001     10460
005     20210129210521.0
024 7 _ |2 pmid
|a pmid:20573974
024 7 _ |2 pmc
|a pmc:PMC2944686
024 7 _ |2 DOI
|a 10.1152/jn.00261.2010
024 7 _ |2 WOS
|a WOS:000281910600026
037 _ _ |a PreJuSER-10460
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Neurosciences
084 _ _ |2 WoS
|a Physiology
100 1 _ |0 P:(DE-Juel1)131855
|a Cieslik, E.C.
|b 0
|u FZJ
245 _ _ |a Dissociating bottom-up and top-down processes in a manual stimulus-response compatibility task
260 _ _ |a Bethesda, Md.
|b Soc.
|c 2010
300 _ _ |a 1472 - 1483
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 3600
|a Journal of Neurophysiology
|v 104
|x 0022-3077
500 _ _ |a This work was supported by a grant from the Human Brain Project/Neuroinformatics Research (National Institute of Biomedical Imaging and Bioengineering, National Institute of Neurological Disorders and Stroke, National Institute of Mental Health [NIMH]) to K. Zilles; Human Brain Project/NIMH Grant R01-MH-074457-01A1 to S. B. Eickhoff; and a grant from the Helmholtz Initiative on Systems Biology to K. Zilles, S. B. Eickhoff, and E. C. Cieslik.
520 _ _ |a Speed and accuracy of motor responses to lateralized stimuli are influenced by the spatial overlap between stimulus location and required response. Responses showing high spatial overlap with peripheral cues benefit from a bottom-up driven enhancement of attention to the respective location, whereas low overlap requires top-down modulated reorienting of resources. Here we investigated the interaction between these two processes using a spatial stimulus-response compatibility task. Subjects had to react to lateralized visual stimuli with a button press using either the ipsilateral (congruent condition) or the contralateral (incongruent condition) index finger. Stimulus-driven bottom-up processes were associated with significant contralateral activation in V5, the intraparietal sulcus (IPS) and the premotor cortex (PMC). Incongruent versus congruent responses evoked significant activation in bilateral IPS and PMC, highly overlapping with the activations found for stimulus-driven bottom-up processes, as well as additional activation in bilateral anterior insula and right dorsolateral prefrontal cortex (DLPFC) and temporoparietal junction (TPJ). Moreover, a region anterior to the bottom-up driven activation in the IPS was associated with top-down modulated directionality-specific reorienting of motor attention during incongruent motor responses. Based on these results, we propose that stimulus-driven activation of contralateral IPS and PMC represent key neuronal substrates for the behavioral advantage observed when reacting toward a congruently lateralized stimulus. Additional activation in bilateral insula and right DLPFC and TPJ during incongruent responses should reflect top-down control mechanisms mediating contextual (i.e., task) demands. Furthermore, this study provides evidence for both overlapping and disparate substrates of bottom-up and top-down modulated attentional processes in the IPS.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|x 0
|c FUEK409
|a Funktion und Dysfunktion des Nervensystems (FUEK409)
536 _ _ |0 G:(DE-HGF)POF2-89571
|a 89571 - Connectivity and Activity (POF2-89571)
|c POF2-89571
|f POF II T
|x 1
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Adult
650 _ 2 |2 MeSH
|a Attention: physiology
650 _ 2 |2 MeSH
|a Brain: physiology
650 _ 2 |2 MeSH
|a Female
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Magnetic Resonance Imaging: methods
650 _ 2 |2 MeSH
|a Male
650 _ 2 |2 MeSH
|a Middle Aged
650 _ 2 |2 MeSH
|a Photic Stimulation: methods
650 _ 2 |2 MeSH
|a Psychomotor Performance: physiology
650 _ 2 |2 MeSH
|a Reaction Time: physiology
650 _ 2 |2 MeSH
|a Young Adult
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-Juel1)131714
|a Zilles, K.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB67936
|a Kurth, F.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)131678
|a Eickhoff, S. B.
|b 3
|u FZJ
773 _ _ |0 PERI:(DE-600)1467889-5
|a 10.1152/jn.00261.2010
|g Vol. 104, p. 1472 - 1483
|p 1472 - 1483
|q 104<1472 - 1483
|t Journal of neurophysiology
|v 104
|x 0022-3077
|y 2010
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944686
909 C O |o oai:juser.fz-juelich.de:10460
|p VDB
913 2 _ |0 G:(DE-HGF)POF3-571
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Connectivity and Activity
|x 0
913 1 _ |0 G:(DE-HGF)POF2-89571
|a DE-HGF
|v Connectivity and Activity
|x 1
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|g INM
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-82)080010_20140620
|g JARA
|k JARA-BRAIN
|l Jülich-Aachen Research Alliance - Translational Brain Medicine
|x 1
970 _ _ |a VDB:(DE-Juel1)120790
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)VDB1046


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21