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ARTICLE INFO ABSTRACT

Edited by: Marie Weiss Solar-induced chlorophyll fluorescence (SIF) is an effective probe for photosynthesis, but this remote sensing
signal is affected by multiple factors, including radiation intensity, canopy structure, sun-observer geometry, and
Keywords: leaf physiological status. The complex interplay among these factors causes substantial discrepancies among top-
Solar-induced “hlorof’hyu fluorescence of-canopy (TOC) SIF, leaf-level average SIF and actual photosynthetic activity. Downscaling TOC SIF to the leaf-
ls:g;f?f:;zce escape ratio level and decoupling structural and physiological information remain major challenges in the use of SIF signals
Total emitted SIF for remote sensing of photosynthesis. To address these challenges, the R2F (reflectance-to-fluorescence) theory
Structural and angular correction was developed, grounded in the similarity in radiative transfer processes governing SIF and reflectance. This
theory establishes a physical relationship between near-infrared reflectance (R,;) and the far-red SIF scattering
coefficient (o5). On this basis, SIF signals can be scaled from the canopy to the leaf level by normalizing o,
estimated from reflectance as 6r = Rp;r/ip, where iy denotes canopy interceptance. However, the original R2F
formulation assumes a non-reflective soil. This simplification breaks down in sparse canopies, where soil con-
tributions are non-negligible—an issue referred to as the “black-soil problem”. Soil enhances both Ry and o,
distorting their intrinsic relationship. In this study, we show that soil effects manifest through two main
mechanisms: (1) direct soil reflection, which significantly increases R,; but has minimal impact on oF, and (2)
soil-vegetation multiple scattering, which affects both R, and or but tends to have compensatory effects.
Consequently, the dominant source of bias in the original R2F relationship is direct soil reflection that con-
tributes to Rpy—a mechanism that had not been explicitly isolated in previous studies. This finding allows us to
narrow down the “black-soil problem” in the R2F framework to the specific impact of soil single scattering on
Rpir. To mitigate this bias, we propose a soil-adjusted R2F (saR2F) method, which estimates the direct soil
contribution of Ry using TOC red and blue reflectance. Correcting Ry;- for the direct soil reflection results in a

robust relationship between o and soil-adjusted Rpi- (SaRpi-), notably o = saRpir/io.
We evaluated the saR2F relationship using one field and two simulated datasets. In the field study, saR2F
improved the estimation of o5 from TOC reflectance, with R? increasing ranging from 0.21 to 0.31 compared to
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the original R2F. In the two simulations, saR2F consistently outperformed the original R2F, especially under
sparse canopy conditions. We also compared saR2F with NDVI-based (NIRv) and FCVI-based R2F approaches. In
the available field observations collected under specific conditions (i.e., varying viewing azimuth angles), the
three approaches showed similar performance and were better than the original R2F in explaining the viewing-
angle dependence of or. However, across the broader range of simulated scenarios and for estimating the exact
or, saR2F demonstrated better stability than NIRv and FCVI-based R2F methods. The NIRv-based and FCVI-based
R2F methods yielded relatively low RMSE (0.092 and 0.075, respectively) but weak explanatory power, with R?
values below 0.41 for canopies with LAI < 3. In contrast, saR2F achieved a much stronger relationship (R? =
0.80) and a low RMSE of 0.044. Furthermore, compared to the NIRv or FCVI-based approaches for R2F cor-
rections, saR2F offers a more physically plausible and interpretable solution that can be applied to angular
correction and total SIF estimation. The effective mitigation of the black-soil problem facilitates interpretation of
raw SIF observations and enhances the monitoring of photosynthetic activity using SIF.

1. Introduction

Solar-induced chlorophyll fluorescence (SIF) emitted by plants dur-
ing photosynthesis has been explored as a proxy of actual photosynthesis
(Baker, 2008; Mohammed et al., 2019b). Remote sensing of SIF by
hyperspectral sensors provides means to monitor photosynthetic activity
from space. However, top-of-canopy (TOC) SIF is influenced not only by
leaf-level physiological processes directly related to photosynthesis, but
also by factors such as soil background, canopy structure, and sun-
observer geometry. These non-physiological influences complicate the
interpretation of TOC SIF and highlight the need for correction or
decoupling strategies.

The effects of various factors on TOC SIF observations are summa-
rized into three key processes according to the light use efficiency (LUE)
model (Mohammed et al., 2019b): i) the absorption of photosyntheti-
cally active radiation (PAR) by vegetation canopies, ii) the emission of
fluorescence by photosystems, and iii) the scattering of SIF by soil and
leaves after being emitted by photosystems. The impacts of these pro-
cesses are quantified by fraction of absorbed PAR (fPAR), fluorescence
emission efficiency (®r), and scattering coefficient of the emitted SIF
(or), respectively (Porcar-Castell et al., 2014; Yang and van der Tol,
2018). Therefore, TOC observed SIF is expressed as

SIF = PAR x fPAR x &y x o (@9)

Vegetation canopy structure, leaf physiology, soil and sun-observer
geometry affect TOC SIF via fPAR, &, and or. Among these three vari-
ables, fPAR is commonly used in the field of remote sensing of vegeta-
tion and ecological studies. In contrast, or and &r are unique variables
used in SIF-related studies. The variable o7, describing the ratio of TOC
directional SIF to total SIF emitted by photosystems, determines the
angular variation in SIF, and affects the relationship between TOC SIF
and gross primary productivity (GPP).

In a previous study, we established the link between the scattering
coefficient of far-red SIF o (also known as the escape probability of total
emitted SIF, fs.) and near-infrared (NIR) reflectance R,; at wavelengths
close to the far-red SIF retrievals (e.g., around 740-780 nm), by
comparing their respective radiative transfer processes (Yang and van
der Tol, 2018). We found that for dense vegetation canopies, or for
canopies situated above a non-reflecting soil surface, o was propor-
tional to Ry and to the reciprocal of canopy interceptance (iy), i.e., or =
Runir/ip. This relationship is based on the physical principle that, for
photons of the same frequency, their subsequent interactions within the
canopy—such as scattering, absorption, or escape—are independent of
whether the photons originate from leaf scattering (contributing to Ry;r)
or from leaf fluorescence emission (contributing to SIF). The simple
Ryir — oF relationship is theoretically well-supported by multiple radia-
tive transfer theories including the four-stream theory, the successive
order of scattering theory, and the spectral invariant theory, as
demonstrated in Yang and van der Tol (2018), and summarized in
Section 2.1 of this study.

The relationship between R,; and o, hereafter referred to as the
R2F (reflectance-to-fluorescence) relationship, has gained significant

attention for its role in quantifying the impact of scattering and reab-
sorption on TOC far-red SIF. It is crucial for estimating the total emitted
SIF from vegetation canopies and correcting for the angular effects on
SIF, both of which are important for improving GPP estimation (Hao
et al., 2021b; Kramer et al., 2025; Li et al., 2018; Siegmann et al., 2021).
For example, Lu et al. (2020) applied the R2F relationship in a
deciduous-broadleaf-forest ecosystem to estimate the total canopy-
emitted SIF. They found field-measured GPP had a stronger correla-
tion with the estimated total SIF than TOC SIF, with R? increasing from
0.51 to 0.64. Liu et al. (2019) used the R2F relationship to downscale
airborne TOC SIF observations to the photosystem level. Their findings
revealed an enhanced relationship between SIF and absorbed PAR
(APAR) after SIF downscaling. The R2F relationship also illustrates that
far-red SIF and R,; exhibit similar patterns of variation, often showing
bowl-shaped or dome-shaped distributions as the viewing angle shifts
from backward to forward scattering directions (He et al., 2017; Joiner
et al,, 2020; Liu et al., 2016). According to this similarity, various
methods that incorporate multiple angular observations of TOC reflec-
tance have been developed to mitigate directional effects on TOC SIF for
improving GPP estimation (Zhang et al., 2020b).

However, practical applications of the R2F relationship still face at
least two noteworthy challenges (Mohammed et al., 2019b; Yang et al.,
2020). First, the estimation of or from R,; needs the structural variable
ip, which is not always available reliably. Second, the theoretical rela-
tionship between oy and Ry; is formulated by assuming a non-reflective
soil beneath the vegetation canopy where soil effects are disregarded.
Consequently, this relationship becomes less reliable in sparse canopies
where the contribution of soil cannot be ignored.

Regarding canopy interceptance (ip), researchers have sought to
characterize its spatiotemporal variation using the canopy structural
parameters. The variable iy describes the probability that the incident
photons will interact with leaves rather than going through the canopy
via gaps (Smolander and Stenberg, 2005; Stenberg et al., 2016). It is
closely linked with canopy gap fraction, which can be estimated by using
canopy structural properties, such as leaf area index (LAI) and clumping
index according to Beer’s law (Stenberg and Manninen, 2015). For
instance, Lu et al. (2020) estimated the seasonal variations in iy by using
the field measurements of LAL and calculated o and total SIF emitted by
canopies. Zhang et al. (2020a, 2019) estimated iy at the global scale by
using MODIS remote sensing products of LAI and clumping index. They
further applied the R2F relationship and derived the total SIF from
TROPOMLI. Zeng et al. (2019) proposed to approximate iy using fPAR
products, which are generated from TOC reflectance spectra. Although
these approaches remain questionable given the inherent uncertainties
in LAI and fPAR estimation itself, they are still widely used as practical
proxies for estimating iy (Bendig et al., 2025; Yang et al., 2020).

In comparison to the amount of research on the estimation of canopy
interceptance, the investigation of the soil effects has been relatively
limited. A straightforward approach is to apply a threshold to exclude
cases with pronounced soil effects, for example, the areas with low
vegetation coverage. Beyond simple thresholding, NDVI, as an indicator
of the fraction of vegetation coverage (FVC), has been used to mitigate
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the soil effects on the R2F relationship. For example, Badgley et al.
(2017) introduced NIRv as the product of R, and NDVI, and reported
that NIRv, TOC SIF and GPP were strongly correlated via the vegetation
coverage at the global scale. Researchers suggest that NIRv accounts for
Ry contributed by vegetation, and thus can be used to address the soil
effects on the R2F relationship (Bendig et al., 2025; Hao et al., 2021b;
Hao et al., 2021a; Zeng et al., 2019). This method leverages the negative
correlation between NDVI and soil interference, as NDVI is inversely
related to the fraction of exposed soil and thus to the soil’s contribution
to Ry (Wan et al., 2024). Hence, it is expected that the inclusion of NDVI
in the R2F relationship leads to an improvement in estimated o
compared to the original R2F-based approach (i.e., 6r = Rpir X NDVI/ig
vs. oF = Ryuir/ip). However, relying on NDVI in a semi-empirical
approach to remove soil effects on vegetation NIR reflectance may not
produce a reasonable soil-adjusted R2F relationship. This is because soil
influences not only vegetation reflectance but also . The soil effects on
or are often not explicitly addressed in the NDVI-based approaches.
Furthermore, NDVI is not always a reliable surrogate for FVC, and FVC
alone cannot fully account for soil-induced variability in Ry;. This is
because soil effects also depend on spectral variability in soil reflectance
that is independent of FVC. Therefore, relying solely on NDVI to correct
soil effects may not yield a physically consistent or accurate soil-
adjusted R2F relationship.

In addition to NDVI, the fluorescence correction vegetation index
(FCVI) is also used to estimate or as FCVI/fPAR (Merrick et al., 2021;
Siegmann et al., 2021). Yang et al. (2020) demonstrated that although it
is difficult to estimate fPAR and or individually by using just TOC
reflectance, their product can be well approximated by a reflectance
index, which is FCVI. FCVI is given as the difference of Ry and broad-
band visible (VIS, from 400 to 700 nm) reflectance acquired under
identical sun-canopy-observer geometry of the SIF measurements.
Several studies have found that estimating o using FCVI (i.e., oF =
FCVI/{PAR) performs reasonably well even for sparse canopies (Bendig
et al., 2025; Siegmann et al., 2021). This may be because the effects of
soil on both FCVI and fPAR tend to offset each other. Nevertheless, the
black-soil problem is not explicitly addressed in the development of
FCVI, and its effectiveness in mitigating soil effects remains unclear.

Other more physically-based approaches have been developed to
disentangle vegetation and soil contributions to canopy reflectance,
including spectral unmixing techniques and radiative transfer modeling.
For example, the NIRVH method estimates the R, of vegetation by
decomposing hyperspectral signals, offering a way to minimize soil
contributions (Bendig et al., 2025; Zeng et al., 2021). This method is
based on the assumption of a linear mixture of soil and vegetation
reflectance. However, when comparing the original NIRv and the more
recent NIRvH approaches, a potential source of confusion arises. The
original motivation for introducing NIRv was to account for soil back-
ground effects associated with R;. Yet in NIRvH, an additional layer of
soil correction is applied on top of NIRv.

Despite the practical success of both NDVI-based and unmixing-
based correction strategies, the theoretical underpinnings of each
remain insufficiently clarified. This ambiguity makes it difficult to
interpret the reliability and generalizability of these methods. This is
especially true for SIF-related studies, where quantities such as of or
total emitted SIF are nearly impossible to measure directly in the field.
As a result, we must rely on clear and well-founded theoretical de-
velopments to guide interpretation and methodological advances.
Therefore, regardless of the correction strategy employed, a critical
prerequisite for improving the performance of R2F (i.e., the Ry -oF
relationship) is a clear understanding of how soil influences this rela-
tionship. Identifying the specific mechanisms—whether direct soil
reflection or multiple scattering pathways—that affect both R,; and oF
is essential for developing targeted and physically meaningful correc-
tions. Building on this understanding, appropriate correction strategies
can then be devised to address the specific soil-induced effects.

In this study, we present a theoretical analysis of the impact of soil on
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TOC NIR reflectance, the scattering coefficient of far-red SIF, and their
relationship. Further, we propose a way to account for the soil effects,
and revise the R2F relationship to estimate the scattering coefficient of
far-red SIF in sparse canopies. Field and simulated datasets are used to
evaluate the performance of the soil-adjusted R2F (saR2F) relationship
in estimating oF or correcting viewing-angle effects of TOC SIF.

2. Theory
2.1. A short review of the R2F relationship for black-soil canopies

The original R2F relationship is expressed as a simple function

o 1Fu RS,
= = Zar 2
oF F tot iO ( )

where F;,. is TOC SIF and F;,; total emitted SIF. R,; refers to NIR
reflectance at wavelengths close to those used for far-red SIF in remote
sensing applications. The superscripts ‘0’ indicate that the relationship
holds when soil reflectance is zero (i.e., a black soil condition). Note that
the superscript is applied to both o and Ry, as soil affects not only
canopy reflectance but also the scattering of SIF—an influence that is
often not considered.

The R2F relationship is based on the similarity in radiative transfer of
the intercepted incident flux and the emitted SIF flux, which result in
TOC NIR reflectance and SIF signals, respectively. A conceptual figure is
provided to illustrate this relationship (Fig. 1). In canopies with black
soil, the probability that the emitted SIF are scattered into the direction
of the observer is denoted as ¢2, which corresponds to the chance of
fluxes transfer from F1 to F2 in Fig. 1a. Analogously, the probability that
incoming solar photons are intercepted and scattered into the same di-
rection is represented by RY,., corresponding to the probability of flux
transfer from RO, R1 to R2 in Fig. 1a. Note both multiple scattering
among leaves and single scattering are included in the paths of R1 to R2
and F1 to F2. For a more complete derivation, please refer to Yang and
van der Tol (2018).

Once incident photons from the top of canopy are intercepted with
probability iy, and subsequently scattered with probability @y (i.e., the
transition from RO to R1 in Fig. 1a), their subsequent interactions with
the vegetation canopy follow the same radiative transfer processes as the
emitted SIF photons at the same wavelength. In other words, the prob-
ability of a photon transferring from R1 to R2 is identical to the prob-
ability of a photon transferring from F1 to F2. Therefore, the canopy
reflectance RY, , which describes the radiative transfer from RO to R2, is
determined by the joint probability of the photon path from RO to R1
(with probability iy X @), and from R1 to R2 (with probability ¢9):
R = io X @nr x 09. Given that leaf albedo in the NIR region wy; is
typically close to 1, we obtain the relationship shown in Eq. 2.

2.2. Soil effects on the R2F relationship

When black soil is replaced by a reflective (non-black) soil, both or
and R,;r increase due to the enhanced probability that photons scattered
by leaves are further redirected into the observer’s direction by the soil
surface. This additional contribution from the soil is depicted by the
dashed lines in Fig. 1b. Assuming an unchanged vegetation layer,
increasing soil reflectance (R;,;) generally leads to concurrent increases
in both or and Ry;. However, the soil-induced changes in or and R are
not necessarily proportional. This discrepancy implies that the original
relationship or = Rl.—'(;", which holds true under black-soil conditions, may
no longer be valid in the presence of non-black soils.

Soil enhances TOC NIR reflectance through two main mechanisms:
(i) directly reflecting incoming solar radiation toward the sensor,
following the path SR4 — SR5 — SR6 in Fig. 1b, and (ii) reflecting ra-
diation scattered by leaves and further redirecting it toward the sensor
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Fig. 1. Diagram illustrating the radiative transfer of incident solar fluxes (black lines) and emitted SIF fluxes (red lines) for (a) black-soil canopies and (b) non-black-
soil canopies. The text notations in the diagram—'R’, ‘F’, ‘SR’, and ‘SF’—represent photon positions associated with reflectance (R), SIF (F), reflectance contributed
by soil (SR), and SIF contributed by soil (SF), respectively. The notations on the arrowed lines indicate the probability of flux transfer between different positions.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

via SR1 —» SR2 — SR3, including multiple scattering between soil and
leaves. In contrast, soil affects the scattering coefficient of emitted far-
red SIF primarily by reflecting SIF radiation emitted by leaves back
into the canopy, thereby increasing the observed canopy SIF signals, as
illustrated by the path SF1 — SF2 — SF3 in Fig. 1b. Owing to the simi-
larity of radiative transfer at the same wavelength, the probability of
photon transfer along SR1 — SR2 — SR3 is identical to that along SF1 —
SF2 — SF3. The key distinction is the additional contribution of direct
solar radiation to Ry; through SR4 — SR5 — SR6, a mechanism that does
not apply to SIF, since SIF originates within the canopy rather than from
solar input.

It is important to note that while soil can enhance total SIF emission
by increasing the PAR absorbed by the vegetation canopy, this effect
does not directly influence the scattering coefficient of SIF and thus does
not affect the R2F relationship. Beyond the conceptual and pathway-
based analysis presented in Fig. 1, we further employed the four-
stream radiative transfer theory to quantitatively model the influence
of soil on both o and Ry, and to assess its impact on the validity of the
R2F relationship. The detailed mathematical derivation and model
formulation are provided in Appendix A.

2.3. Soil adjustment of the R2F relationship

To revise the R2F relationship to account for soil effects, it is
necessary to remove the contribution of direct soil reflection (denoted as
psk) from the TOC NIR reflectance. This leads to the soil-adjusted R2F
relationship:
op = Ror Py ®

o

This formulation is consistent with the original R2F relationship for
black-soil canopies, as presented in Eq. 2. Specifically, when the soil
reflectance is zero, pSi. becomes zero, and Eq. 3 simplifies to Eq. 2. For
dense canopies, where the underlying soil is largely masked by the
vegetation, pil remains small and the difference between the adjusted
and unadjusted relationships is negligible. However, for sparse canopies
with bright soils, where pf}.can be substantial, this correction becomes
essential to accurately represent the relationship between oy and Ry .

Yang et al. (2025) develop three approaches to estimate the direct
soil reflection component pS}, based on distinct spectral signatures of
soil and vegetation. The term pS},, is calculated as the product of the

probability that the soil is both sunlit and visible to the sensor (P%!) and

the soil reflectance in the NIR (R};). Two of the methods rely on known
soil reflectance data: (1) a single-band approach using red reflectance
(RBB), where P¥! is estimated as Rers/R%,s, and (2) a two-band
approach based on the spectral contrast between red and blue bands
(TBB), where P! is estimated as (Re7s — Rass)/ (RS;s — Risg). However,
the applicability of these two methods is limited in practice due to their
dependence on accurate soil reflectance measurements, which are not
always readily available in heterogeneous or natural environments.

To address the limitation of requiring known soil reflectance, a third
method was proposed that avoids this dependency by assuming a near-
linear spectral dependence of soil reflectance between 400 and 1000 nm
(LAB). Under this assumption, the contribution of direct soil reflection to
TOC reflectance increases linearly with wavelength, given that P9! is
spectrally independent.

Pt = POl (kA + bs) @

For green vegetation, leaf albedo in the blue and red spectral regions
is close to zero, meaning that TOC reflectance at these wavelengths
primarily originates from direct soil reflection. Because chlorophyll
exhibits maximum absorption near 438 nm and 675 nm, the TOC
reflectance at these bands can be used to approximate the corresponding
direct soil contributions:

Pk = PU x (438K, +b;) = Rusg (5a)

Phs = Pwll X (675ks +bs) = Reys (5b)

where p$! represents the contribution of soil single scattering to TOC
reflectance at wavelength A in nanometers (nm); P! is the probability
that the soil is illuminated by the sun and observed by the sensor; ks and
bs are the slope and intercept of the linear fit between soil reflectance
R;(4) and wavelength 1 in the range of 400 nm to 800 nm, respectively;
R, is the TOC reflectance at wavelength 1. Therefore, the contribution of
direct soil reflection to TOC NIR reflectance can be predicted from blue
and red TOC reflectance through linear extrapolation by combining Eq.
4 and 5. For instance, at 770 nm, the direct soil reflection component can
be estimated as:

/)770 = Psml (770k5 + bs) = 1.40R675 — 0.40R438 (6)

By substituting Eq. 6 into Eq. 3, we obtain a semi-empirical R2F
formulation that corrects for soil effects without requiring prior
knowledge of soil spectral properties.
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The saR2F relationship also aligns with the original R2F relationship
for black-soil canopies in Eq. 2. When the soil reflectance is zero, the
term 1.40R¢75 — 0.40R435 becomes negligible, and Eq. 7 reduces to Eq. 2.
It is important to note that TOC reflectance at 770 nm was used as an
approximation for the true value at 760 nm. This is because remotely
sensed apparent TOC reflectance at 760 nm is often overestimated due to
fluorescence effects, which can distort the actual signal. For conve-
nience, we refer to Rny — 1.40Re75 + 0.40R433 as saRy; (soil-adjusted
Ry;r) hereafter. For detailed descriptions of the soil correction methods
and their evaluation, the readers are referred to Yang et al. (2025).

3. Evaluation
3.1. Evaluation with field multi-angle experiment

Due to the inherent challenges of directly measuring of or F, in the
field, direct validation of the methods in Table 1 using these quantities is
often unfeasible. To address this limitation, we conducted a dedicated
multi-angular field experiment, i.e., field measurements under fixed
canopy structure and illumination conditions, with only the viewing
angle varying. Under these controlled conditions, both F,, and i, remain
relatively constant, so the observed variation in F,,. proportionally re-
flects changes in oF:

OF! oF, toc (8)

We assessed the methods listed in Table 1 by examining the corre-
lation between F,. and the numerator of each R2F formulation,
including R, saR, NIRv and FCVI. We hypothesize that all four
reflectance-based metrics should exhibit a positive correlation with Fi,,
as their angular responses are expected to follow a similar directional
pattern. Moreover, under conditions of low vegetation cover, saR,; is
expected to show a stronger correlation with F,. than R, owing to its
enhanced ability to account for soil background effects.

3.1.1. Study site and experimental setup

Field experiments on winter wheat (Triticum aestivum L.) were con-
ducted on March 16 and 21, 2025, in Gucheng, Baoding City, China
(39.14455°N, 115.73785°E). The experimental plot has a size of 24 x
12 m with an average elevation of 15.2 m above sea level. The site ex-
periences a mean annual temperature of 12.1 °C and an average annual
precipitation of 479.6 mm.

Wheat was sown on October 17, 2024, in north—south-oriented rows
at a density of approximately 700,000 plants ha—!, corresponding to 6.8
rows per meter perpendicular to the row direction, with a 5-cm inter-

Table 1
Formulae of the original R2F relationship, and the soil-adjusted R2F relationship
to estimate the scattering of far-red SIF with NIR reflectance.

Labels Formulae References
Original R2F op = Rnir (Yang and van der Tol,
ip 2018)
saR2F o = Rnir — 1.40R¢75 + 0.40R438 _ This study
Lo
SaRnir
lo
NDVI-based op = Rpir x NDVI _ NIR, (Badgley et al., 2017; Zeng
R2F io ip et al., 2019)
FCVI-based FCVI  Rpir — Ryis (Yang et al., 2020)
Ofp =——— = ———
R2F lo o

Note: Ry refers to the reflectance at approximately 770 nm, consistent with the
far-red SIF retrieval region. R,;s is the average reflectance over the 400-700 nm
range. NDVI is calculated using the MODIS band configuration (Red: 620-670
nm; NIR: 841-876 nm).
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row spacing. During the measurement period, the canopy had an
average height of ~12 cm and exhibited partial closure, with clearly
visible row structure and exposed bare soil between rows. We deliber-
ately selected a period with relatively low vegetation coverage for
analysis, as higher coverage tends to reduce the variability of observed
SIF across different viewing azimuth angles. Under such conditions, the
differences in SIF signals observed from different viewing angles become
less pronounced, making it difficult to evaluate the performance of the
saR2F relationship through correlation analyses among relevant vari-
ables, e.g., Fy,, from different viewing angles and R

3.1.2. Instrumentation and measurement protocol

The canopy observation system comprised a computer-controlled
pan-tilt unit (PTU-E46, FLIR Systems, USA) mounted on a 2 m-high
platform, integrating a dual-spectrometer measurement system. The
PTU, driven by a stepper motor and rotating platform, executed
software-controlled rotations in both azimuth and elevation to enable
automated, multi-angular measurements. Two spectrometer probes,
each with a 25° field of view, were affixed to the PTU to simultaneously
measure canopy reflectance and SIF. Reflectance data were collected
using an HR2000 spectrometer (Ocean Insight Inc., Dunedin, FL, USA),
which covers the 300-1200 nm spectral range with a resolution of 3 nm.
These data were used to compute the reflectance-based terms in the R2F
formulations. For SIF retrieval, a QE65Pro spectrometer (Ocean Insight
Inc., Dunedin, FL, USA) was employed, offering a higher spectral reso-
lution of 0.7 nm over the 640-800 nm range with 1036 channels. Far-red
SIF was calculated with the spectral fitting method (SFM, Cogliati et al.,
2019). Further details about the measurement system can be found in
Yang et al. (2025).

Data collection was conducted near solar noon (11:30-13:30 local
time) under stable illumination conditions. During the measurement
period, the solar zenith angle (SZA) varied from 38° to 43°. Angular
sampling followed a structured protocol: each observation sequence
comprised measurements at 13 predefined azimuth angles (ranging from
60° to 300° in 20° increments), with zenith angles dynamically adjusted
to match the real-time SZA, capped at a maximum of 40°. This strategy
yielded a sector-shaped observation footprint with an approximate
radius of 2.6 m (see Fig. 2). Each observation sequence lasted ~6 min, a
duration short enough to assume negligible variation in both total
incoming radiation and the fraction of intercepted radiation (ip), and
thus total emitted SIF (Fy,). One complete observation sequence was
conducted every 30 min, resulting in four datasets collected per day
during the selected time window.

Supporting biophysical parameters were collected to characterize
canopy structure. LAI was quantified using a destructive sampling
method. To calculate LAI, we first measured the total single-sided leaf
area (SLA) from wheat leaves sampled along a 0.3-m row segment. The
leaf area per unit row length (LA, in m?m~1) was then calculated as: LA
= SLA/0.3. To upscale to plot-level LAI, we considered the number of
rows per meter in the cross-row direction (6.8 rows~m’1) and the total
plot dimensions (M x N, in meters), where M is the row length and N is
the cross-row width. The leaf area per row is LA x M, and the number of
rows in the plot is N x 6.8. Hence, the total leaf area over the entire plot
is given by: LA x M x 6.8 x N. LAI was calculated by normalizing the
total leaf area by the ground area (M x N): SLA/0.3 x 6.8. This
simplification assumes uniform row spacing and plant distribution
across the plot. The LAI values of the wheat canopy were 0.71 and 0.89
on March 16 and 21, 2025, respectively.

3.2. Evaluation with the SCOPE model

Because accurate field measurements of or or F,, are difficult to
obtain, we employed virtual scenarios and radiative transfer models
(RTMs) to directly evaluate the proposed soil correction methods. RTMs
simulate the values of of, Fyy, ip and canopy reflectance based on
physical principles, enabling direct testing of the relationships outlined
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(b) Mar. 16" LAI = 0.71

x Viewing azimuth angles

TR

Y Spectrometers

Fig. 2. Setup for multi-angular observations of SIF and reflectance (a). Nadir-view RGB images of the wheat canopy taken on March 16 and 21, 2025, are shown in
(b) and (c), respectively. The blue cross symbols indicate the predefined viewing azimuth angles (VAA). (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
in Table 1.

3.2.1. The SCOPE model

SCOPE (Soil-Canopy Observation of Photochemistry and Energy
fluxes, Van Der Tol et al., 2009; Yang et al., 2021) is one of the most
widely used models for analyzing the factors and processes that govern
TOC SIF. In SCOPE, vegetation is typically represented as a single ho-
mogeneous layer of leaves situated above a soil surface, with leaf
orientation allowed to vary within the canopy. The model integrates a
leaf-level RTM (Fluspect), multiple canopy-level RTMs, and an energy
balance module. At the leaf level, Fluspect simulates leaf reflectance,
transmittance, and both forward and backward fluorescence emission
(Vilfan et al., 2018). At the canopy scale, RTMo and RTMf—two radia-
tive transfer models based on the SAIL framework (Verhoef, 1984)
—simulate the transfer of incident radiation and the emission of fluo-
rescence, respectively. The model is publicly available in an online re-
pository: https://github.com/Christiaanvandertol/SCOPE.

SCOPE generates all the other necessary variables for evaluating the
original R2F, soil-adjusted R2F (saR2F), NDVI-based and FCVI-based
R2F relationships. These variables include TOC spectral reflectance
R(4), canopy interceptance iy and the true scattering coefficient of far-
red SIF (or) at 760 nm. Among these variables, TOC reflectance is a
direct output of SCOPE, while or and i, are intermediate variables
derived within the model. The scattering coefficient oF is computed as
the ratio of TOC SIF and canopy total emitted SIF, both simulated by
RTMf. The canopy interceptance ip is calculated in SCOPE as 1—
exp( — kL), where k is the extinction coefficient and L is the canopy LAI,
assuming direct illumination. The extinction coefficient k depends on
the solar zenith angle and the leaf inclination distribution. This formu-
lation is consistent with the definition of canopy interceptance used in
Smolander and Stenberg (2005).

3.2.2. Synthetic scenarios

The first set of synthetic scenarios aimed at testing the overall per-
formance of the R2F relationships listed in Table 1. A wide range of
synthetic scenarios were generated to examine the soil effects on Rp;- and
or, and to evaluate the performance of the original R2F, saR2F, NDVI-
based and FCVI-based R2F relationships in estimating or. These sce-
narios covered all possible combinations of soil reflectance, leaf bio-
physical properties, canopy structural parameters, and sun-observer
geometry listed in Table 2. The setup largely followed Yang and van der

Table 2
Summary of SCOPE inputs applied for the generation of the dataset.
Variables  Definitions Units Values
Cab Chlorophyll a + b ug cm 2 10, 20, 30,40, 50, 60,70 or 80
content
LAI Leaf area index m2m— 2 05,1,2,3,4,5,6,70r8
LAD Leaf angle distribution - spherical, planophile, or
erectophile
O Solar zenith angle degree 30, 45 or 60
6, Viewing zenith angle degree 0, 20, 40 or 60
RS Soil reflectance - 0.1, 0.2, 0.3 at 760 nm

Tol (2018), but with an expanded range. Specifically, LAI varied from
0.5 to 8 m? m~2, leaf chlorophyll content from 10 to 80 ug-cm 2. Leaf
angle distribution (LAD) types included spherical, planophile to erec-
tophile. Three different soil backgrounds were used, with NIR reflec-
tance at 760 nm equaling 0.3, 0.2 and 0.1. The corresponding soil
reflectance spectra, derived from field measurements, are available in
the online GitHub repository. Solar zenith angles (6;) were set to 30, 45
or 60 degrees, and the viewing angles (6,) were set to 0, 20, 40 or 60
degrees. These variables were selected due to their known influence on
canopy reflectance and SIF (Hinojo-Hinojo and Goulden, 2020),
whereas other parameters—such as leaf water and dry matter con-
tent—were kept at the default values defined in SCOPE.

The second set of synthetic scenarios was designed to evaluate the
performance of the R2F relationships listed in Table 1 in correcting for
viewing-angle effects. This design mirrored the setup of the field
experiment but explored a broader range of canopy LAI conditions and
viewing zenith angles. The simulations comprised four groups, each
representing a different canopy LAI, while keeping canopy LAD, soil
background, and leaf optical properties constant. Specifically, a spher-
ical LAD, a dry soil surface, and SCOPE default leaf biochemical pa-
rameters were applied. Within each group, observations were simulated
at 2° intervals for both viewing zenith and azimuth angles, with a finer
1° interval in the hot spot direction to better capture angular effects. The
solar zenith angle was fixed at 30° to maintain consistent illumination
across scenarios and enable a systematic analysis of the impact of
viewing geometry. For canopies with the same LAI, variations in viewing
angle do not affect F,, but do influence of, thereby altering Fiy.
Consequently, estimating or using the R2F methods enables subsequent
estimation of F,. By comparing the true and R2F-derived F, values
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across different LAI levels, we assessed the accuracy and robustness of
the various R2F-based approaches, and identify the most reliable
formulation under varying canopy densities.

4. Results
4.1. Performance of the four R2F methods across synthetic scenarios

4.1.1. Overall performance of the four R2F methods

We evaluated the performance of four R2F methods across the first
set of synthetic scenarios. Among them, soil-adjusted R2F (saR2F) shows
the least sensitivity to LAI, whereas the original R2F relationship, which
exhibits substantial errors in low LAI cases (LAI < 3; Fig. 3a vs. Fig. 3c).
For dense canopies (LAI > 3), the original R2F relationship provides
accurate estimates of o, with a low RMSE of 0.040 and high R? of 0.817
(Fig. 3b). However, for sparse canopies (LAI < 3), particularly for LAI <
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Fig. 3. Comparison between true and estimated scattering coefficient of far-red
SIF (oF) using four R2F based methods: the original R2F, soil-adjusted R2F
(saR2F), NDVI-based (NIRv) and FCVI-based R2F, under various non-black-soil
scenarios. Left panels correspond to sparse canopies (LAI < 3); right panels
correspond to dense canopies (LAI > 3). RMSE and R? values are shown in each
panel, with R? computed based on the 1:1 (slope = 1) model. (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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1, it significantly overestimates or —sometimes predicting values as
high as 3. This leads to a much larger RMSE of 0.238 for low LAI cases,
and a negative R2of — 8.393 (Fig. 3a).

In contrast, the saR2F method maintains robust performance across
canopy densities, with RMSEs substantially lower than the original R2F.
Specifically, it achieves RMSEs of 0.044 for LAI < 3 and 0.051 for LAI >
3. The R? values using the 1-to-1 model are 0.802 and 0.790, respec-
tively (Fig. 3c and d). These values indicate consistently accurate pre-
dictions and a strong 1:1 correspondence with true op.

The NDVI-based and FCVI-based R2F methods also outperform the
original R2F in sparse canopies. For LAI < 3, the FCVI-based and NDVI-
based methods yields low RMSE of 0.075 and 0.092, respectively
(Fig. 3e-3g). However, both methods exhibited low R? values under
sparse conditions (R? = 0.405 for FCVI and 0.376 for NDVI), indicating
that they failed to capture the variability in or and tended to make over-
regularized predictions centered near the mean. In dense canopies (LAI
> 3), the original R2F method remains the most accurate (RMSE =
0.040), followed by saR2F (0.051), NDVI-based (0.067), and FCVI-based
(0.069). The predictions from the saR2F are more tightly along the 1:1
line than the NDVI-based and FCVI-based R2F methods.

Further comparing the three soil-adjusted R2F methods, we find that
the saR2F method exhibits the most stable performance across all NDVI
ranges, with relative errors generally within £35 % (Fig. 4). As NDVI
increases, the error distribution becomes narrower. Specifically, when
NDVI >0.8 (Fig. 4d), the errors for saR2F are tightly constrained be-
tween approximately —15 % and 0 %. In contrast, the NDVI-based R2F
method systematically underestimates or across all NDVI ranges,
particularly evident when NDVI is below 0.6 (Fig. 4a and b), where the
median errors approach —20 %. The FCVI-based R2F method shows
intermediate performance: although it also tends to slightly underesti-
mate oy, the errors are smaller and more symmetrically distributed
compared to the NDVI-based method, especially when NDVI is higher
than 0.6 (Fig. 4c and d). Overall, the performance of all three soil-
adjusted R2F methods is better for the denser canopy (higher NDVI),
but the saR2F consistently achieves the best accuracy and stability.

4.1.2. Performance of the four R2F methods for correcting viewing angle
effects

In comparing the accuracy of four R2F methods for correcting
viewing angle effects and obtaining F,y, we find that all methods
perform adequately when LAI > 3. However, for sparser canopies, the
advantage of the soil-adjusted R2F (saR2F) method becomes increas-
ingly evident (Fig. 5). For LAI = 0.5 (Fig. 5a), the original R2F method
shows the largest error, with a median error of approximately 55 %. The
NDVI-based and FCVI-based methods offer notable improvements,
reducing the median error to around 25 % and 24 %, respectively. In
contrast, the saR2F method yields the most accurate results, with me-
dian errors close to zero.

A similar pattern is observed at LAl = 1 (Fig. 5b): the original R2F
method still produces a median error of about 38 %, while the NDVI-
based and FCVI-based methods perform better, and the saR2F method
once again achieves near-zero error. As LAI increases to 3 and 6 (Fig. 5¢
and d), the errors from the original R2F method markedly decrease, and
all four methods provide reliable estimates, with median errors
converging to around 10 %.

To assess how viewing geometry influences the performance of the
R2F methods, we analyzed the relative errors as a function of viewing
angle for a representative canopy with LAI = 0.5 (Fig. 6). The original
R2F method exhibits the largest errors, with relative errors exceeding
60 % across most angles (Fig. 6a). In contrast, the saR2F method shows
consistently low errors, generally remaining below 5 % regardless of
viewing direction (Fig. 6b). The FCVI-based method performs moder-
ately well, with errors above 30 % at narrow viewing angles, decreasing
to below 10 % at viewing zenith angles greater than 60° (Fig. 6d). The
NDVI-based method displays a similar trend, with errors above 30 %
across most viewing angles, improving only at extreme off-nadir angles
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Fig. 4. Relative errors in the estimated scattering coefficient of far-red SIF (6r) using the soil-adjusted R2F (saR2F), NDVI-based (NIRv) and FCVI-based R2F re-
lationships for various NDVI levels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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soil-adjusted R2F (saR2F), NDVI-based (NIRv) and FCVI-based R2F relation-
ships across four LAI levels (0.5, 1, 3, and 6).

(>70°). Overall, relative errors tend to decrease with increasing viewing
zenith angle, as when viewing at these large angles the effect of the soil
becomes again negligible.

4.2. Performance across multi-angle field SIF observations

When evaluating the performance of the four R2F methods using the
field datasets by examining the correlation between Ry, saR779, NIRvV
and FCVI and F,, we find that the three soil-adjusted methods consis-
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Fig. 6. The angular distribution of relative errors in estimating canopy total
emitted SIF (F,,) from TOC SIF (F;) by using the original R2F, soil-adjusted
R2F (saR2F), NDVI-based (NIRv) and FCVI-based R2F relationships for a can-
opy with LAI of 0.5.

tently outperform the original R2F method. On March 16 (LAI = 0.71;
Fig. 7a-d), the original R2F method shows the weakest performance,
with correlation coefficients between R;7¢ and Fy, ranging from 0.54 to
0.71. In contrast, the saR2F method achieves significantly higher cor-
relations, improving by 0.21-0.31 over the original R2F. The NDVI- and
FCVI-based methods also yield stronger correlations, exceeding the
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Fig. 7. Pearson correlation coefficients (p) among F,. and Ry7¢, saR770, NIRv and FCVI. Panels (a) to (d) correspond to measurements on March 16, LAl =

0.71, while

panels (e)-(h) correspond to March 21 (LAI = 0.89). Each panel represents one set of data collected within a short period under similar illumination but different

viewing azimuth angles.

original R2F by 0.20-0.32 and 0.17-0.23, respectively.

When LAI is slightly higher (March 21, LAI = 0.89; Fig. 7e-h), the
original R2F method shows moderate improvement compared to the
correlation on March 16, with correlations rising to 0.69-0.81. Although
the performance of the original R2F improves, the soil-adjusted methods
still perform better. saR;7;o and F, maintain high correlation co-
efficients ranging from 0.75 to 0.93, while the correlations for NDVI-
and FCVI-based methods range from 0.72 to 0.92 and 0.84 to 0.89,
respectively.

The correlation between F,,. and Ry is relatively weak (p = 0.69 +
0.09), indicating the limited reliability of the original R2F approach
under varying geometric conditions (Table 3). In contrast, the three soil-
adjusted R2F methods—saR779, NIRv and FCVI—exhibit much stronger
correlations with F,, with p values of 0.87 + 0.06, 0.87 + 0.07, and
0.85 + 0.05, respectively. Among the soil-adjusted indices, saR779 and
NIRv are almost perfectly correlated (p = 0.99 + 0.00), suggesting that
they are nearly interchangeable in this dataset. FCVI also shows high
consistency with both saR77 (p = 0.86 + 0.07) and NIRv (p = 0.87 +
0.06), highlighting the strong internal agreement among the three soil-
adjusted approaches. These results collectively underscore the advan-
tage of soil-adjusted methods over the original R2F in improving the
stability and accuracy of F,, estimation across different viewing
geometries.

Table 3

Pearson correlation coefficients (mean + standard deviation) among F;,, and
R770, saR770, NIRv and FCVI, based on eight groups of multi-angular observa-
tions collected under different viewing azimuth angles. The reported mean and
standard deviation represent the statistics of the eight groups of measurements
taken over two days, as shown in Fig. 7.

Foc R770 saR770 NIRv FCVI
Froc 1.00
R770 0.69 + 0.09 1.00
saR770 0.87 + 0.06 0.62 + 0.14 1.00
NIRv 0.87 + 0.07 0.63 + 0.13 0.99 + 0.00 1.00
FCVI 0.85 + 0.05 0.93 + 0.03 0.86 + 0.07 0.87 + 0.06 1.00

5. Discussion
5.1. Soil correction to the original R2F relationship

We extended the original R2F framework by explicitly addressing the
black-soil assumption problem. We presented a theoretical analysis
showing that although soil enhances both Ry and o, the impact of
soil-vegetation multiple scattering on Ry; and or tends to cancel out,
and the dominant additional effects on the original R2F relationship
stem from direct soil reflection on R,;-. The extra contribution of direct
soil reflection aligns with the simulation results that the magnitude of
the soil-induced enhancement of Ry; is greater than that of oF (see Ap-
pendix B). Based on this insight, we developed a saR2F relationship by
incorporating TOC red and blue reflectance to estimate the direct soil
reflection and correct it. This improved relationship allows a more ac-
curate estimation of op, especially in sparse canopies where the soil
signal is strong.

Field and simulation experiments confirmed that the saR2F rela-
tionship outperforms the original R2F relationship, especially under low
vegetation cover conditions (Figs. 3-7). When the canopy is sparse, the
interception of incoming radiation is low. If soil reflectance is assumed
to be zero, both Ry; and iy would be very small, and Rp;r/ip would yield
values comparable to or. However, when the soil is reflective, Ry; be-
comes higher while iy remains small, leading to unrealistically large
values of Ry;r/ip and rendering it unreliable for estimating o (e.g., blue
dots in Fig. 3a). This phenomenon is consistent with the simulations
reported by Zeng et al. (2019) and was recognized by Yang and van der
Tol (2018) as the “black-soil background problem”. After applying the
soil correction, these outliers are largely eliminated, and the estimated
oy falls within a physically reasonable range, especially for sparse can-
opies (Fig. 3b). We also observed that soil correction becomes increas-
ingly necessary with decreasing vegetation LAI, as lower canopy
coverage leads to greater exposure of soil, which biases the estimation of
or from uncorrected Ry;;. By removing the direct soil contribution of Ry,
the correspondence between reflectance and or is significantly
improved.

The saR2F relationship also provides improved angular correction of
TOC SIF using TOC reflectance, particularly when observing at different
viewing zenith angles (Fig. 6). In dense canopies, changes in viewing



P. Yang et al.

angle mainly affect the relative contributions of sunlit and shaded leaves
to both reflectance and SIF. Due to the similarity in radiative transfer
processes for Ry; and SIF within the vegetation layer, their directional
effects are nearly identical, as supported by Liu et al. (2016), He et al.
(2017) Joiner et al. (2020) and our results (Fig. 5c and d). However, in
sparse canopies, changes in viewing angle not only alter the sunlit—
shaded leaf ratio but also substantially affect the observed soil fraction.
Soil directly reflects incoming radiation and enhances Ry;-, but does not
emit SIF. This distorts the relationship between R, and or under the
non-black soil condition, as shown in Figs. 5a, b, 6, and 7.

The observed systematic underestimation of or (Fig. 3b-d) when
using saR2F or related R2F-based approaches (e.g., NIRv and FCVI) can
be attributed to several factors. First, the theoretical relationship be-
tween or and Ry is defined as or = Ryir/ (lownir) according to the orig-
inal R2F framework, where wy; is the NIR leaf albedo (Yang and van der
Tol, 2018). In practice, however, due to the difficulty in directly
measuring leaf albedo, wy; is often assumed to be 1 for simplicity. While
this assumption is generally acceptable, it leads to an underestimation of
or because actual w,; values are typically lower. Using more realistic
wpir values (i.e., 0.95 or 0.9) in practical applications can help alleviate
this bias. Second, the LAB soil correction method proposed by Yang et al.
(2025), employed in our analysis, has been found to overestimate the
direct soil contribution (see Fig. 8c in Yang et al., 2025), thereby
contributing to the systematic underestimation of op. Third, the R2F
framework was proposed by assuming equivalence between leaf
reflectance and transmittance. While this simplification may introduce
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some bias, our earlier study showed that the effect of optical asymmetry
does not cause a consistent offset (see Fig. 10B in Yang and van der Tol,
2018), which differs from the consistent underestimation of 6 as shown
in Fig. 2. Therefore, we conclude that the assumption of w,r = 1 and
potential overcorrection by the soil adjustment method are the primary
sources of o underestimation, and addressing these issues will be
important for improving the accuracy of future R2F-based approaches.

5.2. The effectiveness and limitations of the NDVI- and FCVI-based
approaches

The development of saR2F highlights that incorporating TOC red and
blue reflectance helps to mitigate soil effects on the R2F relationship.
This insight also sheds light on the effectiveness and limitations of other
soil correction approaches such as NDVI- and FCVI-based methods. Both
indices involve reflectance in the visible range to empirically or semi-
empirically suppress soil contributions to NIR reflectance.

Our theoretical analysis suggests that removing the single-scattering
contribution of soil to Ry is key to solving the black-soil problem. Both
NDVI (as in NIRv) and visible reflectance (as in FCVI) achieve correction
by reducing the soil-related component in Rp;y. NIRv was initially pro-
posed as a semi-empirical index based on its strong correlation with SIF
and GPP (Badgley et al., 2017). Later studies linked NIRv to or and
explained its soil-correction capability by considering that NDVI ap-
proximates FVC, allowing R, scaled by NDVI to represent vegetation-
only reflectance (Zeng et al., 2019).
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Fig. 8. Comparison of FCVI-based and NIRvH-based R2F methods, using the same dataset as in Fig. 3. (a) The key fitting parameter k in the NIRvH approach,
estimated using TOC reflectance from either the red band (675-681 nm) or the NIR band (778-800 nm). (b) Direct comparison between FCVI and NIRvH values.
(c—d) True and estimated or estimated using NIRvH and FCVI, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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The use of NDVI x Ry (i.e., NIRv) to estimate the NIR reflectance of
‘pure’ vegetation reflects the intuitive notion that vegetation contribu-
tion to the canopy signal increases with NDVI. However, this approach
suffers from a fundamental logical inconsistency. For example, in a pure
soil scene, the observed NDVI equals that of bare soil, which is typically
greater than zero. In such cases, NIRv yields a non-zero value, even
though the NIR reflectance of ‘pure’ vegetation should be zero by defi-
nition. Conversely, in a fully vegetated scene with no soil contribution,
the observed TOC NIR reflectance should correspond directly to the NIR
reflectance of pure vegetation. Yet, because canopy NDVI rarely reaches
1, NIRv underestimates the true vegetation signal. These inconsistencies
highlight a key limitation of this empirical approximation. As such, this
formulation may introduce bias in the retrieval of vegetation optical
properties and warrants careful re-evaluation in soil correction models.

Similar to NIRv, FCVI performs reasonably well in practice, although
it was originally developed under the assumption of non-reflective soil
(i.e., black soil), (Figs. 3-7). Structurally, the FCVI-based and saR2F
approaches are quite similar—both rely on subtracting a visible-
reflectance-based component from Rp;. The apparent effectiveness of
FCVI may be attributed to its ability to capture variations in FVC when
soil reflectance remains constant. As vegetation cover increases, the TOC
visible reflectance tends to approximate that of pure vegetation;
conversely, in sparse canopies, it approaches that of bare soil. Thus,
although FCVI does not explicitly isolate the soil contribution, its
dependence on visible reflectance allows it to track FVC-related
changes, partially mitigating soil background effects under certain
conditions. Nevertheless, we found this is insufficient, and believe the
generalizable basis for correcting soil effects on the R2F relationship in
this study was necessary.

Both NIRv-based and FCVI-based methods show low RMSE, which
might suggest good performance (Fig. 3). However, when comparing the
estimated and true o, their R? values are low, indicating that the esti-
mates may simply cluster around the mean of the true values. This
pattern implies that, despite low RMSE, these methods have weak
explanatory power for variations in or. This may reflect a potential issue
with NDVI-based correction—while NDVI is related to soil contribution,
simply multiplying R,; by NDVI does not effectively remove the soil
effect, and highlights the need for caution when using them in soil
correction models.

It is important to note that in our soil correction, we did not adopt the
NIRvH method. There are several reasons for this decision. First, NIRvH
is by design intended to correct for both (1) soil single scattering and (2)
soil-vegetation multiple scattering effects on R,;. However, as shown in
our analysis in Section 2.2, correcting the soil-vegetation multiple
scattering component in R is not appropriate, because this component
also influences of. Simply correcting its effect on R, does not improve
the Rp;—or relationship.

Furthermore, in our evaluation of NIRvH, we used the definition:

©)]

Following the recommendation of Zeng et al. (2021), we set Ayq =
678 nm and 4,; = 780 nm (within the 778-800 nm range). The slope k
was estimated by linearly fitting several TOC reflectance values against
wavelength in either of the two spectral regions: the red band (675-681
nm) or the NIR band (778-800 nm). Our results revealed two issues: (1)
The value of k differed depending on whether it was derived from the
red or NIR regions (Fig. 8a). (2) Regardless of which range was used, the
fitted spectral-invariant values were very small, making NIRvVH essen-
tially equivalent to FCVI in our case (Fig. 8b). Consequently, the per-
formance of FCVI-based and NIRvH-based R2F methods is similar,
although slight improvements are observed for NIRvVH due to its incor-
poration of red reflectance.

NIRVH = Ryir — Rreqd — k x (lnir - j'red)
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5.3. Applications and limitations

5.3.1. Applications of the saR2F relationship

The relationship between R, and or enables three main applica-
tions: (1) correcting directional effects on SIF using reflectance, (2)
estimating total emitted SIF from directional SIF and reflectance, and (3)
converting SIF across spatial scales. These capabilities are essential for
linking remote sensing observations to photosynthetic processes such as
GPP and LUE.

Since the R2F concept was first proposed in 2018, it has been
adopted in a growing number of studies across various spatial scales,
including site-level experiments, UAV-based observations, and global
satellite retrievals (Mohammed et al., 2019a). However, in many of
these applications, soil background effects have been treated in a
simplified manner. Some studies have ignored soil contributions, while
others have excluded low-vegetation-cover pixels to avoid contamina-
tion (Zhang et al., 2019). Alternatively, NDVI- or FCVI-based correction
methods have been employed to mitigate soil influences (Bendig et al.,
2025; Merrick et al., 2021). This study provides a more systematic
analysis of the impact of soil on both R, and or. As demonstrated in
Appendix B, the influence of soil on oy can be substantial, although part
of this effect is offset by the soil’s contribution to Ry;. This finding
challenges the assumption that soil has little to no effect on SIF and
updates our understanding of the factors influencing TOC fluorescence
signals (Zeng et al., 2019). By explicitly accounting for soil effects, the
saR2F framework provides a more robust and physically interpretable
approach for a range of applications—including angular correction,
estimation of total emitted SIF (F,,), and improved retrievals of photo-
synthetic activity such as GPP. As such, the methodology presented here
offers a promising pathway to enhance both the accuracy and applica-
bility of existing and future SIF-related studies.

Soil correction is particularly important for the remote sensing of
vegetation physiological signals, as soil typically acts as a confounding
factor. The soil correction method proposed here builds upon the earlier
work of Yang et al. (2025), where it was systematically evaluated and
shown to be applicable to other reflectance-based indices, such as the
Photochemical Reflectance Index (PRI) (Yang, 2024; Yang, 2022).
Whether using SIF or PRI for assessing vegetation physiology, soil
correction can facilitate more reliable downscaling from canopy- to leaf-
level signals, thereby improving the monitoring of physiological
processes.

5.3.2. Limitations of the theoretical development and evaluation

Despite its advantages, the saR2F relationship also has limitations
that should be considered when applying it to real-world scenarios.
First, the theoretical foundation of saR2F is based on a two-component
canopy composed solely of green leaves and underlying soil. However,
natural vegetation often includes non-photosynthetic components such
as woody material (branches, stems) or senescent leaves, which
contribute to TOC reflectance. In such three-component systems, TOC
reflectance is contributed not only from soil and green foliage but also
from additional scattering and absorption by these non-photosynthetic
elements. The direct reflectance by the non-photosynthetic parts needs
to be subtracted besides the soil effects.

In addition to the structural complexity, the soil correction method
implemented in saR2F relies on several simplifying assumptions. For
instance, it assumes that red and blue reflectance of green leaves are
close to zero, and that soil reflectance between 400 and 1000 nm varies
approximately linearly with wavelength. While these assumptions are
generally supported by field and simulated data, there are sit-
uations—such as high-sand-content soils, litter-covered surfaces, or
atypical vegetation types—where they may break down, potentially
compromising the accuracy of the correction.

Additionally, although the saR2F framework improves the physical
interpretability and robustness of oF estimation, it still requires knowl-
edge of canopy interceptance (i), a structural variable that is difficult to
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obtain directly from satellite observations. Although i, can be approx-
imated using LAI and clumping index, uncertainties in these parameters
may propagate into o estimates. Therefore, future work should explore
integrating saR2F with structural parameter retrieval methods, such as
3D radiative transfer models or machine-learning-based approaches
trained on high-resolution datasets.

The saR2F formulation in this study is based on narrowband reflec-
tance at 438 nm and 675 nm, corresponding to regions of strong chlo-
rophyll absorption. While this spectral specificity enhances the method’s
sensitivity to vegetation optical properties, it also raises questions
regarding its applicability to multispectral observations, where only
broader bands (e.g., MODIS, Landsat, Sentinel-3) are available. Ac-
cording to Yang et al. (2025), we expect that the adaptation of our soil
correction approach to broadband data remains effective in reducing
soil background effects, although its performance varied depending on
the sensor band configuration and bandwidth. Substituting the narrow
bands in saR2F with available broadband red and blue channels can still
yield meaningful improvements over conventional indices, but the
magnitude of the benefit depends on the specific spectral coverage and
overlap with absorption features. However, the use of blue reflectance
(~438 nm) also introduces potential challenges for satellite-based ap-
plications. Blue wavelengths are more susceptible to atmospheric ef-
fects, particularly aerosol scattering, which can increase uncertainties in
surface reflectance retrieval if not properly corrected. This sensitivity
may reduce the robustness of saR2F in regions or seasons with high
aerosol loading, such as dust-prone areas or during biomass burning
events. Therefore, applying saR2F at large scales requires robust atmo-
spheric correction strategies to mitigate these effects. A comprehensive
evaluation of broadband-adapted saR2F across multiple platforms,
especially using actual satellite data, is beyond the scope of the present
study but represents an important avenue for future work.

Finally, our evaluation of the correction methods is also subject to
several limitations. In the context of SIF studies, the inability to directly
measure oy and F,,, makes it particularly challenging to assess the ac-
curacy of proposed correction schemes. For example, in our field data-
set, soil reflectance and canopy structure remained nearly constant, and
only the viewing azimuth was varied. Under these controlled conditions,
the benefits of soil correction can be observed; however, the differences
among the saR2F method, FCVI-based correction, and NDVI-based ap-
proaches remain relatively subtle (Fig. 7). In contrast, under simulated
scenarios where both viewing geometry and LAI are allowed to vary, the
distinctions among these methods become much more pronounced
(Figs. 5 and 6). Nevertheless, model validation is inevitably influenced
by the design of the experimental or simulated scenarios, which may
unintentionally bias the outcome in favor of a particular method.
Therefore, we argue that rigorous theoretical derivation is indispensable
for advancing SIF correction methodologies. Compared to empirical
fitting alone, a clear physical foundation offers a more robust and
generalizable basis for methodological development.

6. Conclusions
We revisited the reflectance-to-fluorescence (R2F) relationship and

proposed an improved soil-adjusted version (saR2F) to explicitly ac-
count for soil effects. While the original R2F framework offers a valuable
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theoretical basis for interpreting canopy-level SIF signals, its assumption
of a non-reflective soil limits its applicability—particularly in sparse
canopies where soil contributions are non-negligible. We show while
soil-vegetation multiple scattering affects both NIR reflectance and the
scattering coefficient of emitted SIF, it does so in a comparable manner,
and thus does not fundamentally disrupt the applicability of the original
R2F relationship. In contrast, the dominant source of bias in sparse
canopies arises from the extra contribution of soil single scattering to
NIR reflectance, which has no counterpart in the scattering coefficient of
emitted SIF.

The proposed saR2F formulation incorporates TOC red and blue
reflectance to estimate and remove the direct soil contribution, enabling
more accurate estimation of the SIF scattering coefficient. Our results
show that saR2F significantly improves the consistency of reflectan-
ce-SIF relationships across different canopy structures and viewing ge-
ometries. Compared to existing NDVI- or FCVI-based correction
approaches, saR2F offers a more physically plausible and interpretable
solution that can be applied to angular correction, total SIF estimation,
and photosynthetic monitoring. Overall, the saR2F approach provides a
unified, scalable, and physically robust tool for improving the accuracy
of SIF-based vegetation physiological assessments—from the leaf to the
satellite scale. This work lays the groundwork for more reliable gener-
ation and interpretation of next-generation SIF remote sensing products.
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Appendix A. Analysis of soil effects on R2F using the four-stream theory

In Section 2, we narrow down the soil effects on the R2F relationship to the single scattering of soil to Ry with a conceptual figure. In what follows,
we present the specific derivations by using the four-stream radiative transfer theory.

The four-stream theory considers four types of radiative fluxes: direct solar flux, diffuse downward flux, diffuse upward flux, direct flux in the
direction of observer (Verhoef, 1984). We follow the notation in the four-stream theory for the transmittances of a vegetation canopy and examine the

effects of soil on canopy SIF scattering and reflectance.
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Fig. Al. Diagram for the radiative transfer of incident radiation and emitted SIF.

For the scattering coefficient of far-red SIF oF, the enhancement by the soil is given as

5, =0k — 0% = R, 14 (Ala)

where the superscript ‘1’ is introduced to denote the scattering coefficient for non-black-soil canopies. The enhancement &, denotes the fraction of the
total emitted SIF that is scattered by soil and detected by the sensor. It is determined by the downward transmittance of the total emitted SIF Tzd, soil
reflectance R};. and upward transmittance 74, of the reflected SIF by soil. Canopy transmittance 74, is the diffuse-directional transmittance of the

canopy. The subscripts ‘d’ and ‘0’ denote diffuse incoming radiation and outgoing radiation in the observer’s direction, respectively. R};. is the soil
reflectance at the NIR region. The transmittance 1J;d is the effective downward transmittance for the total emitted SIF by all leaves. It differs from 744 by

the position of the radiative source (i.e., top of canopy for 744, inside the canopy for 1{1d).
While for NIR reflectance, the enhancement by the soil is given as

1 0
ORnir = Rm', - Rnir = Tsst,irTuu + Tst;iero (A2)

where 75, and 7,4 denote canopy transmittance for the incoming solar beam. Note we assume the soil reflectance is isotropic. The magnitudes of 7470,
and 7,474, depend on the number of scatters (i.e., leaves) in the canopy: 77,, decreases with the increasing LAI, while 7,474, increases with LAL

According to the enhancement on canopy reflectance and SIF scattering shown in Eq. Al and Eq. A2, we obtain the relationship between them for
non-black-soil canopies by revising Eq. 2.

1

R:.
oL = imr + Orar (A3)
o

By introducing Eq. Al and Eq. A2 into Eq. A3, and we obtain a correction factor Sgor for the R2F relationship

RO+ Spui
ORror = Gg + 65— @ (A4
0
0
Hence, knowing from Eq. 2 that 62 — % = 0, the correction factor for soil effects is
Onni
Srop = 65 — };mr _ (TQdeo _ TssToo jTSdeo)Rfu‘r (AS)
0 0

The transmittances in Eq. A5 are unknown. Nevertheless, we conduct some empirical analysis to the soil correction factor. For dense canopies, the
largeest part of incoming PAR is absorbed by leaves at the upper layer, and by extension, the effective downward transmittance of canopy SIF 1{1d is
close to 7,4. Moreover, i, is close to unity and the transmittances 7, and 7,, are close to zero due to limited gaps. Therefore, H;drdu is close to %, and
T“i% is small. As a result, 6gor can be neglected. This implies that the soil effects in dense canopies do not significantly alter the relationship between R

and op.
For sparse canopies, direct transmittances for the direct incident light 747, are large due to limited number of leaves for intercepting the light. In
contrast, the transmittances for diffuse incoming to direct outgoing radiation, and direct incoming to diffuse outgoing (i.e., 74, and 74) are small, since

the number of leaves to scatter the direct incident light to diffuse light or vice versa is limited. Therefore, we expect that TZdeo — TS‘;;“ is much smaller

than “s%=. Hence, dror is largely determined by %Rgi’. This approximation is also intuitive and rational. The contribution of soil to canopy reflectance
is mainly denominated by the single scattering of soil, rssrooRg"'r, for sparse canopies. The contribution of multiple scattering to TOC SIF and reflectance
is similar.
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Thus, we can estimate the canopy scattering of far-red SIF for non-black soil cases as:

Remote Sensing of Environment 330 (2025) 114998

(5;, — w (A6a)
o

6117 _ erlir _ipigﬂRflir (A6b)
0

Appendix B. Analysis of the soil effects on R2F using simulated datasets

The replacement of black soil with non-black soil leads to higher R,; and of (Fig. B1). The differences are substantially smaller for the canopies

with high LAI values. For the canopies with an LAI greater than 3, the difference in R,; of black-soil and non-black-soil scenarios generally remains
below 0.06 (red bars in Fig. Bla), and the difference in o is less than 0.05 (red bars in Fig. B1b). In these scenarios, the variation is negligible, with
around 80 % of scenarios displaying differences below 0.01. In contrast, the differences are more pronounced for canopies with an LAI below 3. In such

cases, the disparity in Ry; reaches up to 0.3 between black-soil and non-black-soil scenarios, and the differences in o are as high as 0.2.
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Fig. B1. The effects of soil on NIR reflectance (Rn;, @) and scattering coefficient of far-red SIF (oF, b) for dense (LAI> 3) and sparse (LAI< 3) canopies. Shown the
distributions of the probability of the difference between non-black-soil canopies (R; # 0) and the corresponding black-soil canopies (R; = 0). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

The impacts of LAI on the difference in R,; and o of black-soil and non-black-soil scenarios are presented in Fig. B2. When LAI exceeds 3, the
discrepancy in Ry is less than 0.05, and the difference is even smaller for of. The canopies with an LAI of 8 exhibit minimal effects from the soil on
both Rp;- and of. In contrast, the canopies with an LAI of 0.5 display a mean difference of 0.14 in R,;- and a mean difference of 0.06 in o5. The variability
in differences for the same LAI are attributed to variations in leaf biophysical properties, soil reflectance, leaf angle distribution (LAD), and sun-
observer geometry.
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Fig. B2. The effects of soil on NIR reflectance (R,;) and scattering coefficient of far-red SIF (o) changing with LAIL. Shown the mean values and standard deviations
of the differences between non-black-soil canopies (R; # 0) and the corresponding black-soil canopies (R; = 0) for various scenarios. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. B3. The error in the original R2F relationship expressed as the difference between the true and estimated scattering coefficient of far-red SIF (or), Sror = oF —
Ruir/ip. Shown the distributions of the probability of the error for the black-soil canopies (R; = 0, a) and non-black-soil canopies (Rs # 0, b). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

The original R2F relationship provides reasonably accurate estimation of o5 for the black soil canopies (depicted in Fig. B3a), but the performance
in the non-black-soil canopies is unacceptable when the canopies LAI is less than 3 (depicted in Fig. B3b). In the black-soil canopies, the errors span
from —0.1 to 0.01. In over 50 % of the scenarios, the errors are within the narrow range of less than 0.05. Furthermore, the error distributions exhibit a
similar pattern irrespective of whether the canopies possess large or small LAL In contrast, in the non-black-soil canopies, the error distributions
exhibit a broader spectrum, and is strongly affected by canopy LAI (Fig. B3b). When the LAI of the canopies is less than 3, the errors are as large as 0.6.
However, when the LAI exceeds 3, the errors vary from —0.1 to 0, which is similar to the range for the black-soil scenarios.

The original R2F relationship provides accurate estimation of o across different canopy LAI under the black soil condition (Fig. B4). The error
remains relatively stable, with the mean value for a specific LAI less than 0.05. In contrast, for non-black-soil scenarios, there is a notable decrease in
error as the canopy LAI increases. When the canopy LAI surpasses 3, the error becomes comparable to that observed in black-soil scenarios. However,
for the canopies with a low LAI of 0.5, the mean error is 0.4. For these canopies, there are considerable variations in the errors.
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Fig. B4. The error in the estimated o by using the original R2F relationship for varying LAI for the black-soil canopies (R; = 0) and the non-black-soil canopies
(Rs # 0). The error is expressed as the difference between the true (or) and estimate (Ry;/ip) scattering coefficient of far-red SIF, Sror = 6F — Ruir/io. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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