001 | 1045963 | ||
005 | 20250930150633.0 | ||
024 | 7 | _ | |a 10.1002/aenm.202502866 |2 doi |
024 | 7 | _ | |a 1614-6832 |2 ISSN |
024 | 7 | _ | |a 1614-6840 |2 ISSN |
037 | _ | _ | |a FZJ-2025-03630 |
082 | _ | _ | |a 050 |
100 | 1 | _ | |a Ruppert, Janik |0 P:(DE-Juel1)203322 |b 0 |e First author |
245 | _ | _ | |a Competitive Rechargeable Zinc Batteries for Energy Storage |
260 | _ | _ | |a Weinheim |c 2025 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1759237545_11293 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The continuously increased demand for electrical energy and the associated strong growth in renewable energy necessitate robust, sustainable, and cost-effective stationary energy storage solutions. This review paper evaluates zinc-based batteries as viable alternatives to conventional lithium-ion and vanadium redox flow systems for stationary storage applications. Highlighting zinc's accessibility, cost-effectiveness, lower environmental impact, and well-developed recycling infrastructure, this review provides a comprehensive analysis of various zinc battery chemistries, including zinc-metal, zinc-air, and zinc redox flow batteries. The study provides a historical context of zinc battery development from primary to secondary cells while identifying key challenges, such as low cell voltage, dendrite formation, passivation, and hydrogen evolution. Current advancements in electrode design, including novel 3D architectures, tailored electrolyte formulations, and optimized catalyst development, are discussed in detail. Additionally, a techno-economic analysis compares material costs and operational efficiencies of zinc systems with state-of-the-art alternatives, underscoring their competitive advantage. The interplay between material properties and system performance is also addressed, offering insights into improving cycling stability and energy density. Overall, this review describes the potential to position zinc batteries as promising candidates for large-scale, sustainable energy storage, capable of complementing and potentially replacing existing technologies in an evolving energy landscape. |
536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
536 | _ | _ | |a 1222 - Components and Cells (POF4-122) |0 G:(DE-HGF)POF4-1222 |c POF4-122 |f POF IV |x 1 |
536 | _ | _ | |a 1223 - Batteries in Application (POF4-122) |0 G:(DE-HGF)POF4-1223 |c POF4-122 |f POF IV |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Stegemann, Luca |0 P:(DE-HGF)0 |b 1 |e First author |
700 | 1 | _ | |a Bauer, Alexander |0 P:(DE-Juel1)177092 |b 2 |
700 | 1 | _ | |a Bieker, Peter |0 P:(DE-Juel1)180777 |b 3 |
700 | 1 | _ | |a Grünebaum, Mariano |0 P:(DE-Juel1)166392 |b 4 |
700 | 1 | _ | |a Tempel, Hermann |0 P:(DE-Juel1)161208 |b 5 |
700 | 1 | _ | |a Windmüller, Anna |0 P:(DE-Juel1)188297 |b 6 |
700 | 1 | _ | |a Leker, Jens |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Winter, Martin |0 P:(DE-Juel1)166130 |b 8 |
700 | 1 | _ | |a Eichel, Rüdiger-A. |0 P:(DE-Juel1)156123 |b 9 |u fzj |
700 | 1 | _ | |a Neuhaus, Kerstin |0 P:(DE-Juel1)181017 |b 10 |e Corresponding author |
700 | 1 | _ | |a Durmus, Yasin Emre |0 P:(DE-Juel1)162243 |b 11 |e Corresponding author |
773 | _ | _ | |a 10.1002/aenm.202502866 |g p. e02866 |0 PERI:(DE-600)2594556-7 |p e02866 |t Advanced energy materials |v 16 |y 2025 |x 1614-6832 |
856 | 4 | _ | |u https://advanced.onlinelibrary.wiley.com/doi/full/10.1002/aenm.202502866 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1045963/files/Advanced%20Energy%20Materials%20-%202025%20-%20Ruppert%20-%20Competitive%20Rechargeable%20Zinc%20Batteries%20for%20Energy%20Storage-1.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1045963/files/Main%20text%20production%20data.docx |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1045963/files/Supplementary.docx |y Restricted |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)203322 |
910 | 1 | _ | |a Universität Münster |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)177092 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)180777 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)166392 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)161208 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)188297 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)166130 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)156123 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 9 |6 P:(DE-Juel1)156123 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)181017 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)162243 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1222 |x 1 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1223 |x 2 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2024-12-12 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-12 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-12 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV ENERGY MATER : 2022 |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-12 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-12 |
915 | _ | _ | |a IF >= 25 |0 StatID:(DE-HGF)9925 |2 StatID |b ADV ENERGY MATER : 2022 |d 2024-12-12 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IMD-4-20141217 |k IMD-4 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IET-1-20110218 |k IET-1 |l Grundlagen der Elektrochemie |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a EDITORS |
980 | _ | _ | |a VDBINPRINT |
980 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
980 | _ | _ | |a I:(DE-Juel1)IET-1-20110218 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|