001045824 001__ 1045824
001045824 005__ 20250901202250.0
001045824 0247_ $$2doi$$a10.1109/ICE/ITMC65658.2025.11106664
001045824 037__ $$aFZJ-2025-03623
001045824 041__ $$aEnglish
001045824 1001_ $$0P:(DE-HGF)0$$aCharan Dande, Chandra Sekhar$$b0$$eCorresponding author
001045824 1112_ $$a2025 IEEE International Conference on Engineering, Technology, and Innovation (ICE/ITMC)$$cValencia$$d2025-06-16 - 2025-06-19$$wSpain
001045824 245__ $$aIntroduction of Legacy Protocol Converter as an Interoperability Software
001045824 260__ $$bIEEE$$c2025
001045824 300__ $$a1-9
001045824 3367_ $$2ORCID$$aCONFERENCE_PAPER
001045824 3367_ $$033$$2EndNote$$aConference Paper
001045824 3367_ $$2BibTeX$$aINPROCEEDINGS
001045824 3367_ $$2DRIVER$$aconferenceObject
001045824 3367_ $$2DataCite$$aOutput Types/Conference Paper
001045824 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1756723054_6282
001045824 520__ $$aInteroperability remains a key challenge in modern energy systems, where diverse devices and platforms must communicate seamlessly to enable efficient energy management. This paper presents a Legacy Protocol Converter (LPC) as an open-source interoperability solution based on the IEEE 2030.5 standard, incorporating advanced features for enhanced adaptability. The LPC bridges legacy equipment using standard protocols such as Modbus and Message Queuing Telemetry Transport (MQTT) with light-weight asynchronous communication system, Neural Autonomic Transport System (NATS). The asynchronous communication allows a large number of end-points to exchange data following IEEE 2030.5 standards, which is not practical in the traditional synchronous RESTful systems supporting IEEE 2030.5. This can significantly improve the performance and flexibility of communication. The implementation leverages Docker Compose for streamlined service coordination and facilitates the re-usability of the solutions. The LPC is designed for easy integration of distributed energy resources (DER)s with energy management system (EMS), aggregation platforms, and Hardware-in-the-Loop (HIL) testing environments. The paper presents a set of implementation architectures to highlight the versatility of the LPC across multiple scenarios and mediums, including Raspberry Pi and servers, demonstrating its compatibility with batteries, heat pumps, and real-time digital simulators. The results confirm the LPC's effectiveness as a robust, scalable, and user-friendly solution for bridging legacy systems with the IEEE 2030.5 improved for monitoring and control of distributed energy resources.
001045824 536__ $$0G:(DE-HGF)POF4-1122$$a1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)$$cPOF4-112$$fPOF IV$$x0
001045824 536__ $$0G:(DE-HGF)POF4-1123$$a1123 - Smart Areas and Research Platforms (POF4-112)$$cPOF4-112$$fPOF IV$$x1
001045824 536__ $$0G:(EU-Grant)101096511$$aINTERSTORE - Interoperable opeN-source Tools to Enable hybRidisation, utiliSation, and moneTisation of stORage flExibility (101096511)$$c101096511$$fHORIZON-CL5-2022-D3-01$$x2
001045824 588__ $$aDataset connected to CrossRef Conference
001045824 7001_ $$0P:(DE-HGF)0$$aRakhshani, Elyas$$b1
001045824 7001_ $$0P:(DE-Juel1)204284$$aGümrükcü, Erdem$$b2$$ufzj
001045824 7001_ $$0P:(DE-HGF)0$$aGil, Andres Acosta$$b3
001045824 7001_ $$0P:(DE-HGF)0$$aManuel, Nithin$$b4
001045824 7001_ $$0P:(DE-Juel1)186779$$aCarta, Daniele$$b5$$ufzj
001045824 7001_ $$0P:(DE-HGF)0$$aLucas, Alexandre$$b6
001045824 7001_ $$0P:(DE-Juel1)179029$$aBenigni, Andrea$$b7$$ufzj
001045824 7001_ $$0P:(DE-HGF)0$$aMonti, Antonello$$b8
001045824 773__ $$a10.1109/ICE/ITMC65658.2025.11106664$$y2025
001045824 909CO $$ooai:juser.fz-juelich.de:1045824$$popenaire$$pVDB$$pec_fundedresources
001045824 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
001045824 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)204284$$a Eaton Research Labs (ERL)$$b2
001045824 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
001045824 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b4$$kRWTH
001045824 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186779$$aForschungszentrum Jülich$$b5$$kFZJ
001045824 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a InescTEC$$b6
001045824 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179029$$aForschungszentrum Jülich$$b7$$kFZJ
001045824 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b8$$kRWTH
001045824 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1122$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
001045824 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1123$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x1
001045824 9141_ $$y2025
001045824 920__ $$lno
001045824 9201_ $$0I:(DE-Juel1)ICE-1-20170217$$kICE-1$$lModellierung von Energiesystemen$$x0
001045824 980__ $$acontrib
001045824 980__ $$aVDB
001045824 980__ $$aI:(DE-Juel1)ICE-1-20170217
001045824 980__ $$aUNRESTRICTED