001     1045980
005     20260107202514.0
024 7 _ |a 10.1021/acs.nanolett.5c02939
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-03639
|2 datacite_doi
037 _ _ |a FZJ-2025-03639
082 _ _ |a 660
100 1 _ |a Li, Xi
|0 P:(DE-Juel1)175171
|b 0
245 _ _ |a Strengthening Mechanism of Al/Ni Multilayers with Negative Enthalpy of Mixing
260 _ _ |a Washington, DC
|c 2025
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1767786729_8541
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The interface strengthening effect in nanoscale metallic multilayers is influenced by the enthalpy of mixing, which governs the chemical distribution and interface microstructure. In this study, Al/Ni multilayers were fabricated by magnetron sputter deposition, exhibiting an ultrahigh peak hardness of 9.5 GPa─the highest reported for face-centered cubic multilayer systems. Advanced electron microscopy revealed extensive interdiffusion at the Al/Ni interfaces and the formation of intermetallic bonds at both interfaces and grain boundaries. A modified confined layer slip model is proposed, accounting for energy changes associated with trailing dislocations propagating through interfaces or grain boundaries due to intermetallic bond formation. The model aligns closely with experimental data, demonstrating that intermetallic bond formation in Al/Ni multilayers significantly enhances interface strengthening, counteracting the weakening effects of interface diffusion. This mechanism may also account for the high peak hardness observed in other multilayer systems with large negative enthalpies of mixing.
536 _ _ |a 1241 - Gas turbines (POF4-124)
|0 G:(DE-HGF)POF4-1241
|c POF4-124
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)426206394 - Thermomechanische Spannungs- und Verformungseffekte in reaktiven Al/Ni-Multilagen für das Entbonden (426206394)
|0 G:(GEPRIS)426206394
|c 426206394
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Peter, Nicolas J.
|0 P:(DE-Juel1)190840
|b 1
700 1 _ |a Moreira de Lima, Marilaine
|0 P:(DE-Juel1)179599
|b 2
700 1 _ |a Matthes, Sebastian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schaaf, Peter
|0 0000-0002-8802-6621
|b 4
700 1 _ |a Schwaiger, Ruth
|0 P:(DE-Juel1)179598
|b 5
|e Corresponding author
773 _ _ |a 10.1021/acs.nanolett.5c02939
|g Vol. 25, no. 34, p. 12914 - 12920
|0 PERI:(DE-600)2048866-X
|n 34
|p 12914 - 12920
|t Nano letters
|v 25
|y 2025
|x 1530-6984
856 4 _ |u https://juser.fz-juelich.de/record/1045980/files/strengthening-mechanism-of-al-ni-multilayers-with-negative-enthalpy-of-mixing.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1045980
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)175171
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)190840
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)179598
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-124
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Hochtemperaturtechnologien
|9 G:(DE-HGF)POF4-1241
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Helmholtz: American Chemical Society 01/01/2023
|0 PC:(DE-HGF)0122
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2022
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
920 1 _ |0 I:(DE-Juel1)IMD-1-20101013
|k IMD-1
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-1-20101013
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21