001045962 001__ 1045962
001045962 005__ 20251027132712.0
001045962 0247_ $$2doi$$a10.1016/j.stress.2025.101013
001045962 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03629
001045962 0247_ $$2WOS$$aWOS:001582886200004
001045962 037__ $$aFZJ-2025-03629
001045962 082__ $$a580
001045962 1001_ $$0P:(DE-HGF)0$$aVitko, Sandra$$b0
001045962 245__ $$aHeat tolerance in Arabidopsis thaliana seedlings requires functional DMS3, a component of de novo methylation
001045962 260__ $$aAmsterdam$$bElsevier$$c2025
001045962 3367_ $$2DRIVER$$aarticle
001045962 3367_ $$2DataCite$$aOutput Types/Journal article
001045962 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1758892902_5346
001045962 3367_ $$2BibTeX$$aARTICLE
001045962 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001045962 3367_ $$00$$2EndNote$$aJournal Article
001045962 520__ $$aThe protein Defective in RNA-directed DNA Methylation 3 (DMS3) is part of RNA-directed DNA methylation, an epigenetic mechanism involved in the regulation of plant development and stress response. However, the specific role of the DMS3 protein in thermotolerance remains unclear. To determine how altered DMS3 expression and functionality affects thermotolerance, DMS3-overexpressor (oeDMS3), DMS3-mutant (dms3-1) and wild-type Arabidopsis thaliana seedlings were heat-treated and analyzed, focusing on morphological, physiological, biochemical and molecular changes. The dms3-1 line showed the highest thermosensitivity after short-term exposure to 45 °C for 45 min. However, both dms3-1 and oeDMS3 showed a greater reduction in morphological traits compared to wild type after exposure to 40 °C for 6 h. Hormonal profiling showed that the dms3-1 and oeDMS3 lines had similar hormonal profiles characterized by lower jasmonate levels compared to wild type, both under stress and control conditions. The heat-stressed dms3-1 line contained increased cytokinin levels predominantly in the form of ribosides, and also accumulated inactive auxin metabolites. Exposure to 37 °C for 24 h destabilized and altered the localization of the DMS3 protein in the root tissue. After exposure to 37 °C for 6 h, the dms3-1 line showed a delayed recovery of reduced photosynthetic efficiency, accompanied by a partial activation of the antioxidant system and increased proline content. Under control conditions, dms3-1 plants exhibited reduced growth and lower expression of RuBisCO, HSP90 and HSP70 proteins. Overall, our results suggest a crucial role of DMS3 in thermotolerance, hormone balance, antioxidant defense and photosynthetic efficiency, indicating the importance of a functional and balanced DMS3 protein for thermotolerance and for plant growth and development under control conditions.
001045962 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001045962 536__ $$0G:(EU-Grant)731013$$aEPPN2020 - European Plant Phenotyping Network 2020 (731013)$$c731013$$fH2020-INFRAIA-2016-1$$x1
001045962 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001045962 7001_ $$0P:(DE-HGF)0$$aTokić, Mirta$$b1
001045962 7001_ $$0P:(DE-Juel1)129290$$aBraun, Silvia$$b2$$ufzj
001045962 7001_ $$0P:(DE-Juel1)129291$$aBrehm, Thorsten$$b3$$ufzj
001045962 7001_ $$0P:(DE-HGF)0$$aPavlović, Iva$$b4
001045962 7001_ $$0P:(DE-Juel1)143649$$aFiorani, Fabio$$b5$$ufzj
001045962 7001_ $$0P:(DE-HGF)0$$aNovák, Ondřej$$b6
001045962 7001_ $$0P:(DE-HGF)0$$aBauer, Nataša$$b7
001045962 7001_ $$0P:(DE-HGF)0$$aLeljak-Levanić, Dunja$$b8
001045962 7001_ $$00000-0002-6468-5833$$aVidaković-Cifrek, Željka$$b9$$eCorresponding author
001045962 773__ $$0PERI:(DE-600)3066127-4$$a10.1016/j.stress.2025.101013$$gp. 101013 -$$p101013 -$$tPlant stress$$v18$$x2667-064X$$y2025
001045962 8564_ $$uhttps://juser.fz-juelich.de/record/1045962/files/1-s2.0-S2667064X25002817-main-1.pdf$$yOpenAccess
001045962 909CO $$ooai:juser.fz-juelich.de:1045962$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001045962 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129290$$aForschungszentrum Jülich$$b2$$kFZJ
001045962 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129291$$aForschungszentrum Jülich$$b3$$kFZJ
001045962 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143649$$aForschungszentrum Jülich$$b5$$kFZJ
001045962 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001045962 9141_ $$y2025
001045962 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001045962 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
001045962 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-02
001045962 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001045962 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-28T12:23:46Z
001045962 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2025-01-02
001045962 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-28T12:23:46Z
001045962 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001045962 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001045962 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2021-05-28T12:23:46Z
001045962 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-02
001045962 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-02
001045962 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001045962 920__ $$lyes
001045962 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
001045962 980__ $$ajournal
001045962 980__ $$aVDB
001045962 980__ $$aUNRESTRICTED
001045962 980__ $$aI:(DE-Juel1)IBG-2-20101118
001045962 9801_ $$aFullTexts