001045966 001__ 1045966
001045966 005__ 20251216202226.0
001045966 0247_ $$2doi$$a10.1016/j.apr.2025.102694
001045966 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03633
001045966 037__ $$aFZJ-2025-03633
001045966 1001_ $$0P:(DE-Juel1)166383$$aYuan, Yue$$b0
001045966 245__ $$aEvaluating the impact of anthropogenic drivers and meteorological factors on air pollutants by explainable machine learning in Shandong Province, China
001045966 260__ $$aAmsterdam$$bElsevier B.V.$$c2025
001045966 3367_ $$2DRIVER$$aarticle
001045966 3367_ $$2DataCite$$aOutput Types/Journal article
001045966 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1765475864_22310
001045966 3367_ $$2BibTeX$$aARTICLE
001045966 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001045966 3367_ $$00$$2EndNote$$aJournal Article
001045966 520__ $$aUnexpected haze in North China Plain during the COVID-19 lockdown has been regarded as a natural window to explore the meteorological impact on formatting PM2.5 pollution but with limitations in quantifying weather elements’ contributions. In this study, daily data of six air pollutants (including PM2.5, PM10, SO2, NO2, O3, and CO) and six meteorological factors (including temperature, pressure, relative humidity (RH), wind speed (WS), wind direction (WD), and precipitation) from 2015 to 2020 across 16 capital cities in Shandong province, China, was used to drive the Machine Learning and the SHapley Additive exPlanation (SHAP) models. By applying these models, contributions from anthropogenic drivers to pollutant reductions and contributions from meteorological factors to the haze event were investigated. Results show that the COVID-19 lockdown measures reduced concentrations of NO2, PM2.5, PM10, CO and SO2 by −52.1 %, −40.0 %, −45.5 %, −29.4 % and −38.7 % respectively. On average, an 18.9 % increase in O3 was observed. PM2.5 pollution was mainly driven by temperature with a SHAP value of 19.7 μg/m3, followed by RH (5.8 μg/m3), precipitation (0.9 μg/m3), WD (0.3 μg/m3), pressure (0.1 μg/m3) and WS (0.1 μg/m3) during the haze period. Relative to the post-haze period, high-pressure systems coupled with lower temperatures and weakened surface winds hindered the dispersion of PM2.5 whilst higher RH was in favour of PM2.5 production during the haze period. This study underscores the intricate interplay between emissions, meteorological conditions, and regulatory measures in air pollution, offering critical insights into future air quality management strategies by air pollution prediction.
001045966 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
001045966 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001045966 7001_ $$0P:(DE-Juel1)194205$$aShen, Fuzhen$$b1$$eCorresponding author
001045966 7001_ $$0P:(DE-HGF)0$$aSheng, Chunyan$$b2
001045966 7001_ $$0P:(DE-HGF)0$$aZhang, Zeming$$b3
001045966 7001_ $$0P:(DE-HGF)0$$aGuo, Weihua$$b4
001045966 7001_ $$0P:(DE-HGF)0$$aZhu, Wengang$$b5
001045966 7001_ $$0P:(DE-HGF)0$$aZhu, Hui$$b6
001045966 773__ $$0PERI:(DE-600)2645757-X$$a10.1016/j.apr.2025.102694$$gVol. 16, no. 12, p. 102694 -$$n12$$p102694 -$$tAtmospheric pollution research$$v16$$x1309-1042$$y2025
001045966 8564_ $$uhttps://juser.fz-juelich.de/record/1045966/files/1-s2.0-S130910422500296X-main.pdf$$yOpenAccess
001045966 8767_ $$d2025-12-16$$eHybrid-OA$$jDEAL
001045966 909CO $$ooai:juser.fz-juelich.de:1045966$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
001045966 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194205$$aForschungszentrum Jülich$$b1$$kFZJ
001045966 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
001045966 9141_ $$y2025
001045966 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-27
001045966 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-27
001045966 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001045966 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS POLLUT RES : 2022$$d2024-12-27
001045966 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-27
001045966 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-27
001045966 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-27
001045966 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001045966 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2024-12-27
001045966 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-27
001045966 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-27
001045966 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001045966 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001045966 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001045966 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001045966 920__ $$lyes
001045966 9201_ $$0I:(DE-Juel1)ICE-4-20101013$$kICE-4$$lStratosphäre$$x0
001045966 9801_ $$aFullTexts
001045966 980__ $$ajournal
001045966 980__ $$aVDB
001045966 980__ $$aUNRESTRICTED
001045966 980__ $$aI:(DE-Juel1)ICE-4-20101013
001045966 980__ $$aAPC