001046002 001__ 1046002
001046002 005__ 20250905202256.0
001046002 0247_ $$2doi$$a10.48550/ARXIV.2509.00736
001046002 037__ $$aFZJ-2025-03649
001046002 1001_ $$0P:(DE-Juel1)174294$$aHaags, Anja$$b0$$eFirst author$$ufzj
001046002 245__ $$aMulti-Orbital Charge Transfer into Nonplanar Cycloarenes Revealed with CO-Functionalized Tips
001046002 260__ $$barXiv$$c2025
001046002 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1757054585_31497
001046002 3367_ $$2ORCID$$aWORKING_PAPER
001046002 3367_ $$028$$2EndNote$$aElectronic Article
001046002 3367_ $$2DRIVER$$apreprint
001046002 3367_ $$2BibTeX$$aARTICLE
001046002 3367_ $$2DataCite$$aOutput Types/Working Paper
001046002 520__ $$aOn-surface synthesis has allowed for the tuneable preparation of numerous molecular systems with variable properties. Recently, we demonstrated the highly selective synthesis of kekulene (>99%) on Cu(111) and isokekulene (92%) on Cu(110) from the same molecular precursor (Ruan et al., Angew. Chem. Int. Ed. 2025, e202509932). Scanning tunneling microscopy with CO-functionalized tips can identify the single molecules on the basis of their geometric structure at a low coverage on Cu(110), but it also detects complex features due to electronic contributions close to the Fermi energy. Here, we investigate the origin of these features by simulating STM images based on a weighted sum of multiple molecular orbitals, for which we employ weights based on the calculated molecular-orbital projected density of states. This allows for an experimental confirmation of charge transfer from the surface into multiple formerly unoccupied molecular orbitals for single molecules of kekulene as well as isokekulene in its two nonplanar adsorption configurations. In comparison, the area-integrating photoemission orbital tomography technique confirms the charge transfer as well as the high selectivity for the formation of a full monolayer of mainly isokekulene on Cu(110). Our STM-based approach is applicable to a wide range of adsorbed molecular systems and specifically also suited for strongly interacting surfaces, nonplanar molecules, and such molecules which can only be prepared at extremely low yields.
001046002 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001046002 536__ $$0G:(GEPRIS)385975694$$aSFB 1083 A12 - Struktur und Anregungen von hetero-epitaktischen Schichtsystemen aus schwach wechselwirkenden 2D-Materialien und molekularen Schichten (A12) (385975694)$$c385975694$$x1
001046002 536__ $$0G:(EU-Grant)101071420$$aTACY - Tackling the Cyclacene Challenge (101071420)$$c101071420$$fERC-2022-SYG$$x2
001046002 536__ $$0G:(GEPRIS)511561801$$aDFG project G:(GEPRIS)511561801 - Manipulierung von 2D Supraleitung und Majorana Zuständen auf der Nanoskala (511561801)$$c511561801$$x3
001046002 536__ $$0G:(EU-Grant)101120240$$aML4Q - Machine Learning for Quantum (101120240)$$c101120240$$fHORIZON-MSCA-2022-DN-01$$x4
001046002 588__ $$aDataset connected to DataCite
001046002 650_7 $$2Other$$aChemical Physics (physics.chem-ph)
001046002 650_7 $$2Other$$aMaterials Science (cond-mat.mtrl-sci)
001046002 650_7 $$2Other$$aFOS: Physical sciences
001046002 7001_ $$0P:(DE-HGF)0$$aReichmann, Alexander$$b1
001046002 7001_ $$0P:(DE-HGF)0$$aRuan, Zilin$$b2
001046002 7001_ $$0P:(DE-HGF)0$$aFan, Qitang$$b3
001046002 7001_ $$0P:(DE-HGF)0$$aEgger, Larissa$$b4
001046002 7001_ $$0P:(DE-HGF)0$$aKirschner, Hans$$b5
001046002 7001_ $$0P:(DE-HGF)0$$aNaumann, Tim$$b6
001046002 7001_ $$0P:(DE-HGF)0$$aWerner, Simon$$b7
001046002 7001_ $$0P:(DE-HGF)0$$aKleykamp, Olaf$$b8
001046002 7001_ $$0P:(DE-HGF)0$$aMartinez-Castro, Jose$$b9
001046002 7001_ $$0P:(DE-Juel1)162163$$aLüpke, Felix$$b10$$ufzj
001046002 7001_ $$0P:(DE-HGF)0$$aBocquet, François C.$$b11
001046002 7001_ $$0P:(DE-Juel1)128774$$aKumpf, Christian$$b12$$ufzj
001046002 7001_ $$0P:(DE-HGF)0$$aSoubatch, Serguei$$b13
001046002 7001_ $$0P:(DE-HGF)0$$aGottwald, Alexander$$b14
001046002 7001_ $$0P:(DE-HGF)0$$aKoller, Georg$$b15
001046002 7001_ $$0P:(DE-HGF)0$$aRamsey, Michael G.$$b16
001046002 7001_ $$0P:(DE-HGF)0$$aRichter, Mathias$$b17
001046002 7001_ $$0P:(DE-HGF)0$$aSundermeyer, Jörg$$b18
001046002 7001_ $$0P:(DE-HGF)0$$aPuschnig, Peter$$b19
001046002 7001_ $$0P:(DE-HGF)0$$aGottfried, J. Michael$$b20
001046002 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b21$$ufzj
001046002 7001_ $$0P:(DE-Juel1)190628$$aWenzel, Sabine$$b22$$eCorresponding author
001046002 773__ $$a10.48550/ARXIV.2509.00736
001046002 8564_ $$uhttps://arxiv.org/abs/2509.00736
001046002 909CO $$ooai:juser.fz-juelich.de:1046002$$popenaire$$pVDB$$pec_fundedresources
001046002 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174294$$aForschungszentrum Jülich$$b0$$kFZJ
001046002 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b9$$kFZJ
001046002 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162163$$aForschungszentrum Jülich$$b10$$kFZJ
001046002 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b11$$kFZJ
001046002 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich$$b12$$kFZJ
001046002 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b13$$kFZJ
001046002 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b21$$kFZJ
001046002 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190628$$aForschungszentrum Jülich$$b22$$kFZJ
001046002 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)190628$$aExternal Institute$$b22$$kExtern
001046002 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001046002 9141_ $$y2025
001046002 920__ $$lyes
001046002 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001046002 980__ $$apreprint
001046002 980__ $$aVDB
001046002 980__ $$aI:(DE-Juel1)PGI-3-20110106
001046002 980__ $$aUNRESTRICTED