001     1046002
005     20250905202256.0
024 7 _ |a 10.48550/ARXIV.2509.00736
|2 doi
037 _ _ |a FZJ-2025-03649
100 1 _ |a Haags, Anja
|0 P:(DE-Juel1)174294
|b 0
|e First author
|u fzj
245 _ _ |a Multi-Orbital Charge Transfer into Nonplanar Cycloarenes Revealed with CO-Functionalized Tips
260 _ _ |c 2025
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1757054585_31497
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a On-surface synthesis has allowed for the tuneable preparation of numerous molecular systems with variable properties. Recently, we demonstrated the highly selective synthesis of kekulene (>99%) on Cu(111) and isokekulene (92%) on Cu(110) from the same molecular precursor (Ruan et al., Angew. Chem. Int. Ed. 2025, e202509932). Scanning tunneling microscopy with CO-functionalized tips can identify the single molecules on the basis of their geometric structure at a low coverage on Cu(110), but it also detects complex features due to electronic contributions close to the Fermi energy. Here, we investigate the origin of these features by simulating STM images based on a weighted sum of multiple molecular orbitals, for which we employ weights based on the calculated molecular-orbital projected density of states. This allows for an experimental confirmation of charge transfer from the surface into multiple formerly unoccupied molecular orbitals for single molecules of kekulene as well as isokekulene in its two nonplanar adsorption configurations. In comparison, the area-integrating photoemission orbital tomography technique confirms the charge transfer as well as the high selectivity for the formation of a full monolayer of mainly isokekulene on Cu(110). Our STM-based approach is applicable to a wide range of adsorbed molecular systems and specifically also suited for strongly interacting surfaces, nonplanar molecules, and such molecules which can only be prepared at extremely low yields.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|f POF IV
|x 0
536 _ _ |a SFB 1083 A12 - Struktur und Anregungen von hetero-epitaktischen Schichtsystemen aus schwach wechselwirkenden 2D-Materialien und molekularen Schichten (A12) (385975694)
|0 G:(GEPRIS)385975694
|c 385975694
|x 1
536 _ _ |a TACY - Tackling the Cyclacene Challenge (101071420)
|0 G:(EU-Grant)101071420
|c 101071420
|f ERC-2022-SYG
|x 2
536 _ _ |a DFG project G:(GEPRIS)511561801 - Manipulierung von 2D Supraleitung und Majorana Zuständen auf der Nanoskala (511561801)
|0 G:(GEPRIS)511561801
|c 511561801
|x 3
536 _ _ |a ML4Q - Machine Learning for Quantum (101120240)
|0 G:(EU-Grant)101120240
|c 101120240
|f HORIZON-MSCA-2022-DN-01
|x 4
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Chemical Physics (physics.chem-ph)
|2 Other
650 _ 7 |a Materials Science (cond-mat.mtrl-sci)
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
700 1 _ |a Reichmann, Alexander
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ruan, Zilin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Fan, Qitang
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Egger, Larissa
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kirschner, Hans
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Naumann, Tim
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Werner, Simon
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Kleykamp, Olaf
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Martinez-Castro, Jose
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Lüpke, Felix
|0 P:(DE-Juel1)162163
|b 10
|u fzj
700 1 _ |a Bocquet, François C.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Kumpf, Christian
|0 P:(DE-Juel1)128774
|b 12
|u fzj
700 1 _ |a Soubatch, Serguei
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Gottwald, Alexander
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Koller, Georg
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Ramsey, Michael G.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Richter, Mathias
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Sundermeyer, Jörg
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Puschnig, Peter
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Gottfried, J. Michael
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Tautz, F. Stefan
|0 P:(DE-Juel1)128791
|b 21
|u fzj
700 1 _ |a Wenzel, Sabine
|0 P:(DE-Juel1)190628
|b 22
|e Corresponding author
773 _ _ |a 10.48550/ARXIV.2509.00736
856 4 _ |u https://arxiv.org/abs/2509.00736
909 C O |o oai:juser.fz-juelich.de:1046002
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174294
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)162163
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)128774
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 21
|6 P:(DE-Juel1)128791
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 22
|6 P:(DE-Juel1)190628
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 22
|6 P:(DE-Juel1)190628
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21