001045980 001__ 1045980
001045980 005__ 20260107202514.0
001045980 0247_ $$2doi$$a10.1021/acs.nanolett.5c02939
001045980 0247_ $$2ISSN$$a1530-6984
001045980 0247_ $$2ISSN$$a1530-6992
001045980 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03639
001045980 037__ $$aFZJ-2025-03639
001045980 082__ $$a660
001045980 1001_ $$0P:(DE-Juel1)175171$$aLi, Xi$$b0
001045980 245__ $$aStrengthening Mechanism of Al/Ni Multilayers with Negative Enthalpy of Mixing
001045980 260__ $$aWashington, DC$$bACS Publ.$$c2025
001045980 3367_ $$2DRIVER$$aarticle
001045980 3367_ $$2DataCite$$aOutput Types/Journal article
001045980 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767786729_8541
001045980 3367_ $$2BibTeX$$aARTICLE
001045980 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001045980 3367_ $$00$$2EndNote$$aJournal Article
001045980 520__ $$aThe interface strengthening effect in nanoscale metallic multilayers is influenced by the enthalpy of mixing, which governs the chemical distribution and interface microstructure. In this study, Al/Ni multilayers were fabricated by magnetron sputter deposition, exhibiting an ultrahigh peak hardness of 9.5 GPa─the highest reported for face-centered cubic multilayer systems. Advanced electron microscopy revealed extensive interdiffusion at the Al/Ni interfaces and the formation of intermetallic bonds at both interfaces and grain boundaries. A modified confined layer slip model is proposed, accounting for energy changes associated with trailing dislocations propagating through interfaces or grain boundaries due to intermetallic bond formation. The model aligns closely with experimental data, demonstrating that intermetallic bond formation in Al/Ni multilayers significantly enhances interface strengthening, counteracting the weakening effects of interface diffusion. This mechanism may also account for the high peak hardness observed in other multilayer systems with large negative enthalpies of mixing.
001045980 536__ $$0G:(DE-HGF)POF4-1241$$a1241 - Gas turbines (POF4-124)$$cPOF4-124$$fPOF IV$$x0
001045980 536__ $$0G:(GEPRIS)426206394$$aDFG project G:(GEPRIS)426206394 - Thermomechanische Spannungs- und Verformungseffekte in reaktiven Al/Ni-Multilagen für das Entbonden (426206394)$$c426206394$$x1
001045980 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001045980 7001_ $$0P:(DE-Juel1)190840$$aPeter, Nicolas J.$$b1
001045980 7001_ $$0P:(DE-Juel1)179599$$aMoreira de Lima, Marilaine$$b2
001045980 7001_ $$0P:(DE-HGF)0$$aMatthes, Sebastian$$b3
001045980 7001_ $$00000-0002-8802-6621$$aSchaaf, Peter$$b4
001045980 7001_ $$0P:(DE-Juel1)179598$$aSchwaiger, Ruth$$b5$$eCorresponding author
001045980 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.5c02939$$gVol. 25, no. 34, p. 12914 - 12920$$n34$$p12914 - 12920$$tNano letters$$v25$$x1530-6984$$y2025
001045980 8564_ $$uhttps://juser.fz-juelich.de/record/1045980/files/strengthening-mechanism-of-al-ni-multilayers-with-negative-enthalpy-of-mixing.pdf$$yOpenAccess
001045980 8767_ $$d2025-09-03$$eHybrid-OA$$jPublish and Read
001045980 909CO $$ooai:juser.fz-juelich.de:1045980$$popenaire$$popen_access$$pdriver$$pVDB$$popenCost$$pdnbdelivery
001045980 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)175171$$aForschungszentrum Jülich$$b0$$kFZJ
001045980 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190840$$aForschungszentrum Jülich$$b1$$kFZJ
001045980 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179598$$aForschungszentrum Jülich$$b5$$kFZJ
001045980 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1241$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
001045980 9141_ $$y2025
001045980 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001045980 915pc $$0PC:(DE-HGF)0122$$2APC$$aHelmholtz: American Chemical Society 01/01/2023
001045980 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001045980 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
001045980 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
001045980 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2022$$d2024-12-18
001045980 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
001045980 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2022$$d2024-12-18
001045980 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001045980 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001045980 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
001045980 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
001045980 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001045980 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001045980 9201_ $$0I:(DE-Juel1)IMD-1-20101013$$kIMD-1$$lWerkstoffstruktur und -eigenschaften$$x0
001045980 980__ $$ajournal
001045980 980__ $$aVDB
001045980 980__ $$aUNRESTRICTED
001045980 980__ $$aI:(DE-Juel1)IMD-1-20101013
001045980 980__ $$aAPC
001045980 9801_ $$aAPC
001045980 9801_ $$aFullTexts