6.8 × N. LAI was calculated by normalizing the 
total leaf area by the ground area (M × N): SLA/0.3 × 6.8. This 
simplification assumes uniform row spacing and plant distribution 
across the plot. The LAI values of the wheat canopy were 0.71 and 0.89 
on March 16 and 21, 2025, respectively.

3.2. Evaluation with the SCOPE model

Because accurate field measurements of σF or Ftot are difficult to 
obtain, we employed virtual scenarios and radiative transfer models 
(RTMs) to directly evaluate the proposed soil correction methods. RTMs 
simulate the values of σF, Ftot, i0 and canopy reflectance based on 
physical principles, enabling direct testing of the relationships outlined 

Table 1 
Formulae of the original R2F relationship, and the soil-adjusted R2F relationship 
to estimate the scattering of far-red SIF with NIR reflectance.

Labels Formulae References

Original R2F σF =
Rnir

i0
(Yang and van der Tol, 
2018)

saR2F σF =
Rnir − 1.40R675 + 0.40R438

i0
=

saRnir

i0

This study

NDVI-based 
R2F

σF =
Rnir × NDVI

i0
=

NIRv

i0
(Badgley et al., 2017; Zeng 
et al., 2019)

FCVI-based 
R2F

σF =
FCVI

i0
=

Rnir − Rvis

i0
(Yang et al., 2020)

Note: Rnir refers to the reflectance at approximately 770 nm, consistent with the 
far-red SIF retrieval region. Rvis is the average reflectance over the 400–700 nm 
range. NDVI is calculated using the MODIS band configuration (Red: 620–670 
nm; NIR: 841–876 nm).
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in Table 1.

3.2.1. The SCOPE model
SCOPE (Soil-Canopy Observation of Photochemistry and Energy 

fluxes, Van Der Tol et al., 2009; Yang et al., 2021) is one of the most 
widely used models for analyzing the factors and processes that govern 
TOC SIF. In SCOPE, vegetation is typically represented as a single ho
mogeneous layer of leaves situated above a soil surface, with leaf 
orientation allowed to vary within the canopy. The model integrates a 
leaf-level RTM (Fluspect), multiple canopy-level RTMs, and an energy 
balance module. At the leaf level, Fluspect simulates leaf reflectance, 
transmittance, and both forward and backward fluorescence emission 
(Vilfan et al., 2018). At the canopy scale, RTMo and RTMf—two radia
tive transfer models based on the SAIL framework (Verhoef, 1984) 
—simulate the transfer of incident radiation and the emission of fluo
rescence, respectively. The model is publicly available in an online re
pository: https://github.com/Christiaanvandertol/SCOPE.

SCOPE generates all the other necessary variables for evaluating the 
original R2F, soil-adjusted R2F (saR2F), NDVI-based and FCVI-based 
R2F relationships. These variables include TOC spectral reflectance 
R(λ), canopy interceptance i0 and the true scattering coefficient of far- 
red SIF (σF) at 760 nm. Among these variables, TOC reflectance is a 
direct output of SCOPE, while σF and i0 are intermediate variables 
derived within the model. The scattering coefficient σF is computed as 
the ratio of TOC SIF and canopy total emitted SIF, both simulated by 
RTMf. The canopy interceptance i0 is calculated in SCOPE as 1 −

exp( − kL), where k is the extinction coefficient and L is the canopy LAI, 
assuming direct illumination. The extinction coefficient k depends on 
the solar zenith angle and the leaf inclination distribution. This formu
lation is consistent with the definition of canopy interceptance used in 
Smolander and Stenberg (2005).

3.2.2. Synthetic scenarios
The first set of synthetic scenarios aimed at testing the overall per

formance of the R2F relationships listed in Table 1. A wide range of 
synthetic scenarios were generated to examine the soil effects on Rnir and 
σF, and to evaluate the performance of the original R2F, saR2F, NDVI- 
based and FCVI-based R2F relationships in estimating σF. These sce
narios covered all possible combinations of soil reflectance, leaf bio
physical properties, canopy structural parameters, and sun-observer 
geometry listed in Table 2. The setup largely followed Yang and van der 

Tol (2018), but with an expanded range. Specifically, LAI varied from 
0.5 to 8 m2 m− 2, leaf chlorophyll content from 10 to 80 μg⋅cm− 2. Leaf 
angle distribution (LAD) types included spherical, planophile to erec
tophile. Three different soil backgrounds were used, with NIR reflec
tance at 760 nm equaling 0.3, 0.2 and 0.1. The corresponding soil 
reflectance spectra, derived from field measurements, are available in 
the online GitHub repository. Solar zenith angles (θs) were set to 30, 45 
or 60 degrees, and the viewing angles (θo) were set to 0, 20, 40 or 60 
degrees. These variables were selected due to their known influence on 
canopy reflectance and SIF (Hinojo-Hinojo and Goulden, 2020), 
whereas other parameters—such as leaf water and dry matter con
tent—were kept at the default values defined in SCOPE.

The second set of synthetic scenarios was designed to evaluate the 
performance of the R2F relationships listed in Table 1 in correcting for 
viewing-angle effects. This design mirrored the setup of the field 
experiment but explored a broader range of canopy LAI conditions and 
viewing zenith angles. The simulations comprised four groups, each 
representing a different canopy LAI, while keeping canopy LAD, soil 
background, and leaf optical properties constant. Specifically, a spher
ical LAD, a dry soil surface, and SCOPE default leaf biochemical pa
rameters were applied. Within each group, observations were simulated 
at 2◦ intervals for both viewing zenith and azimuth angles, with a finer 
1◦ interval in the hot spot direction to better capture angular effects. The 
solar zenith angle was fixed at 30◦ to maintain consistent illumination 
across scenarios and enable a systematic analysis of the impact of 
viewing geometry. For canopies with the same LAI, variations in viewing 
angle do not affect Ftot but do influence σF, thereby altering Ftoc. 
Consequently, estimating σF using the R2F methods enables subsequent 
estimation of Ftot . By comparing the true and R2F-derived Ftot values 

Fig. 2. Setup for multi-angular observations of SIF and reflectance (a). Nadir-view RGB images of the wheat canopy taken on March 16 and 21, 2025, are shown in 
(b) and (c), respectively. The blue cross symbols indicate the predefined viewing azimuth angles (VAA). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)

Table 2 
Summary of SCOPE inputs applied for the generation of the dataset.

Variables Definitions Units Values

Cab Chlorophyll a + b 
content

μg cm− 2 10, 20, 30,40, 50, 60,70 or 80

LAI Leaf area index m2 m − 2 0.5, 1, 2, 3, 4, 5, 6, 7 or 8
LAD Leaf angle distribution – spherical, planophile, or 

erectophile
θs Solar zenith angle degree 30, 45 or 60
θo Viewing zenith angle degree 0, 20, 40 or 60
RS Soil reflectance – 0.1, 0.2, 0.3 at 760 nm
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across different LAI levels, we assessed the accuracy and robustness of 
the various R2F-based approaches, and identify the most reliable 
formulation under varying canopy densities.

4. Results

4.1. Performance of the four R2F methods across synthetic scenarios

4.1.1. Overall performance of the four R2F methods
We evaluated the performance of four R2F methods across the first 

set of synthetic scenarios. Among them, soil-adjusted R2F (saR2F) shows 
the least sensitivity to LAI, whereas the original R2F relationship, which 
exhibits substantial errors in low LAI cases (LAI < 3; Fig. 3a vs. Fig. 3c). 
For dense canopies (LAI ≥ 3), the original R2F relationship provides 
accurate estimates of σF, with a low RMSE of 0.040 and high R2 of 0.817 
(Fig. 3b). However, for sparse canopies (LAI < 3), particularly for LAI <

1, it significantly overestimates σF —sometimes predicting values as 
high as 3. This leads to a much larger RMSE of 0.238 for low LAI cases, 
and a negative R2of − 8.393 (Fig. 3a).

In contrast, the saR2F method maintains robust performance across 
canopy densities, with RMSEs substantially lower than the original R2F. 
Specifically, it achieves RMSEs of 0.044 for LAI < 3 and 0.051 for LAI ≥
3. The R2 values using the 1-to-1 model are 0.802 and 0.790, respec
tively (Fig. 3c and d). These values indicate consistently accurate pre
dictions and a strong 1:1 correspondence with true σF.

The NDVI-based and FCVI-based R2F methods also outperform the 
original R2F in sparse canopies. For LAI < 3, the FCVI-based and NDVI- 
based methods yields low RMSE of 0.075 and 0.092, respectively 
(Fig. 3e-3g). However, both methods exhibited low R2 values under 
sparse conditions (R2 = 0.405 for FCVI and 0.376 for NDVI), indicating 
that they failed to capture the variability in σF and tended to make over- 
regularized predictions centered near the mean. In dense canopies (LAI 
≥ 3), the original R2F method remains the most accurate (RMSE =
0.040), followed by saR2F (0.051), NDVI-based (0.067), and FCVI-based 
(0.069). The predictions from the saR2F are more tightly along the 1:1 
line than the NDVI-based and FCVI-based R2F methods.

Further comparing the three soil-adjusted R2F methods, we find that 
the saR2F method exhibits the most stable performance across all NDVI 
ranges, with relative errors generally within ±35 % (Fig. 4). As NDVI 
increases, the error distribution becomes narrower. Specifically, when 
NDVI >0.8 (Fig. 4d), the errors for saR2F are tightly constrained be
tween approximately − 15 % and 0 %. In contrast, the NDVI-based R2F 
method systematically underestimates σF across all NDVI ranges, 
particularly evident when NDVI is below 0.6 (Fig. 4a and b), where the 
median errors approach − 20 %. The FCVI-based R2F method shows 
intermediate performance: although it also tends to slightly underesti
mate σF, the errors are smaller and more symmetrically distributed 
compared to the NDVI-based method, especially when NDVI is higher 
than 0.6 (Fig. 4c and d). Overall, the performance of all three soil- 
adjusted R2F methods is better for the denser canopy (higher NDVI), 
but the saR2F consistently achieves the best accuracy and stability.

4.1.2. Performance of the four R2F methods for correcting viewing angle 
effects

In comparing the accuracy of four R2F methods for correcting 
viewing angle effects and obtaining Ftot , we find that all methods 
perform adequately when LAI ≥ 3. However, for sparser canopies, the 
advantage of the soil-adjusted R2F (saR2F) method becomes increas
ingly evident (Fig. 5). For LAI = 0.5 (Fig. 5a), the original R2F method 
shows the largest error, with a median error of approximately 55 %. The 
NDVI-based and FCVI-based methods offer notable improvements, 
reducing the median error to around 25 % and 24 %, respectively. In 
contrast, the saR2F method yields the most accurate results, with me
dian errors close to zero.

A similar pattern is observed at LAI = 1 (Fig. 5b): the original R2F 
method still produces a median error of about 38 %, while the NDVI- 
based and FCVI-based methods perform better, and the saR2F method 
once again achieves near-zero error. As LAI increases to 3 and 6 (Fig. 5c 
and d), the errors from the original R2F method markedly decrease, and 
all four methods provide reliable estimates, with median errors 
converging to around 10 %.

To assess how viewing geometry influences the performance of the 
R2F methods, we analyzed the relative errors as a function of viewing 
angle for a representative canopy with LAI = 0.5 (Fig. 6). The original 
R2F method exhibits the largest errors, with relative errors exceeding 
60 % across most angles (Fig. 6a). In contrast, the saR2F method shows 
consistently low errors, generally remaining below 5 % regardless of 
viewing direction (Fig. 6b). The FCVI-based method performs moder
ately well, with errors above 30 % at narrow viewing angles, decreasing 
to below 10 % at viewing zenith angles greater than 60◦ (Fig. 6d). The 
NDVI-based method displays a similar trend, with errors above 30 % 
across most viewing angles, improving only at extreme off-nadir angles 

Fig. 3. Comparison between true and estimated scattering coefficient of far-red 
SIF (σF) using four R2F based methods: the original R2F, soil-adjusted R2F 
(saR2F), NDVI-based (NIRv) and FCVI-based R2F, under various non-black-soil 
scenarios. Left panels correspond to sparse canopies (LAI < 3); right panels 
correspond to dense canopies (LAI ≥ 3). RMSE and R2 values are shown in each 
panel, with R2 computed based on the 1:1 (slope = 1) model. (For interpreta
tion of the references to colour in this figure legend, the reader is referred to the 
web version of this article.)
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(>70◦). Overall, relative errors tend to decrease with increasing viewing 
zenith angle, as when viewing at these large angles the effect of the soil 
becomes again negligible.

4.2. Performance across multi-angle field SIF observations

When evaluating the performance of the four R2F methods using the 
field datasets by examining the correlation between R770, saR770, NIRv 
and FCVI and Ftoc, we find that the three soil-adjusted methods consis

tently outperform the original R2F method. On March 16 (LAI = 0.71; 
Fig. 7a–d), the original R2F method shows the weakest performance, 
with correlation coefficients between R770 and Ftoc ranging from 0.54 to 
0.71. In contrast, the saR2F method achieves significantly higher cor
relations, improving by 0.21–0.31 over the original R2F. The NDVI- and 
FCVI-based methods also yield stronger correlations, exceeding the 

Fig. 4. Relative errors in the estimated scattering coefficient of far-red SIF (σF) using the soil-adjusted R2F (saR2F), NDVI-based (NIRv) and FCVI-based R2F re
lationships for various NDVI levels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. The relative errors in estimating canopy total emitted SIF (Ftot) from 
TOC SIF (Ftoc) observed at various viewing angles by using the original R2F, 
soil-adjusted R2F (saR2F), NDVI-based (NIRv) and FCVI-based R2F relation
ships across four LAI levels (0.5, 1, 3, and 6). Fig. 6. The angular distribution of relative errors in estimating canopy total 

emitted SIF (Ftot) from TOC SIF (Ftoc) by using the original R2F, soil-adjusted 
R2F (saR2F), NDVI-based (NIRv) and FCVI-based R2F relationships for a can
opy with LAI of 0.5.
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original R2F by 0.20–0.32 and 0.17–0.23, respectively.
When LAI is slightly higher (March 21, LAI = 0.89; Fig. 7e–h), the 

original R2F method shows moderate improvement compared to the 
correlation on March 16, with correlations rising to 0.69–0.81. Although 
the performance of the original R2F improves, the soil-adjusted methods 
still perform better. saR770 and Ftoc maintain high correlation co
efficients ranging from 0.75 to 0.93, while the correlations for NDVI- 
and FCVI-based methods range from 0.72 to 0.92 and 0.84 to 0.89, 
respectively.

The correlation between Ftoc and R770 is relatively weak (ρ = 0.69 ±
0.09), indicating the limited reliability of the original R2F approach 
under varying geometric conditions (Table 3). In contrast, the three soil- 
adjusted R2F methods—saR770, NIRv and FCVI—exhibit much stronger 
correlations with Ftoc, with ρ values of 0.87 ± 0.06, 0.87 ± 0.07, and 
0.85 ± 0.05, respectively. Among the soil-adjusted indices, saR770 and 
NIRv are almost perfectly correlated (ρ = 0.99 ± 0.00), suggesting that 
they are nearly interchangeable in this dataset. FCVI also shows high 
consistency with both saR770 (ρ = 0.86 ± 0.07) and NIRv (ρ = 0.87 ±
0.06), highlighting the strong internal agreement among the three soil- 
adjusted approaches. These results collectively underscore the advan
tage of soil-adjusted methods over the original R2F in improving the 
stability and accuracy of Ftoc estimation across different viewing 
geometries.

5. Discussion

5.1. Soil correction to the original R2F relationship

We extended the original R2F framework by explicitly addressing the 
black-soil assumption problem. We presented a theoretical analysis 
showing that although soil enhances both Rnir and σF, the impact of 
soil–vegetation multiple scattering on Rnir and σF tends to cancel out, 
and the dominant additional effects on the original R2F relationship 
stem from direct soil reflection on Rnir. The extra contribution of direct 
soil reflection aligns with the simulation results that the magnitude of 
the soil-induced enhancement of Rnir is greater than that of σF (see Ap
pendix B). Based on this insight, we developed a saR2F relationship by 
incorporating TOC red and blue reflectance to estimate the direct soil 
reflection and correct it. This improved relationship allows a more ac
curate estimation of σF, especially in sparse canopies where the soil 
signal is strong.

Field and simulation experiments confirmed that the saR2F rela
tionship outperforms the original R2F relationship, especially under low 
vegetation cover conditions (Figs. 3–7). When the canopy is sparse, the 
interception of incoming radiation is low. If soil reflectance is assumed 
to be zero, both Rnir and i0 would be very small, and Rnir/i0 would yield 
values comparable to σF. However, when the soil is reflective, Rnir be
comes higher while i0 remains small, leading to unrealistically large 
values of Rnir/i0 and rendering it unreliable for estimating σF (e.g., blue 
dots in Fig. 3a). This phenomenon is consistent with the simulations 
reported by Zeng et al. (2019) and was recognized by Yang and van der 
Tol (2018) as the “black-soil background problem”. After applying the 
soil correction, these outliers are largely eliminated, and the estimated 
σF falls within a physically reasonable range, especially for sparse can
opies (Fig. 3b). We also observed that soil correction becomes increas
ingly necessary with decreasing vegetation LAI, as lower canopy 
coverage leads to greater exposure of soil, which biases the estimation of 
σF from uncorrected Rnir. By removing the direct soil contribution of Rnir, 
the correspondence between reflectance and σF is significantly 
improved.

The saR2F relationship also provides improved angular correction of 
TOC SIF using TOC reflectance, particularly when observing at different 
viewing zenith angles (Fig. 6). In dense canopies, changes in viewing 

Fig. 7. Pearson correlation coefficients (ρ) among Ftoc and R770, saR770, NIRv and FCVI. Panels (a) to (d) correspond to measurements on March 16, LAI = 0.71, while 
panels (e)–(h) correspond to March 21 (LAI = 0.89). Each panel represents one set of data collected within a short period under similar illumination but different 
viewing azimuth angles.

Table 3 
Pearson correlation coefficients (mean ± standard deviation) among Ftoc and 
R770, saR770, NIRv and FCVI, based on eight groups of multi-angular observa
tions collected under different viewing azimuth angles. The reported mean and 
standard deviation represent the statistics of the eight groups of measurements 
taken over two days, as shown in Fig. 7.

Ftoc R770 saR770 NIRv FCVI

Ftoc 1.00
R770 0.69 ± 0.09 1.00
saR770 0.87 ± 0.06 0.62 ± 0.14 1.00
NIRv 0.87 ± 0.07 0.63 ± 0.13 0.99 ± 0.00 1.00
FCVI 0.85 ± 0.05 0.93 ± 0.03 0.86 ± 0.07 0.87 ± 0.06 1.00
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angle mainly affect the relative contributions of sunlit and shaded leaves 
to both reflectance and SIF. Due to the similarity in radiative transfer 
processes for Rnir and SIF within the vegetation layer, their directional 
effects are nearly identical, as supported by Liu et al. (2016), He et al. 
(2017) Joiner et al. (2020) and our results (Fig. 5c and d). However, in 
sparse canopies, changes in viewing angle not only alter the sunlit–
shaded leaf ratio but also substantially affect the observed soil fraction. 
Soil directly reflects incoming radiation and enhances Rnir, but does not 
emit SIF. This distorts the relationship between Rnir and σF under the 
non-black soil condition, as shown in Figs. 5a, b, 6, and 7.

The observed systematic underestimation of σF (Fig. 3b–d) when 
using saR2F or related R2F-based approaches (e.g., NIRv and FCVI) can 
be attributed to several factors. First, the theoretical relationship be
tween σF and Rnir is defined as σF = Rnir/(i0ωnir) according to the orig
inal R2F framework, where ωnir is the NIR leaf albedo (Yang and van der 
Tol, 2018). In practice, however, due to the difficulty in directly 
measuring leaf albedo, ωnir is often assumed to be 1 for simplicity. While 
this assumption is generally acceptable, it leads to an underestimation of 
σF because actual ωnir values are typically lower. Using more realistic 
ωnir values (i.e., 0.95 or 0.9) in practical applications can help alleviate 
this bias. Second, the LAB soil correction method proposed by Yang et al. 
(2025), employed in our analysis, has been found to overestimate the 
direct soil contribution (see Fig. 8c in Yang et al., 2025), thereby 
contributing to the systematic underestimation of σF. Third, the R2F 
framework was proposed by assuming equivalence between leaf 
reflectance and transmittance. While this simplification may introduce 

some bias, our earlier study showed that the effect of optical asymmetry 
does not cause a consistent offset (see Fig. 10B in Yang and van der Tol, 
2018), which differs from the consistent underestimation of σF as shown 
in Fig. 2. Therefore, we conclude that the assumption of ωnir = 1 and 
potential overcorrection by the soil adjustment method are the primary 
sources of σF underestimation, and addressing these issues will be 
important for improving the accuracy of future R2F-based approaches.

5.2. The effectiveness and limitations of the NDVI- and FCVI-based 
approaches

The development of saR2F highlights that incorporating TOC red and 
blue reflectance helps to mitigate soil effects on the R2F relationship. 
This insight also sheds light on the effectiveness and limitations of other 
soil correction approaches such as NDVI- and FCVI-based methods. Both 
indices involve reflectance in the visible range to empirically or semi- 
empirically suppress soil contributions to NIR reflectance.

Our theoretical analysis suggests that removing the single-scattering 
contribution of soil to Rnir is key to solving the black-soil problem. Both 
NDVI (as in NIRv) and visible reflectance (as in FCVI) achieve correction 
by reducing the soil-related component in Rnir. NIRv was initially pro
posed as a semi-empirical index based on its strong correlation with SIF 
and GPP (Badgley et al., 2017). Later studies linked NIRv to σF and 
explained its soil-correction capability by considering that NDVI ap
proximates FVC, allowing Rnir scaled by NDVI to represent vegetation- 
only reflectance (Zeng et al., 2019).

Fig. 8. Comparison of FCVI-based and NIRvH-based R2F methods, using the same dataset as in Fig. 3. (a) The key fitting parameter k in the NIRvH approach, 
estimated using TOC reflectance from either the red band (675–681 nm) or the NIR band (778–800 nm). (b) Direct comparison between FCVI and NIRvH values. 
(c–d) True and estimated σF estimated using NIRvH and FCVI, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)
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The use of NDVI × Rnir (i.e., NIRv) to estimate the NIR reflectance of 
‘pure’ vegetation reflects the intuitive notion that vegetation contribu
tion to the canopy signal increases with NDVI. However, this approach 
suffers from a fundamental logical inconsistency. For example, in a pure 
soil scene, the observed NDVI equals that of bare soil, which is typically 
greater than zero. In such cases, NIRv yields a non-zero value, even 
though the NIR reflectance of ‘pure’ vegetation should be zero by defi
nition. Conversely, in a fully vegetated scene with no soil contribution, 
the observed TOC NIR reflectance should correspond directly to the NIR 
reflectance of pure vegetation. Yet, because canopy NDVI rarely reaches 
1, NIRv underestimates the true vegetation signal. These inconsistencies 
highlight a key limitation of this empirical approximation. As such, this 
formulation may introduce bias in the retrieval of vegetation optical 
properties and warrants careful re-evaluation in soil correction models.

Similar to NIRv, FCVI performs reasonably well in practice, although 
it was originally developed under the assumption of non-reflective soil 
(i.e., black soil), (Figs. 3–7). Structurally, the FCVI-based and saR2F 
approaches are quite similar—both rely on subtracting a visible- 
reflectance-based component from Rnir. The apparent effectiveness of 
FCVI may be attributed to its ability to capture variations in FVC when 
soil reflectance remains constant. As vegetation cover increases, the TOC 
visible reflectance tends to approximate that of pure vegetation; 
conversely, in sparse canopies, it approaches that of bare soil. Thus, 
although FCVI does not explicitly isolate the soil contribution, its 
dependence on visible reflectance allows it to track FVC-related 
changes, partially mitigating soil background effects under certain 
conditions. Nevertheless, we found this is insufficient, and believe the 
generalizable basis for correcting soil effects on the R2F relationship in 
this study was necessary.

Both NIRv-based and FCVI-based methods show low RMSE, which 
might suggest good performance (Fig. 3). However, when comparing the 
estimated and true σF, their R2 values are low, indicating that the esti
mates may simply cluster around the mean of the true values. This 
pattern implies that, despite low RMSE, these methods have weak 
explanatory power for variations in σF. This may reflect a potential issue 
with NDVI-based correction—while NDVI is related to soil contribution, 
simply multiplying Rnir by NDVI does not effectively remove the soil 
effect, and highlights the need for caution when using them in soil 
correction models.

It is important to note that in our soil correction, we did not adopt the 
NIRvH method. There are several reasons for this decision. First, NIRvH 
is by design intended to correct for both (1) soil single scattering and (2) 
soil–vegetation multiple scattering effects on Rnir. However, as shown in 
our analysis in Section 2.2, correcting the soil–vegetation multiple 
scattering component in Rnir is not appropriate, because this component 
also influences σF. Simply correcting its effect on Rnir does not improve 
the Rnir–σF relationship.

Furthermore, in our evaluation of NIRvH, we used the definition: 

NIRvH = Rnir − Rred − k×(λnir − λred) (9) 

Following the recommendation of Zeng et al. (2021), we set λred =

678 nm and λnir = 780 nm (within the 778–800 nm range). The slope k 
was estimated by linearly fitting several TOC reflectance values against 
wavelength in either of the two spectral regions: the red band (675–681 
nm) or the NIR band (778–800 nm). Our results revealed two issues: (1) 
The value of k differed depending on whether it was derived from the 
red or NIR regions (Fig. 8a). (2) Regardless of which range was used, the 
fitted spectral-invariant values were very small, making NIRvH essen
tially equivalent to FCVI in our case (Fig. 8b). Consequently, the per
formance of FCVI-based and NIRvH-based R2F methods is similar, 
although slight improvements are observed for NIRvH due to its incor
poration of red reflectance.

5.3. Applications and limitations

5.3.1. Applications of the saR2F relationship
The relationship between Rnir and σF enables three main applica

tions: (1) correcting directional effects on SIF using reflectance, (2) 
estimating total emitted SIF from directional SIF and reflectance, and (3) 
converting SIF across spatial scales. These capabilities are essential for 
linking remote sensing observations to photosynthetic processes such as 
GPP and LUE.

Since the R2F concept was first proposed in 2018, it has been 
adopted in a growing number of studies across various spatial scales, 
including site-level experiments, UAV-based observations, and global 
satellite retrievals (Mohammed et al., 2019a). However, in many of 
these applications, soil background effects have been treated in a 
simplified manner. Some studies have ignored soil contributions, while 
others have excluded low-vegetation-cover pixels to avoid contamina
tion (Zhang et al., 2019). Alternatively, NDVI- or FCVI-based correction 
methods have been employed to mitigate soil influences (Bendig et al., 
2025; Merrick et al., 2021). This study provides a more systematic 
analysis of the impact of soil on both Rnir and σF. As demonstrated in 
Appendix B, the influence of soil on σF can be substantial, although part 
of this effect is offset by the soil’s contribution to Rnir. This finding 
challenges the assumption that soil has little to no effect on SIF and 
updates our understanding of the factors influencing TOC fluorescence 
signals (Zeng et al., 2019). By explicitly accounting for soil effects, the 
saR2F framework provides a more robust and physically interpretable 
approach for a range of applications—including angular correction, 
estimation of total emitted SIF (Ftot), and improved retrievals of photo
synthetic activity such as GPP. As such, the methodology presented here 
offers a promising pathway to enhance both the accuracy and applica
bility of existing and future SIF-related studies.

Soil correction is particularly important for the remote sensing of 
vegetation physiological signals, as soil typically acts as a confounding 
factor. The soil correction method proposed here builds upon the earlier 
work of Yang et al. (2025), where it was systematically evaluated and 
shown to be applicable to other reflectance-based indices, such as the 
Photochemical Reflectance Index (PRI) (Yang, 2024; Yang, 2022). 
Whether using SIF or PRI for assessing vegetation physiology, soil 
correction can facilitate more reliable downscaling from canopy- to leaf- 
level signals, thereby improving the monitoring of physiological 
processes.

5.3.2. Limitations of the theoretical development and evaluation
Despite its advantages, the saR2F relationship also has limitations 

that should be considered when applying it to real-world scenarios. 
First, the theoretical foundation of saR2F is based on a two-component 
canopy composed solely of green leaves and underlying soil. However, 
natural vegetation often includes non-photosynthetic components such 
as woody material (branches, stems) or senescent leaves, which 
contribute to TOC reflectance. In such three-component systems, TOC 
reflectance is contributed not only from soil and green foliage but also 
from additional scattering and absorption by these non-photosynthetic 
elements. The direct reflectance by the non-photosynthetic parts needs 
to be subtracted besides the soil effects.

In addition to the structural complexity, the soil correction method 
implemented in saR2F relies on several simplifying assumptions. For 
instance, it assumes that red and blue reflectance of green leaves are 
close to zero, and that soil reflectance between 400 and 1000 nm varies 
approximately linearly with wavelength. While these assumptions are 
generally supported by field and simulated data, there are sit
uations—such as high-sand-content soils, litter-covered surfaces, or 
atypical vegetation types—where they may break down, potentially 
compromising the accuracy of the correction.

Additionally, although the saR2F framework improves the physical 
interpretability and robustness of σF estimation, it still requires knowl
edge of canopy interceptance (i0), a structural variable that is difficult to 
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obtain directly from satellite observations. Although i0 can be approx
imated using LAI and clumping index, uncertainties in these parameters 
may propagate into σF estimates. Therefore, future work should explore 
integrating saR2F with structural parameter retrieval methods, such as 
3D radiative transfer models or machine-learning-based approaches 
trained on high-resolution datasets.

The saR2F formulation in this study is based on narrowband reflec
tance at 438 nm and 675 nm, corresponding to regions of strong chlo
rophyll absorption. While this spectral specificity enhances the method’s 
sensitivity to vegetation optical properties, it also raises questions 
regarding its applicability to multispectral observations, where only 
broader bands (e.g., MODIS, Landsat, Sentinel-3) are available. Ac
cording to Yang et al. (2025), we expect that the adaptation of our soil 
correction approach to broadband data remains effective in reducing 
soil background effects, although its performance varied depending on 
the sensor band configuration and bandwidth. Substituting the narrow 
bands in saR2F with available broadband red and blue channels can still 
yield meaningful improvements over conventional indices, but the 
magnitude of the benefit depends on the specific spectral coverage and 
overlap with absorption features. However, the use of blue reflectance 
(~438 nm) also introduces potential challenges for satellite-based ap
plications. Blue wavelengths are more susceptible to atmospheric ef
fects, particularly aerosol scattering, which can increase uncertainties in 
surface reflectance retrieval if not properly corrected. This sensitivity 
may reduce the robustness of saR2F in regions or seasons with high 
aerosol loading, such as dust-prone areas or during biomass burning 
events. Therefore, applying saR2F at large scales requires robust atmo
spheric correction strategies to mitigate these effects. A comprehensive 
evaluation of broadband-adapted saR2F across multiple platforms, 
especially using actual satellite data, is beyond the scope of the present 
study but represents an important avenue for future work.

Finally, our evaluation of the correction methods is also subject to 
several limitations. In the context of SIF studies, the inability to directly 
measure σF and Ftot makes it particularly challenging to assess the ac
curacy of proposed correction schemes. For example, in our field data
set, soil reflectance and canopy structure remained nearly constant, and 
only the viewing azimuth was varied. Under these controlled conditions, 
the benefits of soil correction can be observed; however, the differences 
among the saR2F method, FCVI-based correction, and NDVI-based ap
proaches remain relatively subtle (Fig. 7). In contrast, under simulated 
scenarios where both viewing geometry and LAI are allowed to vary, the 
distinctions among these methods become much more pronounced 
(Figs. 5 and 6). Nevertheless, model validation is inevitably influenced 
by the design of the experimental or simulated scenarios, which may 
unintentionally bias the outcome in favor of a particular method. 
Therefore, we argue that rigorous theoretical derivation is indispensable 
for advancing SIF correction methodologies. Compared to empirical 
fitting alone, a clear physical foundation offers a more robust and 
generalizable basis for methodological development.

6. Conclusions

We revisited the reflectance-to-fluorescence (R2F) relationship and 
proposed an improved soil-adjusted version (saR2F) to explicitly ac
count for soil effects. While the original R2F framework offers a valuable 

theoretical basis for interpreting canopy-level SIF signals, its assumption 
of a non-reflective soil limits its applicability—particularly in sparse 
canopies where soil contributions are non-negligible. We show while 
soil–vegetation multiple scattering affects both NIR reflectance and the 
scattering coefficient of emitted SIF, it does so in a comparable manner, 
and thus does not fundamentally disrupt the applicability of the original 
R2F relationship. In contrast, the dominant source of bias in sparse 
canopies arises from the extra contribution of soil single scattering to 
NIR reflectance, which has no counterpart in the scattering coefficient of 
emitted SIF.

The proposed saR2F formulation incorporates TOC red and blue 
reflectance to estimate and remove the direct soil contribution, enabling 
more accurate estimation of the SIF scattering coefficient. Our results 
show that saR2F significantly improves the consistency of reflectan
ce–SIF relationships across different canopy structures and viewing ge
ometries. Compared to existing NDVI- or FCVI-based correction 
approaches, saR2F offers a more physically plausible and interpretable 
solution that can be applied to angular correction, total SIF estimation, 
and photosynthetic monitoring. Overall, the saR2F approach provides a 
unified, scalable, and physically robust tool for improving the accuracy 
of SIF-based vegetation physiological assessments—from the leaf to the 
satellite scale. This work lays the groundwork for more reliable gener
ation and interpretation of next-generation SIF remote sensing products.
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Appendix A. Analysis of soil effects on R2F using the four-stream theory

In Section 2, we narrow down the soil effects on the R2F relationship to the single scattering of soil to Rnir with a conceptual figure. In what follows, 
we present the specific derivations by using the four-stream radiative transfer theory.

The four-stream theory considers four types of radiative fluxes: direct solar flux, diffuse downward flux, diffuse upward flux, direct flux in the 
direction of observer (Verhoef, 1984). We follow the notation in the four-stream theory for the transmittances of a vegetation canopy and examine the 
effects of soil on canopy SIF scattering and reflectance. 
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Fig. A1. Diagram for the radiative transfer of incident radiation and emitted SIF.

For the scattering coefficient of far-red SIF σF, the enhancement by the soil is given as 

δσ = σ1
F − σ0

F = τf
ddR

s
nirτdo (A1a) 

where the superscript ‘1’ is introduced to denote the scattering coefficient for non-black-soil canopies. The enhancement δσ denotes the fraction of the 
total emitted SIF that is scattered by soil and detected by the sensor. It is determined by the downward transmittance of the total emitted SIF τf

dd, soil 
reflectance Rs

nir and upward transmittance τdo of the reflected SIF by soil. Canopy transmittance τdo is the diffuse-directional transmittance of the 
canopy. The subscripts ‘d’ and ‘o’ denote diffuse incoming radiation and outgoing radiation in the observer’s direction, respectively. Rs

nir is the soil 
reflectance at the NIR region. The transmittance τf

dd is the effective downward transmittance for the total emitted SIF by all leaves. It differs from τdd by 
the position of the radiative source (i.e., top of canopy for τdd, inside the canopy for τf

dd).
While for NIR reflectance, the enhancement by the soil is given as 

δRnir = R1
nir − R0

nir = τssRs
nirτoo + τsdRs

nirτdo (A2) 

where τss and τsd denote canopy transmittance for the incoming solar beam. Note we assume the soil reflectance is isotropic. The magnitudes of τssτoo 
and τsdτdo depend on the number of scatters (i.e., leaves) in the canopy: τssτoo decreases with the increasing LAI, while τsdτdo increases with LAI.

According to the enhancement on canopy reflectance and SIF scattering shown in Eq. A1 and Eq. A2, we obtain the relationship between them for 
non-black-soil canopies by revising Eq. 2. 

σ1
F =

R1
nir
i0

+ δR2F (A3) 

By introducing Eq. A1 and Eq. A2 into Eq. A3, and we obtain a correction factor δR2F for the R2F relationship 

δR2F = σ0
F + δσ −

R0
nir + δRnir

i0
(A4) 

Hence, knowing from Eq. 2 that σ0
F −

R0
nir
i0

= 0, the correction factor for soil effects is 

δR2F = δσ −
δRnir

i0
=

(

τf
ddτdo −

τssτoo + τsdτdo

i0

)

Rs
nir (A5) 

The transmittances in Eq. A5 are unknown. Nevertheless, we conduct some empirical analysis to the soil correction factor. For dense canopies, the 
largeest part of incoming PAR is absorbed by leaves at the upper layer, and by extension, the effective downward transmittance of canopy SIF τf

dd is 
close to τsd. Moreover, i0 is close to unity and the transmittances τss and τoo are close to zero due to limited gaps. Therefore, τf

ddτdo is close to τsdτdo
i0

, and 
τssτoo

i0 
is small. As a result, δR2F can be neglected. This implies that the soil effects in dense canopies do not significantly alter the relationship between Rnir 

and σF.
For sparse canopies, direct transmittances for the direct incident light τssτoo are large due to limited number of leaves for intercepting the light. In 

contrast, the transmittances for diffuse incoming to direct outgoing radiation, and direct incoming to diffuse outgoing (i.e., τdo and τsd) are small, since 
the number of leaves to scatter the direct incident light to diffuse light or vice versa is limited. Therefore, we expect that τf

ddτdo −
τsdτdo

i0 
is much smaller 

than τssτoo
i0 . Hence, δR2F is largely determined by τssτoo

i0 Rnir
s . This approximation is also intuitive and rational. The contribution of soil to canopy reflectance 

is mainly denominated by the single scattering of soil, τssτooRnir
s , for sparse canopies. The contribution of multiple scattering to TOC SIF and reflectance 

is similar.
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Thus, we can estimate the canopy scattering of far-red SIF for non-black soil cases as: 

σ1
F =

R1
nir − τssτooRs

nir
i0

(A6a)  

σ1
F =

R1
nir − Psoil

so Rs
nir

i0
(A6b) 

Appendix B. Analysis of the soil effects on R2F using simulated datasets

The replacement of black soil with non-black soil leads to higher Rnir and σF (Fig. B1). The differences are substantially smaller for the canopies 
with high LAI values. For the canopies with an LAI greater than 3, the difference in Rnir of black-soil and non-black-soil scenarios generally remains 
below 0.06 (red bars in Fig. B1a), and the difference in σF is less than 0.05 (red bars in Fig. B1b). In these scenarios, the variation is negligible, with 
around 80 % of scenarios displaying differences below 0.01. In contrast, the differences are more pronounced for canopies with an LAI below 3. In such 
cases, the disparity in Rnir reaches up to 0.3 between black-soil and non-black-soil scenarios, and the differences in σF are as high as 0.2.

Fig. B1. The effects of soil on NIR reflectance (Rnir , a) and scattering coefficient of far-red SIF (σF , b) for dense (LAI> 3) and sparse (LAI≤ 3) canopies. Shown the 
distributions of the probability of the difference between non-black-soil canopies (Rs ∕= 0) and the corresponding black-soil canopies (Rs = 0). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.)

The impacts of LAI on the difference in Rnir and σF of black-soil and non-black-soil scenarios are presented in Fig. B2. When LAI exceeds 3, the 
discrepancy in Rnir is less than 0.05, and the difference is even smaller for σF. The canopies with an LAI of 8 exhibit minimal effects from the soil on 
both Rnir and σF. In contrast, the canopies with an LAI of 0.5 display a mean difference of 0.14 in Rnir and a mean difference of 0.06 in σF. The variability 
in differences for the same LAI are attributed to variations in leaf biophysical properties, soil reflectance, leaf angle distribution (LAD), and sun- 
observer geometry.

Fig. B2. The effects of soil on NIR reflectance (Rnir) and scattering coefficient of far-red SIF (σF) changing with LAI. Shown the mean values and standard deviations 
of the differences between non-black-soil canopies (Rs ∕= 0) and the corresponding black-soil canopies (Rs = 0) for various scenarios. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. B3. The error in the original R2F relationship expressed as the difference between the true and estimated scattering coefficient of far-red SIF (σF), δR2F = σF −

Rnir/i0. Shown the distributions of the probability of the error for the black-soil canopies (Rs = 0, a) and non-black-soil canopies (Rs ∕= 0, b). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)

The original R2F relationship provides reasonably accurate estimation of σF for the black soil canopies (depicted in Fig. B3a), but the performance 
in the non-black-soil canopies is unacceptable when the canopies LAI is less than 3 (depicted in Fig. B3b). In the black-soil canopies, the errors span 
from − 0.1 to 0.01. In over 50 % of the scenarios, the errors are within the narrow range of less than 0.05. Furthermore, the error distributions exhibit a 
similar pattern irrespective of whether the canopies possess large or small LAI. In contrast, in the non-black-soil canopies, the error distributions 
exhibit a broader spectrum, and is strongly affected by canopy LAI (Fig. B3b). When the LAI of the canopies is less than 3, the errors are as large as 0.6. 
However, when the LAI exceeds 3, the errors vary from − 0.1 to 0, which is similar to the range for the black-soil scenarios.

The original R2F relationship provides accurate estimation of σF across different canopy LAI under the black soil condition (Fig. B4). The error 
remains relatively stable, with the mean value for a specific LAI less than 0.05. In contrast, for non-black-soil scenarios, there is a notable decrease in 
error as the canopy LAI increases. When the canopy LAI surpasses 3, the error becomes comparable to that observed in black-soil scenarios. However, 
for the canopies with a low LAI of 0.5, the mean error is 0.4. For these canopies, there are considerable variations in the errors.

Fig. B4. The error in the estimated σF by using the original R2F relationship for varying LAI for the black-soil canopies (Rs = 0) and the non-black-soil canopies 
(Rs ∕= 0). The error is expressed as the difference between the true (σF) and estimate (Rnir/i0) scattering coefficient of far-red SIF, δR2F = σF − Rnir/i0. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Data availability

Data will be made available on request.
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