001045983 001__ 1045983
001045983 005__ 20251015111743.0
001045983 0247_ $$2doi$$a10.1007/s10115-025-02563-7
001045983 0247_ $$2ISSN$$a0219-1377
001045983 0247_ $$2ISSN$$a0219-3116
001045983 037__ $$aFZJ-2025-03642
001045983 082__ $$a004
001045983 1001_ $$0P:(DE-Juel1)188471$$aQuercia, Alessio$$b0$$ufzj
001045983 245__ $$aFocal Sampling: SGD biased towards early important samples for efficient image classification with augmentation selection
001045983 260__ $$aLondon$$bSpringer$$c2025
001045983 3367_ $$2DRIVER$$aarticle
001045983 3367_ $$2DataCite$$aOutput Types/Journal article
001045983 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1760519736_28440
001045983 3367_ $$2BibTeX$$aARTICLE
001045983 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001045983 3367_ $$00$$2EndNote$$aJournal Article
001045983 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001045983 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001045983 7001_ $$0P:(DE-HGF)0$$aNader, Fernanda$$b1
001045983 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b2$$ufzj
001045983 7001_ $$0P:(DE-Juel1)129394$$aScharr, Hanno$$b3$$ufzj
001045983 7001_ $$0P:(DE-Juel1)188313$$aAssent, Ira$$b4$$ufzj
001045983 773__ $$0PERI:(DE-600)2023541-0$$a10.1007/s10115-025-02563-7$$p31$$tKnowledge and information systems$$v2025$$x0219-1377$$y2025
001045983 8767_ $$d2025-09-16$$eHybrid-OA$$jDEAL
001045983 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188471$$aForschungszentrum Jülich$$b0$$kFZJ
001045983 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b2$$kFZJ
001045983 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129394$$aForschungszentrum Jülich$$b3$$kFZJ
001045983 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188313$$aForschungszentrum Jülich$$b4$$kFZJ
001045983 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001045983 9141_ $$y2025
001045983 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001045983 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
001045983 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2024-12-28$$wger
001045983 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2024-12-28$$wger
001045983 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28
001045983 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-28
001045983 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28
001045983 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-28
001045983 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-28
001045983 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-28
001045983 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28
001045983 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bKNOWL INF SYST : 2022$$d2024-12-28
001045983 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-28
001045983 920__ $$lyes
001045983 9201_ $$0I:(DE-Juel1)IAS-8-20210421$$kIAS-8$$lDatenanalyse und Maschinenlernen$$x0
001045983 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x1
001045983 980__ $$ajournal
001045983 980__ $$aEDITORS
001045983 980__ $$aVDBINPRINT
001045983 980__ $$aI:(DE-Juel1)IAS-8-20210421
001045983 980__ $$aI:(DE-Juel1)IAS-6-20130828
001045983 980__ $$aAPC
001045983 980__ $$aUNRESTRICTED
001045983 9801_ $$aAPC