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We start from an analytical formulation for the coherent multiple scattering

treatment – similar to Mie scattering – for spherical particles. Then, we revisit

the Born approximation with an approximation for all higher-order terms.

Finally, we draw conclusions from those calculations and formulate an

approximative model to describe ultra-small-angle neutron scattering and ultra-

small-angle X-ray scattering data. In all calculations, we can specify the condi-

tions for coherent multiple scattering. Several examples are provided to show

the quality of the simple approximation in comparison with exact calculations

and experiments.

1. Introduction

In elementary discussions of small-angle scattering of

neutrons or X-rays (SANS or SAXS), it is generally assumed

that the particle interacts with the sample through a single

scattering event. This assumption underlies the Born

approximation, whereby the scattered intensity is analyzed in

terms of the correlation function of the scattering-length

density. This formalism, however, breaks down for large

scattering cross sections or thick samples. In that case, multiple

scattering has to be considered.

In the historical approach of Schelten & Schmatz (1980),

the successive scattering events undergone by a particle are

considered to be independent of one another. This is justified

if the following two conditions are satisfied. First, the conse-

cutive scattering events have to occur far enough from each

other for the local structures at scattering points to be

uncorrelated such that the particle coherent length is smaller

than the mean free path of the probe. Second, the sample

thickness must be large enough to cover multiple scattering

events. Then, the scattering patterns are just added up inde-

pendently. Many reports have been published to describe

these effects and to propose deconvolution procedures for

data analysis (Jaksch et al., 2021; Jensen & Barker, 2018;

Copley, 1988; Ji et al., 2022). We refer to this situation as

incoherent multiple scattering, which is not to be confused

with incoherent neutron scattering by hydrogen atoms.

When the scattering events come closer to each other, the

underlying structures in the sample are correlated, and

coherent superposition of different waves may occur

(Mazumder & Sequeira, 1992). This effect is captured by the

characteristic length scale � of the sample, which most

experimentalists consider to be the correlation length relevant

to the first-order Born approximation (Roe, 2000; Hamley,
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2021). The validity of the Born approximation means that only

one scattering event happens within the sample.

The coherent superposition of different waves is already

well established in theoretical concepts of reflectivity

measurements (Gibaud, 1999), the dynamic treatment of

single-crystal diffraction (Authier, 2001) and small-angle light

scattering from independent particles (Mie, 1908). The

complexity of the theories increases as one considers more

adaptations to the sample structure as indicated in this list. In

the matrix formalism of reflectivity (Gibaud, 1999), only the

normal direction of the sample with resulting reflections from

there is considered. The distorted wave Born approximation

(Pospelov et al., 2020) – in terms of multiple scattering – does

not go beyond this understanding. For single-crystal scattering

(Authier, 2001), all three dimensions are involved. For the well

known Mie scattering by spherical particles (Mie, 1908), the

complex boundary conditions of the whole surface are taken

into account. Although this was derived for polarized light, a

simplified version is available for quantum scalar waves. The

latter is applicable to neutron scattering, as well as to light

scattering when polarization is not an issue.

The conditions for multiple scattering to occur are governed

by the interplay of various parameters, namely the wavelength

� of the incoming particle, a characteristic size � of the scat-

tering microstructure and the scattering contrast within the

sample ��.

In a simplified qualitative understanding, the sample must

contain large enough inner surfaces where reflections can

occur. That brings us automatically to the domain of very

small angle and ultra-small-angle scattering (VSAS and

USAS) (Barker et al., 2005; Magerl et al., 2024; Ji et al., 2022;

Zhang & Ilavsky, 2010), where we would locate the effect of

coherent multiple scattering. A certain treatment (Hentschel

et al., 1987) allows one to describe a q� 3 power-law ‘scattering’

pattern for fibers which orientationally averaged would agree

with the well known q� 4 Porod scattering. Here, we formulate

an approximation within which we describe deviating scat-

tering patterns that differ from the Born approximation. This

is a matter also of coherence from the probe: does the

coherence volume of the probe contain the correlation volume

of the sample or not? If it does, waves from different interface

spots can superimpose coherently; if not, we observe inde-

pendently refracted beams. In this article we derive expres-

sions for the coherent multiple scattering and connect the

findings to already well known observations. In this way, we

hope to extend the understanding and interpretation of small-

angle scattering experiments.

2. Exact solution for a spherical colloid

The elastic scattering cross section of a sphere in the first-

order Born approximation is a central result in small-angle

scattering (Roe, 2000; Hamley, 2021). It is given by the

following well known expression:

d�

d�
¼ ð��Þ

2 4�R3

3

� �2

fbulkðqÞ
� �2

; ð1Þ

where R is the radius of the sphere, �� is its scattering-length

density contrast with respect to the surrounding solvent (a full

list of all symbols is given in Table 1) and

fbulkðqÞ ¼ 3
sinðqRÞ � qR cosðqRÞ

ðqRÞ
3

ð2Þ

is the Fourier transform of the sphere (Pedersen, 1997),

normalized such that fbulkð0Þ is unity. The volume of the sphere

is v ¼ 4�R3=3. Here q is the modulus of the scattering wave-

vector defined such that h- q is the momentum difference

between the incoming and scattered neutrons. The notation

‘bulk’ highlights that the quantity relates to the volume of the

sphere, to differentiate it from the surface scattering which we

introduce later.

Introductory texts often overlook that equation (1) is not an

exact result of small-angle scattering. It is an approximation

that holds in the limit of small contrast, as we discuss in detail

in Section 3. The exact scattering cross section for an incoming

particle with energy E is obtained by solving the Schrödinger

equation (Squires, 1996), which can be written as

�
h- 2

2m
�þ VðxÞ

� �

 ðxÞ ¼ E ðxÞ: ð3Þ

� is here the Laplace operator, which accounts for the

momentum contribution to the Hamiltonian, with m being the

mass of the particle. The second contribution is the structure-

dependent potential VðxÞ which describes the interaction of

the particle with the sample. In the case of neutrons, the

interaction is usually with the nuclei via strong nuclear forces.

Moreover, in the typical conditions of small-angle scattering,

the neutron wavelength is generally much larger than inter-

atomic distances, so the Fermi pseudopotential can be applied.

In that case, the potential is proportional to the local scat-

tering-length density, namely VðxÞ ¼ ð2�h- 2=mÞ�ðxÞ (Squires,

1996).

If the energy E is larger than the potential, the incoming

wave is not bound by the sample interaction. In this case, the

solution of the Schrödinger equation takes the form of a

scattered wave,

 ðxÞ ¼ expðik � xÞ þ Að�; �Þ
expðijkjrÞ

r
: ð4Þ

The first term describes the incoming wave with a momentum

vector k, related to the energy via E ¼ ðh- kÞ2=ð2mÞ. The second

term is the scattered wave observed far away from the sample

such that the near-field is neglected (equivalent to the

Fraunhofer versus Fresnel condition in light scattering). It is

implicit in equation (4) that the scattering process is elastic, i.e.

that there is no energy transfer between the neutron and the

colloid. This is a consequence of the potential VðxÞ being

independent of time, which is an approximation because all

samples are subject to thermal motion. The conditions for

elastic scattering, however, are reasonably satisfied if the

colloid is moving much slower than the neutron (Monken-

busch & Richter, 2007). With all these caveats in mind, the

elastic scattering cross section is related to the scattering

amplitude A via
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d�

d�
¼ jAð�; �Þj2; ð5Þ

where the angular dependence is on � only in the case of

isotropic samples.

The potential VðxÞ can be as complicated as any realistic

microstructure of material can be. Exact analytical expressions

for the scattering amplitude are available only for very simple

potentials. Classical examples include the Yukawa and

Coulomb potentials (Tong, 2017; Cohen-Tannoudji et al., 1986;

Chong, 2024), which are used in high-energy physics but are

not directly relevant to small-angle scattering. Here, we

consider scattering by a single spherical colloid with sharp

interfaces. In other words, we assume VðxÞ ¼ 2�h- 2�� IðxÞ=m

with the indicator function

IðxÞ ¼
1 for jxj< R;

0 for jxj � R:

�

ð6Þ

Taking the boundary conditions for the quantum-mechanical

waves into account (Cohen-Tannoudji et al., 1986; Chong,

2024), one can derive the following formula:

Að�Þ ¼
1

2ik

X1

l¼0

½expð2i�lÞ � 1�ð2l þ 1ÞPl½cosð�Þ�: ð7Þ

Here we used the Legendre polynomials Pl½x�. For the phases

�l we obtain the following expression:

�l ¼
�

2
� arg

n
� kRH

ð1Þ
3=2þl½kR� J1=2þl½pR�

þ pRH
ð1Þ
1=2þl½kR� J3=2þl½pR�

o
: ð8Þ
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Table 1
This table presents all symbols used in the article.

Symbol Meaning

a Area of the colloid surface or correlation area of the surface scat-
tering

Að�; �Þ Scattering amplitude of the outgoing wave
AnðqÞ Amplitude of degree n from the Born series

� Exponent of power law for surface scattering, i.e. fractal dimension
� Exponent for the switching function �q

d Domain spacing of a porous structure (microemulsion)
D Thickness of sample
d�=d� Microscopic cross section
d�=d� Macroscopic cross section, i.e. d�=d� normalized to the sample

volume
�l Phase function for the spherical colloid scattering
�ðxÞ Dirac delta distribution
� Laplace operator
�� Scattering-length density difference between colloid and solvent
E Quantum-mechanical energy of the probe (neutron)
� Switching function in the Beaucage scattering function for fractals

fbulkðqÞ Form factor of the bulk colloid or structure
fsurfðqÞ Form factor of the colloid surface or structure interface
FðjÞn ðkÞ Specific scattering functions for first-order corrections
� Polar angle
�H Volume fraction of hydrogenous material in the sample
g Length parameter correction with r2 of the order 1

Gkðx; yÞ Green’s function for the scattering event
�ðrÞ Real-space correlation function
� ðxÞ Gamma function
h- Planck constant
H
ð1Þ
l ðxÞ Hankel function of the first kind

i Imaginary unit

I0 Forward scattering parameter
Iðq ¼ qcÞ Intensity at the critical scattering vector modulus qc

IðxÞ Indicator function of the colloid, i.e. 1 inside the colloid and 0
otherwise

�I�ðxÞ Indicator function averaged over the polar angle
=ðxÞ Imaginary part of the argument x
JlðxÞ Bessel function

k Modulus of the wavevector of the incoming probe (neutron), i.e.
2�=�

k0 Modulus of the wavevector of the porous material structure, i.e.
2�=d

k Wavevector of the incoming probe
kf Wavevector of the outgoing probe (final momentum)

K Final complex strength for coherent multiple scattering
�0 Strength of coherent multiple scattering (zeroth approximation)
�1 Strength of coherent multiple scattering (first approximation)
� Strength of coherent multiple scattering (final approach)
l Index, angular quantum number
lðy; !̂Þ Length distribution function for certain solid angle !̂ inside the

colloid

LðyÞ Length distribution function
� Probe (neutron) wavelength
m Neutron mass
n Index, usually connected to the order of the Born approximation
!̂ Solid angle
p Wavevector inside the colloid according to the different potential V

pðrÞ Pair distribution function
PlðxÞ Legendre polynomial of the argument x
� Circle constant
 Quantum-mechanical wavefunction (non-bound state)
�q Switching function as a function of q between surface and classical

Porod scattering
�surf Switching function between surface and classical first-order Born

approximation
q Modulus of the scattering vector, i.e. q ¼ 2k sinð�=2Þ
qc Modulus of the critical scattering vector between surface and

classical Porod scattering
qcut Modulus of the maximum scattering vector used to cut the q range

of a scattering curve

qmin Experimental minimum scattering vector modulus
q Scattering vector
r Distance, i.e. modulus of the spatial argument x or r

Table 1 (continued)

Symbol Meaning

r Spatial variable inside the sample
rn Spatial variable inside the sample with index n
rcut Minimum valid distance before divergence of �ðrÞ for r! 0
R Radius of the spherical colloid
Rg Radius of gyration from the second moment of mass distribution of

the respective structure
~Rg Radius of gyration for the corrected scattering function
�ðxÞ Scattering-length density profile of the sample
s Dimensionless spatial variable, i.e. r=�
S Extracted term from term T
SqðrÞ Scattering function (also for higher orders)
sðqÞ Structure factor for arrangement of several colloids

�T Total scattering cross section
�SANS Reciprocal mean free path length given by measured SANS curve
T Innermost integral of a higher-order scattering amplitude
� Azimuthal angle
v Volume of the colloid or correlation volume of the bulk scattering
VðxÞ Interaction potential between probe and sample

x Argument of a function (not to be confused with r, the modulus
of x)

x Spatial variable inside the sample
�1 Correlation or typical length of the sample structure, first approx-

imation
� Correlation or typical length of the sample structure
�ði;jÞn ðkÞ Specific scattering functions for second-order corrections

y Spatial variable inside the sample
yn Spatial variable inside the sample with index n
Z Dimensionless complex correlation length parameter
� Dimensionless reciprocal correlation length parameter



Note that equation (8) is expressed in terms of the commonly

known Bessel function JlðxÞ and the Hankel function of the

first kind H
ð1Þ
l ðxÞ, while other normalizations are often used in

the literature of quantum mechanics (Cohen-Tannoudji et al.,

1986; Chong, 2024). For the phase �l, the exact normalizations

of JlðxÞ and H
ð1Þ
l ðxÞ do not play a role. We also included

simplifications for the derivatives of both functions.

This way of dealing with multiple scattering has an alter-

native formulation given by Berk & Hardman-Rhyne (1986)

using an integral form that was already developed as a

Wentzel–Kramers–Brillouin approximaton by Weiss (1951).

The magnitude p is the momentum inside the colloid, which is

connected to the momentum k according to

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 4���

p
: ð9Þ

This formula is also well known in reflectometry experiments

(Gibaud, 1999). For differing momenta inside and outside the

colloid, together with the continuity of the wavefields at the

boundary, many formulations for multiple scattering become

equivalent, be it for light (Mie, 1908; Olaofe, 1970) or acoustic

waves (Faran, 1951). Apart from that, the contrast ð��Þ2

needs to be replaced by ð4�2n2
0=�

4
0Þðdn=d�Þ2 (Daicic et al.,

1995) for light. However, at present, we do not want to

comment any further on static light scattering results.

The formulae in equations (7)–(8) result from the exact

quantum-mechanical treatment, and they therefore include

the coherent multiple scattering effects. The corresponding

scattering cross sections are plotted in Fig. 1. In order to

facilitate the comparison with small-angle scattering, the latter

are plotted not against the angle � but against the momentum

transfer q ¼ kf � k, where kf is the final momentum, after

scattering. The relation to the scattering angle is

q ¼ 2k sinð�=2Þ; ð10Þ

which is classical in small-angle scattering.

In order to synthetically analyze the various scattering

regimes, Fig. 2 displays the forward scattering cross section,

estimated from equation (7) as jAð0Þj2, and the total scattering

cross section �T. The latter quantity is an integral of jAð�Þj2

over all the directions on the unit sphere. Thanks to the optical

theorem of scattering theory (Tong, 2017), however, it can be

obtained from the imaginary part of the forward scattering

amplitude Að0Þ as

�T ¼
4�

k
= Að0Þ
� �

: ð11Þ

In all generality, given the dimensions of the three physical

parameters that control the scattering – k (Å� 1), �� (Å� 2)

and R (Å) – their effect is captured by just two dimensionless

numbers, which in the figure were chosen to be ��=k2 and kR.

Although two dimensionless parameters are, in principle,

necessary to describe the scattering, it appears empirically

from Fig. 2 that the main characteristics are captured by a

single number. That number can be identified by noting that

the occurrence of multiple scattering is necessarily controlled

by the contrast ��, and that its mathematical dependence in

equation (8) is exclusively through the combination pR. From

equation (9), the approximate relation is

pR ¼ kR � 2�
��R

k
þ . . . ð12Þ

for small contrasts. To the leading order, it therefore appears

that the influence of parameters k, R and �� is through their

dimensionless combination

�0 ¼
��R

k
: ð13Þ

As shown in Figs. 2(c) and 2(d), the dimensionless number �0

indeed captures the main characteristics of the scattering by a

spherical colloid. In the literature (Berk & Hardman-Rhyne,

1986), a similar parameter � ¼ 2��0 has been discussed in the

same context.

To sum up the findings from Fig. 2, the transition from single

to coherent multiple scattering occurs at �0 ’ 0:1 in the case

of a sphere. For lower �0, the scattering is well described by the

first-order Born approximation. In particular, the forward and

total scattering both scale with the squared volume of the

particle, and with the squared scattering contrast. For larger

�0, the total scattering cross section reaches the value

�T ¼ 4�R2 corresponding to the exact scattering cross section

of a quantum-mechanical hard sphere (Tong, 2017; Chong,

2024). In that regime, the forward scattering is independent of

the contrast and it scales with R4, i.e. with the squared area of
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Figure 1
Exact scattering cross sections of a sphere calculated from equation (7)
normalized to contrast and volume with (a) j��j ¼ 4� 10� 4, R = 100
(�0 ¼ 0:04); (b) j��j ¼ 10� 4, R = 5000 (�0 ¼ 0:5); (c) j��j ¼ 10� 2, R =
100 (�0 ¼ 1) and (d) j��j ¼ 4� 10� 4, R = 5000 (�0 ¼ 2). In all cases k =
1. The red symbols are for ��> 0 and the blue symbols for ��< 0. The
solid black line is the form factor from equation (1), and the vertical black
line is an estimation for the transition to bulk scattering which we discuss
at a later stage (qcR ¼ 8�j�0j). This transition is also supported by the
work of Berk & Hardman-Rhyne (1986).



the particle. The scattering pattern then describes the

projected shadow of the colloid, i.e. a circular disc (Weiss,

1951).

3. Generalization to arbitrary structures

3.1. The Born series and first-order approximation

To discuss scattering in general terms, it is convenient to

introduce the indicator function of the colloid phase IðxÞ,

which is equal to 1 if x is in the colloid and to 0 in the solvent

[see equation (6)]. The space-dependent scattering-length

density, in excess of the solvent, is then simply �� IðxÞ, where

�� is the contrast between the solvent and colloid, as in

equation (6). With this notation, a formal solution of the

Schrödinger equation in equation (3) is provided by the

following Lippmann–Schwinger equation (Squires, 1996):

 ðxÞ ¼ expðik � xÞ þ��

Z

d3y Gkðx; yÞIðyÞ ðyÞ; ð14Þ

where the first and second terms are the incoming and scat-

tered waves, respectively, similar to equation (4). In the inte-

gral, Green’s function is

Gkðx; yÞ ¼ �
expðikjx � yjÞ

jx � yj
; ð15Þ

which arises from the outgoing solution of a point-like particle,

i.e. solving ð�þ k2ÞGk = 4��ðx � yÞ.

The Lippmann–Schwinger solution in equation (14) is an

integral equation, which does not provide an explicit solution

of the wavefunction. One can, however, use it recursively to

express the scattered wave as an infinite series, referred to as

the Born series. In terms of the scattering amplitude, the

solution takes the form

AðqÞ ¼
X1

n¼1

AnðqÞ: ð16Þ

The first term in the series is obtained by approximating  ðyÞ

in the integral of equation (14) by the incoming wave itself

expðik � yÞ. This leads to

A1ðqÞ ¼ � ��

Z

d3y IðyÞ expð� iq � yÞ; ð17Þ

which corresponds to the first-order Born approximation.

The scattering cross section in the first-order Born

approximation is then obtained through equation (5) as

jA1ðqÞj
2. The form factor in equation (1) is the Fourier

transform of this specific function. This is mathematically

equal to ð��Þ2 times the Fourier transform of the correlation

function,

�ðrÞ ¼
1

v

Z

d3y IðyÞIðyþ rÞ; ð18Þ

where the normalization by the volume of the colloid v

ensures that �ð0Þ ¼ 1. Note that �ðrÞ can be understood as the

average value of IðyÞIðyþ rÞ when y is uniformly distributed

on the colloid. In the particular case of a sphere, the corre-

lation function is
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Figure 2
Exact value of the forward (a) and total (b) scattering cross sections, as a function of the dimensionless parameter j��j=k2 and kR, and the same
quantities as a function of j�0j ¼ j��jR=k. The red symbols are for ��> 0 and the blue symbols for ��< 0. The solid black lines in (c) and (d) are
empirical fits.



�ðrÞ ¼ 1 �
3

2
ðr=2RÞ þ

1

2
ðr=2RÞ

3
ð19Þ

for r � 2R and �ðrÞ ¼ 0 for larger distances.

The first-order Born approximation, however, ignores

coherent multiple scattering effects. In general, the scattering

amplitude contains an infinite series of terms, each of which

accounts for a specific number of interfering scattering events.

The term of order n takes the form

AnðqÞ ¼ � ð��Þ
n

Z

d3y1 . . . d3yn Iðy1Þ . . . IðynÞGkðy1; y2Þ

. . . Gkðyn� 1; ynÞ exp½� ik � ðyn � y1Þ� expð� iq � ynÞ; ð20Þ

with q ¼ 2k sinð�=2Þ or the corresponding vectorial depen-

dence. This is interpreted as resulting from n successive scat-

terings at points y1 to yn, which interfere coherently to form

the amplitude AnðqÞ. It is the latter terms that are responsible

for the deviations in Fig. 1 between the exact quantum-

mechanical scattering cross section and the classical small-

angle scattering expression from equation (1). The inter-

pretation of equation (20) in terms of n successive scattering

events justifies referring to higher-order Born corrections as

coherent multiple scattering.

3.2. The second-order Born approximation and surface

scattering

To investigate the structural significance of the higher-order

terms in the Born series, we consider here the second-order

term A2ðqÞ, which is obtained from equation (20) for n = 2.

Before considering its angular dependence, it is instructive to

consider first the forward scattering, corresponding to q = 0.

Without any assumption, the latter can be expressed as

follows:

A2ð0Þ ¼ ð��Þ
2
v

Z

d3r
expðikrÞ

r
expð� ik � rÞ�ðrÞ ð21Þ

as a function of the correlation function �ðrÞ defined in

equation (18). The values corresponding to a spherical particle

with �ðrÞ given in equation (19) are plotted in Fig. 3(a).

To investigate the q dependence of A2ðqÞ, it is convenient to

write it as

A2ðqÞ ¼ � ð��Þ
2

Z

d3r GkðrÞ expð� ikf � rÞ

Z

d3y Iðyþ rÞ

� IðyÞ expð� iq � yÞ; ð22Þ

which results from equation (20) with n = 2, moving the

Fourier integral with the highest frequency to the outermost

position. In the case of small-angle scattering jkfj ¼ jkj and

jqj � jkj. When writing the second-order term as in equation

(22) the value of the high-k Fourier transform is determined

by the small-r behavior of the innermost integral, i.e. by the

structure of the surface.

The central approximation in our analysis in this Section 3.2

consists of assuming that the innermost integral in equation

(22) is isotropic in r. Under this isotropy assumption, we

replace the integral by its rotational average,

SqðrÞ ¼
1

4�

Z

d!̂

Z

d3y expð� iq � yÞIðyÞIðyþ r!̂Þ; ð23Þ

where !̂ is a unit vector and its integral is over the unit sphere.

Because SqðrÞ is a radial function of r, we can also replace the

integrand of the outermost integral in equation (22) by its

rotational average, namely

1

4�

Z

d!̂ GkðrÞ expð� ikf � rÞ ¼ �
i

2kr2
1 � expð2ikrÞ½ �: ð24Þ
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Figure 3
Second-order term of the Born expansion A2ðqÞ for a sphere, expressed in units of ð��Þ2R5. (a) Forward scattering amplitude A2ð0Þ as a function of kR.
The dots are the exact values (modulus and phase), and the solid lines are equation (29) with q ¼ 0. The q-dependent amplitudes are plotted in (b1) for
kR ¼ 10 and (b2) for kR ¼ 30 (real and imaginary parts). The dots are the exact values, calculated by evaluating numerically equation (22), and the solid
lines are from equation (29).



Note how the rotational average makes the distinction

between k and kf irrelevant because jkfj ¼ jkj for elastic

scattering. With these assumptions, the second-order Born

term can be written as

A2ðqÞ ¼ ð��Þ
2 2i�

k

Z1

0

SqðrÞ dr �

Z1

0

expð2ikrÞSqðrÞ dr

2

4

3

5;

ð25Þ

where both terms have a simple interpretation.

According to the definition of SqðrÞ in equation (23), the

first integral in the square brackets of equation (25) can be

written as

Z

d3y IðyÞLðyÞ expð� iq � yÞ; ð26Þ

where LðyÞ is a length, the meaning of which is illustrated in

Fig. 4 (see also Appendix A). Starting from any point y in the

colloid, radii are drawn in the direction !̂, and their average

length is calculated over all directions of !̂. The as-defined

length is space dependent, but if the dependence is weak it can

be factored out from the Fourier transform and replaced by its

average value �1, calculated over all starting points y in the

colloid. In other words, the first term in the square brackets of

equation (25) can be approximated as �1vfbulkðqÞ.

To evaluate the second term in equation (25), we first note

that in typical small-angle scattering experiments the wave-

length is much shorter than the size of the colloid, so that a

high-frequency approximation applies. Integrating by parts,

the second integral in equation (25) can be written as

Z1

0

expð2ikrÞSqðrÞ dr ’ �
1

2ik
Sqð0Þ þ

1

ð2ikÞ
2

S0qð0Þ þ . . . ; ð27Þ

where the prime denotes a derivative with respect to r and the

dots terms at higher reciprocal powers of k. From the defini-

tion of SqðrÞ in equation (23), the dominant term is

Sqð0Þ ¼ vfbulkðqÞ because the indicator function takes values 0

or 1, so that I 2ðyÞ ¼ IðyÞ. Interestingly, the derivative S0qð0Þ is

proportional to the surface scattering afsurfðqÞ, as we now

explain.

The function SqðrÞ has a simple interpretation when r is

much smaller than the size of the colloid, as relevant for

equation (27) where the terms are evaluated in the limit of

r! 0. The average of !̂ in equation (23) is equivalent to

replacing the second indicator function IðyÞ by its average

value evaluated over a tiny sphere with radius r centered on y,

say I rðyÞ (see Appendix B). This operation leaves the indi-

cator function unchanged for all points at a distance larger

than r from any interface. For all points closer than r from the

surface, it replaces the sharp transition by a linear profile [see

Fig. 5(b)]. From equation (23), SqðrÞ is the scattering that

would result from the original colloid [Fig. 5(a)], from which a

given r-dependent measure is subtracted uniformly from all

over its surface [Fig. 5(d)]. In other words, for infinitesimally

small values of r, one has

SqðrÞ ¼ vfbulkðqÞ �
r

4
afsurfðqÞ; ð28Þ

where afsurfðqÞ is the surface scattering amplitude, normalized

in such a way that a is the surface area, fsurfð0Þ ¼ 1, and the

specific factor r/4 results from the integral of the linear profile

sketched in Fig. 5(d).

Evaluating the derivative of SqðrÞ with respect to r, one

finally gets the following general approximation for the

second-order Born terms:

A2ðqÞ ¼ � ð��Þ
2 2�

ik

"

�1 þ
1

2ik

� �

vfbulkðqÞ þ
1

4

1

2ik

� �2

afsurfðqÞ

#

:

ð29Þ

To check the validity of this approximate relation, it is

compared in Fig. 3 with the direct numerical evaluation of

equation (22) in the case of a spherical colloid. In that case, the

bulk scattering is given by equation (2) and the surface scat-

tering is
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Figure 5
Geometrical interpretation of SqðrÞ in equation (23) for small radii r, and
origin of the surface scattering: (a) indicator function of the colloid IðyÞ;
(b) its convolution with a small sphere I rðyÞ; (c) product IðyÞ � I rðyÞ; (d)
difference between (a) and (c). The latter case describes the surface
scattering that we explicitly find in equation (28).

Figure 4
Definition of the characteristic length �1 of a colloid (in white), as the
average length of all radii, over all directions !̂ and over all possible
starting points y in the structure. Note that the radii may consist of several
disconnected segments.



fsurfðqÞ ¼
sinðqRÞ

qR
with a ¼ 4�R2: ð30Þ

Moreover, we show in Appendix A that the characteristic

length is �1 ¼ 3R=4 (�1 ¼ ���1=k) in the case of a sphere. The

forward scattering, calculated from equation (29) for q = 0, is

plotted as solid lines in Fig. 3. Deviations are observed from

the exact values in the low-kR range, but this is irrelevant for

most small-angle scattering experiments. The q dependence of

A2ðqÞ is also reasonably captured in the high-kR limit [see

Figs. 3(b1) and 3(b2)]. Higher-order terms of the amplitudes

AnðqÞ are discussed in Appendix C.

3.3. Empirical expression based on heuristic arguments

We do not attempt here to pursue the same type of analysis

of the higher-order terms in the Born series as we did with the

second-order term. Instead, we build on the qualitative

understanding obtained so far, as well as on scaling arguments,

to propose an empirical expression for scattering beyond the

first-order Born approximation. We test that empirical

expression against the exact quantum-mechanical solution for

the sphere scattering.

To understand the general scaling of the nth-order Born

amplitude with colloid size and k, the expression of AnðqÞ from

equation (20) is conveniently rewritten as

AnðqÞ ¼ � ð��Þ
n

Z

d3y expð� iq � yÞIðyÞ

Z

d3r2 Gkðr2Þ

� expð� ikf � r2ÞIðyþ r2Þ

Z

d3r3 . . . Iðyþ r2

þ . . .þ rn� 1Þ

Z

d3rn GkðrnÞ

� expð� ikf � rnÞIðyþ r2 þ . . .þ rn� 1 þ rnÞ; ð31Þ

which results from reorganizing the order of the integrations.

The innermost integral in equation (31) is of the type

T ¼ IðxÞ

Z

d3r GkðrÞ expð� ikf � rÞIðxþ rÞ ð32Þ

for which a few approximations can be made. First, one can

note that the variable x is eventually integrated many times, so

that one is only interested in an average value of T. Further-

more, we take the average over the polar angle into account,

i.e. �I�ðxþ rÞ with the z axis along the incoming beam, i.e.

parallel to kf. For the remaining azimuthal angle we still keep

the integration.

At this point we change the argumentation and go back to

the integration over the space of r ¼ �s and assign to it the

typical length scale �. For the moment we keep the value of �

undetermined. So one gets

T ¼ IðxÞ2��3

�

Z1

0

ds s2

Z1

� 1

d cos � expð� ik�s cos �Þ �I�ðxþ �sÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�
�ðsÞ

iks
�I 0�ðxÞ

expð� ik�sÞ

�s
:

ð33Þ

The idea behind this is that the limits of cos � are finite, but in

the limit of large k� one comes close to the �ðrÞ distribution.

More details about the partial integration are given in

Appendix D. The essence of this calculation is now that we

replace the derivative of �I0�ðxÞ ¼ �
0ðr ¼ 0Þ by the average

correlation function. That is plausible because we consider the

whole space of x. This in turn defines our preferred length

scale via � ¼ � ½� 0ð0Þ�� 1. Because of the general relation

between the slope of �ðrÞ at the origin and the surface area,

the length scale is simply related to the colloid volume-to-area

ratio as � ¼ 4v=a (Debye et al., 1957). In the case of spheres we

get � ¼ 4R=3. Below we will consider the different results for �

and we define � ¼ ���=k. However, we obtain

T ¼ IðxÞ
2��

ik
: ð34Þ

Combining the results of this section with those of Section 3.2,

the overall scaling of the nth-order scattering amplitude is

AnðqÞ ¼ A2ðqÞ � 2i��ð Þ
n� 2
; ð35Þ

now with the new �. With this specific dependence on n, the

full Born expression for the forward scattering in equation

(16) is a geometric series that can be easily evaluated as

AðqÞ ¼ � ��
vfbulkðqÞ � 2i����afsurfðqÞ

1þ 2i��
ð36Þ

with � ¼ ð4ik�Þ� 2.

When compared with the exact result for the sphere scat-

tering, the analytical expression in equation (36) has some

expected qualitative characteristics. In the limit of small �, it

coincides with the first Born approximation, as it should. In

the limit of strong coherent multiple scattering, i.e. for �� 1,

it predicts pure surface scattering, as also anticipated.

The final value for the leading term of the scattering cross

section is

d�

d�
¼ ð��Þ

2 jvfbulkðqÞ � 2i����afsurfðqÞj
2

1þ ð2��Þ
2

; ð37Þ

where the dimensionless number � ¼ ���=k with � ¼ 4R=3

generalizes the quantity �0 ¼ ��R=k introduced when

discussing the scattering by a sphere (see also Fig. 2). From the

denominator 1þ ð2��Þ2, the extreme case of quantum scat-

tering results in intransparent particles with little scattering.

We discuss higher-order corrections of this equation in

Appendix C.

We see that the Born series [equation (37)] correctly

describes the forward scattering of a colloid including

coherent multiple scattering effects. The related dominant
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dependence is 1=½1þ ð2��Þ2� which was derived for small j�j

in the sense of a Taylor expansion. However, one can extend

the functional dependence to 2�j�j> 1 in the sense of an

analytic continuation, as we see in Fig. 6. The Born series

[equation (36)] also describes correctly that for large j�j the

surface scattering (as shown in Fig. 5) replaces the bulk scat-

tering, however with a leading prefactor � which in our small-

angle scattering approach is a small number because the

correlation length � is assumed to be much bigger than the

probe wavelength. The substitution of surface scattering for

bulk scattering also becomes clear in the exact calculation of

Fig. 1. From the known dependence of the forward scattering,

the surface scattering must also carry the same amplitude

1=½1þ ð2��Þ2� at larger j�j where the Born series in our

approach is no longer valid. Currently, we cannot tell if our

approximations are too crude or the full Born series in general

is not capable of describing the transition to surface scattering

correctly. Apart from the surface scattering at low q, we also

see from Fig. 1 that the scattering profile transitions to the

classical bulk scattering at q ¼ qc, which in dimensionless

units is also related to � according to qcR � j�j. This can be

interpreted as follows: on small length scales (q> qc), far

below the correlation length �, the physics of the scattering

process is no longer related to coherent scattering effects; this

is simply the classical scattering problem of Porod scattering.

This transition has already been described (Berk & Hardman-

Rhyne, 1986). In some sense this corresponds to a loss of

coherence when the scattering vector is only just large enough

[we might assume that here � takes the value k� 1 and apply

this to equation (36)]. From the considerations summarized

above, we now propose the following heuristic equation for

the macroscopic cross section to describe the small-angle

scattering profile including coherent multiple scattering for

all j�j:

d�

d�
ðqÞ ¼

�Hð1 � �HÞ��
2vsðqÞ

1þ ð2��Þ
2

�
n
ð1 � �2

surfÞf
2
bulkðqÞ þ�2

surf½�q f 2
surfðqÞ

þ ð2��Þ
2
ð1 � �qÞf

2
bulkðqÞ�

o
: ð38Þ

We discuss the macroscopic cross section here, which is the

microscopic cross section [equation (5)] normalized to the

sample volume. We now include the ideal form factors for a

full sphere fbulk and the sphere surface fsurf and switch between

them in different cases. The first switching function

�surf ¼ expð� 1=j2��jÞ switches between coherent single

scattering for small j�j and coherent multiple scattering for

large j�j. The switching within a scattering pattern from

surface to bulk scattering is expressed by �q ¼

exp½� lnð2Þðq=qcÞ
�� with a characteristic scattering vector

modulus qc = 8�j�j=� = 8�j��j=k = 4j��j�. It is determined

from the crossing of the unscaled surface form factor f 2
surf and

the ð2��Þ2 scaled bulk form factor f 2
bulk. The scaling of the

latter term was motivated by the argument that when the

scattering vector q ‘observes’ the smallest structures, i.e. the

surface only in terms of Porod scattering, the observation is

not dependent on coherent multiple scattering effects

anymore. For the exact crossing at qc, the high-q power law

with smeared-out oscillations was taken into account only. As

we will see later, the exponent � = 3.0 proved to be a useful

choice. The structure factor sðqÞ comes into play when the

colloids are more concentrated such that interactions between

them occur. One famous example is the Percus–Yevick

structure factor (Ye et al., 1996).

In principle, the scattering functions fbulk and fsurf can refer

to other arbitrary structures. One approach using Gaussian

random fields (Gommes et al., 2021) is capable of deriving

expressions that can be applied to real systems. Some analytic

expressions for random media with more complex formulae

are derived in Appendix E. The validity for different struc-

tures remains to be proved, either experimentally or theore-

tically.

For SANS and SAXS we know that the contrast �� � 10� 5

to 10� 6 Å� 2 takes rather low values and dominates the

momentum difference ðp � kÞR. For a typical colloid size we

talk about values of R � 101 to 105 Å (1 nm to 10 mm), typical

for small-angle scattering (SAS), from VSAS to USAS. The

latter might even involve larger sizes. For the momentum we

talk about values of k ¼ 2�=� � 1 to 10 Å� 1. This implies that

the term ��R=k can be well below unity (for SAS) and

reaches a few tens in the case of USAS experiments. For

SANS and SAXS, the critical qc � 10� 4 Å� 1 is in a rather well

defined range that is typical for VSAS and USAS.

The first magnitude we want to discuss is the forward

scattering, i.e. d�=d�ð�! 0Þ [equation (5)], which we

normalize to the single scattering expectation ��2v2 as in Fig.

1. We have displayed examples of the exact calculation

[equations (7)–(8)] compared with the approximation [with

the leading term 1=ð1þ 2�j�j2Þ which also reflects the

simplistic approach of equation (37)] in Fig. 6. The exact

calculations are given by the blue, yellow and black lines. We
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Figure 6
The normalized forward scattering for a spherical colloid as a function of
the dimensionless parameter j��jR=k. The forward scattering is
normalized by the contrast and colloid volume such that it is unity in the
case of no multiple scattering. The conditions are indicated in the legend
(parameters are color coded). The wiggly lines present the exact calcu-
lations. The red lines represent the simplified approximation
� 1=½1þ ð2��Þ2�.



see that the simple formula describes well the limits of single

scattering j�j ! 0 and the heavy multiple scattering j�j � 1.

Furthermore, we can confirm that the final expression for the

correlation length � ¼ 4R=3 is the correct one. In the inter-

mediate j�j range there are deviations as follows. For the

stronger contrast �� ¼ 0:1 there occur two kinds of oscilla-

tions: one sharper kind of higher frequency which indicates

strong resonances, and a broader kind of lower frequency

which is connected to weaker resonances. The latter is main-

tained for the lower contrast of �� ¼ �10� 3 [calculations

using Maple (https://www.maplesoft.com/) with �� ¼ 10� 5

yield the same results but take an extremely long time],

independent of the sign. We can state that the approximation

works well after the first low-frequency oscillation (i.e.

j��jR=k> 0:5) in the case of low contrasts. For this situation

we expect that the surface scattering is dominant and then

fully replaces the bulk scattering. Resonances may be

considerable in the range 0:05< j��jR=k< 0:5 where the

mixing of bulk and surface scattering may occur. However, we

will also discuss this issue in more detail below and argue that

the simple approach is valid in most practical cases for real

samples.

We now discuss scattering patterns at different conditions

(given by � ¼ 4
3
�0) as displayed in Fig. 7. In all cases, the

thicker gray curve represents the exact calculation and the

thin line the simplified approximation of equation (38). High-

frequency oscillations at larger q are omitted for the simplified

calculations, for ease of visualization. We considered a range

of �0 ¼ ��R=k ¼ 0:2 via 1 and 3 to 10. We replaced fbulk with

2fbulk in the square brackets of equation (38) in order to

represent the high-q end of all curves better. For all curves the

parameters of ��, R and k are indicated. Also, the transition

qc is indicated on all plots. Generally, the agreement between

the approximation and the exact calculation is quite good. The

high-q end is captured very well, and at smaller q there are

deviations. For smaller � the crude approximation under-

estimates the full theory, and the opposite is true at larger �.

The general slopes of the curves in this double logarithmic

scale, when neglecting the oscillations and their possible

change at qc, are captured quite well. The positions and

amplitudes of the first fringes are captured reasonably well,

but clear differences are visible and are an expression of the

resonances that complicate the exact theory versus the simple

approximation.
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Figure 7
The scattering profiles for a spherical colloid under different conditions (a–d) as indicated in the legend [the natural units for �� (Å� 2), R (Å) and k
(Å� 1) are used – for faster calculations the contrast �� ¼ 10� 3 was chosen, which produces similar results to the more realistic value of 10� 5 – the main
variation is the parameter �0 ¼ j��jR=k = 0.2, 1, 3 and 10 for (a–d) and � ¼ 4

3
�0]. The intensity is normalized to unity for no multiple scattering – the

same as in Fig. 1. The x axis is normalized to dimensionless units qR. The gray lines represent the exact calculations. The solid lines represent the
simplified approximations presented in this article [equation (38)]. For higher q the heavy oscillations are neglected and exchanged by the average trend.
The dimensionless critical scattering vector qcR is also indicated.

https://www.maplesoft.com/


When considering real samples at rather large scales

(>1 mm), there are usually wide distributions of sizes that

smear out all oscillations of the scattering patterns, and so only

power-law behaviors remain observable in the experiment.

This averaging would also smear out the under- and over-

estimations of the different conditions expressed by the

parameter j�j. Thus, we believe that for a simple power-law

scattering pattern a simple change of slopes would occur in the

experiment, as described by

d�

d�
¼ Iðq ¼ qcÞ �q

qc

q

� ��

þ ð1 � �qÞ
qc

q

� �6� �
" #

: ð39Þ

The exponent � � 3 describes the surface scattering and is

connected to mass fractals (the term mass is not to be confused

with bulk – it expresses the real dimensionality of the surface

in the 3D space). The following exponent 6 � � is then the

corresponding structure under bulk contrast and is connected

to surface fractals. The pair of exponents for � ¼ 2 is already

well described in the theory of Porod (Glatter & Kratky, 1982;

Roe, 2000) for smooth surfaces of compact objects. Generally,

the range for the exponent is 1 � � � 3 and seems to be a

sharp boundary for all possible fractal structures (Martin,

1986; Kjems et al., 1986). As before, we keep the description of

the switching function �q ¼ exp½� lnð2Þðq=qcÞ
��. For many

hierarchical structures with smeared-out fringes, the expres-

sions derived by Beaucage (1996) give a good model function

to describe small-angle data. Thus, the simple power-law

expression of equation (39) can be expanded to

d�

d�
¼ I0 expð� q2R2

g=3Þ

þ B̂ �q

qc�

q

� ��

þ ð1 � �qÞ
qc�

q

� �6� �
" #

: ð40Þ

Here, the parameter I0 describes the forward scattering that is

connected to the Guinier scattering, and the second amplitude

B̂ = I0�� ð�=2Þ=ðqcRgÞ
� is tightly related to the remaining

parameters [� ðxÞ is the gamma function]. The overall size Rg

describes the appearance of the scattering surface. The second

switching function is connected to � ¼ erf3ð1:06qRg=
ffiffiffi
6
p
Þ. The

exponent in the first switching function �q is best selected by

the formula � ¼ 7 � 2� or a bigger value.

4. Discussion

Here, real experiments are discussed in the context of the

above-mentioned formulae. A practical example was obtained

by the USANS scattering of simple paper, as displayed in Fig.

8 (Ji et al., 2022). The original slit desmeared data are indi-

cated and compared with the incoherent multiple scattering

corrected data. The latter data were described by the simpler

formula of equation (39). The critical qc is found to be

2� 10� 4 Å� 1, i.e. larger than the theoretical value. However,

the spread of the two power laws of fbulk and fsurf with the

exponents being close to 3 is smaller, and so the crossover may

be shifted to a slightly larger qc. Thus, we believe that qc may

be shifted by factors of the order 2–3 in comparison with the

exact theoretical value, but this remains to be verified

experimentally.

Examples in the literature may support the findings we have

discussed here. For polysulfone membranes, experiments

using USANS and SANS (Siddique et al., 2022) display a

crossover between a mass and surface fractal at qc � 2–

3 � 10� 4 Å� 1 which was not described any further. One other

example is the already discussed scattering from paper, and

the scattering of shales has been presented (Ji et al., 2022).

Also for silica particles with polymers in solution (Schmitt et

al., 2016), USAXS experiments display a crossover between

mass and surface fractal behavior at qc � 5 � 10� 4 Å� 1 for

different silica morphologies. However, different morpholo-

gies are identified using supporting scanning electron micro-

scopy micrographs. Thus, in the latter case, in part the

different slopes could be directly interpreted in terms of the

real-space structures and qc seems to be related to a real

structural size. Another USAXS study found a rather low q �

10� 4 Å� 1 (Munoz et al., 2023) where the slopes still indicate

surface fractals at lowest q. Here, the coherence might be

insufficient if the underlying observed structures of size � are

much bigger (� � 2�q� 1
min). In that case, opposing surfaces

from the object are not interfering in the experimental

observations. A detailed analysis for the different cases is

required.

Another example deals with a protein aggregate of bovine

serum albumin (BSA) with considerable amounts of trivalent

yttrium cations in D2O [Fig. 9(a)] (Soraruf et al., 2014; Beck et

al., 2021). First, the incoherent multiple scattering is removed

from the original data (blue). Then, we can see the scattering

curve from the protein at this stage (black). As such, this curve

does not look unusual, but when performing a real-space

reconstruction using DENFERT (Koutsioubas & Pérez, 2013;

Koutsioubas et al., 2016) the structure looks slightly elongated
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Figure 8
The USANS profile of a single sheet of paper (macroscopic cross section
as a function of the scattering vector) from Ji et al. (2022). The squares
indicate the original measurement that was slit desmeared. The inco-
herent multiple scattering deconvoluted data are indicated by the trian-
gles. To this, the simple power-law behavior with a crossover [equation
(39)] is fitted (red line, slopes are indicated). The critial scattering vector
modulus qc is indicated by the arrow. All error bars are plotted within the
symbols.



and not isotropic anymore. From the pure uncontrolled

aggregation, one would expect isotropic globular aggregates.

Thus, fitting the low-Q part (Q < 0.0005 Å� 1) with the modi-

fied Beaucage model [equation (40)] and then assuming that

the high-Q exponent 6 � � is also valid for a simple Beaucage

function extending to the low-Q part with �� ð�=2Þ=ðqcRgÞ
� =

ð6 � �Þ� ð3 � �=2Þ=ðqc
~RgÞ

6� � yields two functions to be solved

for ~Rg. The ratio of those two model functions was applied to

the real measured data, and we obtained a corrected scattering

curve (red line). From this curve, we obtained a rather

isotropic, globular real-space reconstruction.

As the real-space reconstruction goes hand in hand with

obtaining the real-space correlation funtion pðrÞ using an

indirect Fourier transform algorithm (Hansen, 2000), we

discuss that here as well. The original data of pðrÞ for the

protein aggregates are displayed in Fig. 9(a), and the related

real-space correlation function �ðrÞ � pðrÞ=r2 is displayed in

Fig. 9(b). For our example, the curves look rather smooth, and

one could extract the related correlation length

�� 1 ¼ � ðd=drÞ ln½pðrÞ=r2�jr¼0 from it. In the logarithmic

representation the calibration of pðrÞ does not matter.

However, when applying this method to the complex of

cruciferin (trimers at the oil droplet interfaces of an emulsion)

(Holderer et al., 2025), we see that the low-r part diverges for

r! 0. A solid red line indicates the considered low-Q

extrapolation. The divergence is due to the high-Q cutoff in

the original scattering data (rcut � q� 1
cut). In our case, the

positive background level causes the upturn at low Q, while an

overestimated background subtraction would cause a down-

turn. The example shows that, if precise values for the

correlation length � are needed, the inverse Fourier transform

can provide the desired data.

For incoherent multiple scattering where the different

scattering events happen independently in the sample, the

criterion D�SANS > 1 must be fulfilled. This can be calculated

from an integration of the scattering pattern, i.e.

D�SANS ¼ D
2�

k2

Z1

0

d�SANS

d�
q dq> 1: ð41Þ

Here, we assume that the constant incoherent background was

subtracted from the SANS scattering pattern. When

comparing this with the criterion for coherent multiple scat-

tering, i.e. 2�j�j> 1, one observes the following: the case of

incoherent multiple scattering appears earlier and is much

more likely as long as the sample thickness D is larger than the

structural size (i.e. D=R or �D=� > 1). For SANS experiments

this is always reasonably fulfilled, and only for surface-

sensitive experiments might one observe coherent multiple

scattering first (Shen & Maradudin, 1980). We refer to the

magnitude �� 1
SANS as the mean free path length.

5. Conclusions

We distinguish between incoherent and coherent multiple

scattering based on either uncorrelated or interfering scat-

tering events in the sample. Usually, the incoherent multiple

scattering sets in first when the sample thickness is larger than

structural sizes of length � and the mean free path length

�� 1
SANS. Here, the structural information is superimposed

independently and this is not the focus of the current article.

This effect is not to be confused with the incoherent scattering

from hydrogen atoms which may or may not be a different

multiple scattering effect. The coherent multiple scattering has

a critical scattering vector qc ¼ 4��� � 10� 4 Å� 1 which is

connected to the contrast �� and the wavelength � of the

probe. Slight deviations of the order 2–3 of this estimation are

possible. Thus, coherent multiple scattering is an issue for

VSAS and USAS.

The change from incoherent to coherent multiple scattering

that we describe in this article is a transitional stage mostly

found for relatively weak contrasts and large structures. The

ultimate stage of multiple scattering is the quantum scattering

that is achieved for even larger � and then describes the

projected shadow of the structure. Thus our intermediate

research papers

12 of 18 Frielinghaus and Gommes � Coherent multiple scattering in SAS experiments J. Appl. Cryst. (2025). 58

Figure 9
(a) The SANS curve of a BSA aggregate with considerable trivalent Y
cations (200 mg ml� 1 BSA and 30 mmol l� 1 YCl3 at 35�C). The original
measurement (blue) with incoherent scattering removed is displayed as
black triangles and the corrected one as a red solid line. In the inset, the
corresponding real-space correlation functions pðrÞ are shown. The real-
space reconstructions are also added on the top right. (b) The logarithm
of the real-space correlation function � � pðrÞ=r2 for the BSA protein
aggregate before and after the correction (black and red lines, respec-
tively). Another example from a cruciferin complex (trimers at the oil
droplet interfaces of an emulsion) is also shown, where the low-Q upturn
is due to a high-Q cutoff of the scattering data. Here, the line indicates the
correct extrapolation to r! 0.



stage of surface scattering is an approximate description that

we shed light on using a more theoretical approach, but also

by discussing real SANS experiments where the mechanism

can be clearly demonstrated. Thus, a rigorous treatment of our

statements remains a topic for future work. As one can see in

Fig. 7 there is under- and overestimation of the perfect surface

scattering. This already demonstrates the transitional validity

of our approach. Practically, this means that observations at

much smaller q values may finally reveal the full quantum

scattering.

For our transition from incoherent to coherent multiple

scattering we further find that, as most structures of the large

sizes considered here are usually polydisperse, only power

laws without fringes will be observed in this range. We predict

that the typical slopes below qc indicate mass fractals with an

exponent � � 3. This is due to the surface scattering typical

for coherent multiple scattering in this region. Above qc the

fractal exponent transitions to 6 � �, which then is the Porod

scattering of the same structure. A simple formula for this

effect is given by a modified Beaucage expression [equation

(40)]. When new neutron instruments are developed for even

smaller q (Magerl et al., 2024), coherent multiple scattering is

even more important. Only for extremely large structural

sizes, i.e. � � 2�q� 1
min given by the smallest resolved scattering

vector, does coherent multiple scattering not develop and so

larger slopes � � 3 may be visible at the smallest q (Hentschel

et al., 1987) (or quantum scattering may be observed).

The recommended order of corrections to a USANS

(USAXS) experiment is (1) slit desmearing and (2)

desmearing of incoherent multiple scattering. After that, a

stitched scattering curve including classical SANS data with

many orders of length scales will display single scattering for

q> qc (�< 0:1) which can be interpreted as usual. At slightly

higher q< qc (0:1<�< 10), the coherent multiple scattering

with the characteristic surface scattering must be taken into

account. Here, the curves may be directly interpreted via

equation (40) (as we did for paper scattering) or may be

corrected by the ratio of equation (40) and an ideal Beaucage

fit, as we demonstrated for the protein aggregates. At much

smaller q� qc (�� 10), either quantum scattering may be

present (with the typical shading effect) or the loss of coher-

ence (� � 2�q� 1
min) may lead to classical Porod scattering. The

distinction in the latter case may be obsolete and is a topic for

future work.

APPENDIX A

Characteristic length n1

The dominant term in the definition of the characteristic

length �1 is the 1D integral of the correlation function,

assumed to be isotropic. This definition can be generalized to

non-isotropic structures as

�1 ¼

Z

d3r
�ðrÞ

4�jrj2
; ð42Þ

which is equivalent to evaluating the rotational average of

�ðrÞ, before evaluating the 1D integral.

To understand the geometrical significance of �1, note that

equation (42) is equivalent to the following three-step calcu-

lation. First, for any given point y in the colloid [IðyÞ is the

indicator function] and direction !̂, the following length is

defined:

lðy; !̂Þ ¼

Z1

0

dr Iðyþ r!̂Þ; ð43Þ

as illustrated by the individual radii in Fig. 4. The position-

dependent length LðyÞ is defined by averaging lðy; !̂Þ over all

directions, namely

LðyÞ ¼
1

4�

Z

d!̂ lðy; !̂Þ: ð44Þ

Finally, the characteristic length �1 is obtained as the average

of LðyÞ, that is

�1 ¼
1

v

Z

d3y IðyÞLðyÞ: ð45Þ

Practically, the integral only extends over the colloid volume

due to the product with IðyÞ. These equations result from

expressing the integral operation in equation (42) in spherical

coordinates, and using the general definition of the correlation

function in equation (18).

In the particular case of a spherical colloid with radius R

and centered on y ¼ 0, the length lðy; !̂Þ is

lðjyj; �Þ ¼ jyj2 cos2ð�Þ þ R2 � jyj2
� �1=2

� jyj cosð�Þ; ð46Þ

where � is the angle between !̂ and the direction from the

origin to y. Averaging over the unit sphere then provides the

relation

LðjyjÞ ¼
R

2
1þ

1 � ðjyj=RÞ
2

2jyj=R
ln

1þ jyj=R

1 � jyj=R

� �� �

; ð47Þ

which takes the value R in the center of the sphere jyj ¼ 0 and

R=2 on its surface jyj ¼ R. The average value, calculated as

�1 ¼
3

4�R3

ZR

0

djyj 4�jyj2LðjyjÞ; ð48Þ

then provides the value �1 ¼ 3R=4 and �1 ¼ ���1=k.

APPENDIX B

The indicator function of the surface

To evaluate the derivative of SqðrÞ with respect to r, in the limit

of r! 0, consider first the quantity

I rðyÞ ¼
1

4�

Z

d!̂ Iðyþ r!̂Þ ð49Þ

for values of r much smaller than any characteristic size of the

scattering material. This function replaces the indicator func-

tion IðyÞ by its average value calculated over a small sphere

with radius r centered on y. This operation leaves the indicator

function unchanged for all points at a distance larger than r

from any interface. For points closer than r from the interface,
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it replaces the sharp 0/1 transition by the following smooth

profile:

I rðzÞ ¼

1 for z< � r

ð1 � z=rÞ=2 for � r � z< r

0 for r< z

8
<

:
ð50Þ

where the distance z to the interface is counted negatively into

the colloid and positively into the solvent. On the basis of

equation (23), SqðrÞ is the scattering that would result from the

original sample, from which a measure r/4 (per unit area) is

subtracted all over its surface. The latter value is the integral

of 1 � I rðzÞ in the negative z.

APPENDIX C

The higher-order amplitudes

The higher-order amplitudes can be approximated in a similar

fashion as in equations (22)–(25). Thus, the general term is

approximated as

AnðqÞ ’ � ð��Þ
n 4�

2ik

� �n� 1Z1

0

dr1 . . .

Z1

0

drn� 1 1 � expð2ikr1Þ
� �

. . . 1 � expð2ikrn� 1Þ
� �

Sqðr1; . . . ; rn� 1Þ: ð51Þ

Here,

Sqðr1; r2; . . . rn� 1Þ ¼
Z

d3y expð� iq � yÞIðyÞIðyþ r1!̂1ÞIðyþ r1!̂1 þ r2!̂2Þ

. . . Iðyþ r1!̂1 þ r2!̂2 þ . . .þ rn� 1!̂n� 1Þ; ð52Þ

where the average over all the n � 1 orientations !̂ is implicit.

The approximation in equation (51) results from assuming

structural isotropy, so that each 3D integral over say rj is

replaced by a 1D integral over the modulus rj of the rota-

tionally averaged integrand. From the appearance of equation

(52) we can see that it scales with a typical length �n
1 , and

finally the amplitude [equation (51)] scales with �n
1 . So, the

amplitude decays fast for smaller j�1j and requires substantial

corrections for large j�1j.

C1. Zeroth-order term

To the zeroth order, the dominant term in equation (51) is

Að0Þn ðqÞ ¼ � ð��Þ
n 4�

2ik

� �n� 1Z1

0

dr1 . . .

Z1

0

drn� 1 Sqðr1; . . . ; rn� 1Þ:

ð53Þ

Calculating the integral of equation (52) over rn� 1 provides

Z1

0

drn� 1 Sqðr1; . . . ; rn� 1Þ ¼

Z

d3y expð� iq � yÞIðyÞIðyþ r1!̂1Þ

. . . Iðyþ r1!̂1 þ . . . rn� 2!̂n� 2Þ

� Lðyþ r1!̂1 þ . . . rn� 2!̂n� 2Þ

’ �1Sqðr1; . . . ; rn� 2Þ; ð54Þ

where LðyÞ is defined in equation (44), and the second equality

results from approximating LðxÞ in the integral by its average

value over all x in the colloid �1.

Repeating the same approximation on all successive inte-

grals yields

Að0Þn ðqÞ ¼ � ð��Þ
n 4��1

2ik

� �n� 1

vfbulkðqÞ: ð55Þ

C2. First-order correction

The first-order corrections are

Að1Þn ðqÞ ¼ þð��Þ
n 4�

2ik

� �n� 1Xn� 1

j¼1

F
ðjÞ
n� 1ðkÞ; ð56Þ

where

F
ðjÞ
n� 1ðkÞ ¼

Z1

0

dr1 . . .

Z1

0

drn� 1 expð2ikrjÞ

� Sqðr1; . . . ; rj� 1; rj; rjþ1; . . . ; rn� 1Þ ð57Þ

is the Fourier transform of Sqðr1; . . . ; rn� 1Þ over the jth vari-

able, integrated over all other variables. Integrating by parts

the Fourier integral on rj provides the following high-k

approximation:

F
ðjÞ
n� 1ðkÞ ’

� 1

2ik
Sqð. . . ; 0; . . .Þ þ

1

2ik

� �2

S0qð. . . ; 0; . . .Þ: ð58Þ

In this equation, all the unspecified variables ri for i 6¼ j are

integrated from zero to infinity, and S0q is the derivative of Sq

with respect to variable rj. At this stage, we need to evaluate

Sqð. . . ; rj; . . .Þ for infinitely small values of rj, so that we can

calculate Sqð. . . ; 0; . . .Þ and S0qð. . . ; 0; . . .Þ. All the dots are

integrals.

When evaluating Sqð. . . ; rj; . . .Þ, the integrals on the right

side of rj, i.e. all ri with i > j, can be approximated in the same

way as in equation (54). This leads to

Sqð. . . ; rj; . . .Þ ¼ �
n� 1� j
1 Sqð. . . ; rjÞ: ð59Þ

As a particular case

Sqðr1; . . .Þ ¼ �n� 2
1 Sqðr1Þ

¼ �n� 2
1 vfbulkðqÞ �

r1

4
afsurfðqÞ

h i
; ð60Þ

where the second equality results from equation (28).

To understand how the integrals on the left of rj have to be

handled, i.e. of ri with i < j, consider first

Z1

0

dr1 Sqðr1; r2Þ ¼

Z

d3y expð� iq � yÞIðyÞ

Z1

0

dr1 Iðyþ r1!̂1Þ

� I r2
ðyþ r1!̂1Þ; ð61Þ

where I r2
ðxÞ has the same meaning as in equation (49). Note

that we only need the behavior for small r2. In that limit, the

innermost integral is
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Z1

0

dr1 Iðyþ r1!̂1ÞI r2
ðyþ r1!̂1Þ ’ LðyÞ � gr2: ð62Þ

Note that the left-hand side is identical to the definition of

LðyÞ in equation (44), only with a smooth transition over a

thickness proportional to r2. This is equivalent to removing

some weight in the integral close to the interface. The constant

g can be calculated along the same lines as in equation (50)

and is approximately g � 1. Note, however, that in the case of

a non-convex particle, the line in direction !̂1 crosses the

interface several times. And each crossing contributes to g by

the same amount. We will come back to this later, and we write

now

Z1

0

dr1 Sqðr1; r2Þ ¼ ð�1 � gr2ÞvfbulkðqÞ: ð63Þ

To generalize this, consider

Sqð. . . ; rjÞ ¼

Z

d3y expð� iq � yÞIðyÞ

Z1

0

dr1 Iðyþ r1!̂1Þ

. . .

Z1

0

drj� 1 Iðyþ . . .þ rj� 1!̂j� 1ÞI rj
ðyþ . . .þ rj� 1!̂j� 1Þ; ð64Þ

where the innermost integral is

Lðyþ . . .þ rj� 2!̂j� 2Þ � grj: ð65Þ

When factoring it out of the integral, this yields a factor

ð�1 � grjÞ. All the other j � 2 integrals yield a factor �1. The

final result is

Sqð. . . ; rjÞ ¼ �
j� 2
1 ð�1 � grjÞvfbulkðqÞ: ð66Þ

Putting it all together, the result is

Sqð. . . ; rj; . . .Þ ¼ �n� 3
1 ð�1 � grjÞvfbulkðqÞ ð67Þ

for any j> 1. And for j = 1, the result is in equation (60).

The final result is

Að1Þn ðqÞ ¼ � ð��Þ
n 4��1

2ik

� �n� 1

�
n n � 1

2ik�1

vfbulkðqÞ þ
1

4�1

1

2ik

� �2

afsurfðqÞ

þ
gðn � 2Þ

�2
1

1

2ik

� �2

vfbulkðqÞ
o
: ð68Þ

C3. Second-order correction

To be consistent, if we want to keep the surface term in

Að1Þn ðqÞ, we need to keep all terms of order ð1=kÞnþ1 in AnðqÞ.

This demands that we also consider some of the contributions

to Að2Þn ðqÞ.

The second-order corrections are

Að2Þn ðqÞ ¼ � ð��Þ
n 4�

2ik

� �n� 1Xn� 1

i6¼j

�
ði;jÞ
n� 1ðkÞ; ð69Þ

where

�
ði;jÞ
n� 1ðkÞ ¼

Z1

0

dr1 . . .

Z1

0

drn� 1 expð2ikriÞ expð2ikrjÞ

� Sqðr1; . . . ; rn� 1Þ ð70Þ

is the Fourier transform of Sqðr1; . . . ; rn� 1Þ over the ith and jth

variables and integrated over all other variables.

We can deliberately ignore terms smaller than 1=k2, so we

need only consider

�
ði;jÞ
n� 1ðkÞ ’

1

2ik

� �2

Sqð. . . ; 0; . . . ; 0; . . .Þ

¼
1

2ik

� �2

�n� 3
1 vfbulkðqÞ ð71Þ

because the contributions proportional to the derivative of Sq

bring an additional factor 1/k,

Að2Þn ðqÞ ¼ � ð��Þ
n 4��1

2ik

� �n� 1
ðn � 1Þðn � 2Þ

2�2
1

�
1

2ik

� �2

vfbulkðqÞ: ð72Þ

C4. The sum of all amplitudes

We can now sum all higher-order amplitudes. However,

before that we introduce the abbreviations:

K ¼
2�

i

�1��

k
ð73Þ

and

Z ¼ 2ik�1: ð74Þ

We note that Z� 2=4 ¼ � around equation (36). Thus, the

higher-order amplitude AnðqÞ to the second order can be

abbreviated to

AnðqÞ ¼ � ð��Þ
n
Kn� 1

n
vfbulkðqÞ þ

n � 1

Z
vfbulkðqÞ

þ
1

4

1

Z

� �2

�1afsurfðqÞ þ gðn � 2Þ
1

Z

� �2

vfbulkðqÞ

þ
ðn � 1Þðn � 2Þ

2

1

Z

� �2

vfbulkðqÞ
o
: ð75Þ

Note that this is identical to equation (29) for n = 2. For the

geometric series with modifications, we can now conclude:

useful sums, for any K (in principle with jKj< 1)

X1

n¼2

Kn� 1 ¼
K

1 � K
ð76Þ

X1

n¼2

ðn � 1ÞKn� 1 ¼
K

ð1 � KÞ
2

ð77Þ
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X1

n¼2

ðn � 2ÞKn� 1 ¼
K2

ð1 � KÞ
2

ð78Þ

X1

n¼2

ðn � 1Þðn � 2ÞKn� 1 ¼
2K2

ð1 � KÞ
3

ð79Þ

The complete scattering amplitude, summing all the terms,

takes the form

AðqÞ ¼ � ��

(

vfbulk

1

1 � K
þ
�1

4Z2
afsurf

K

1 � K

þ
1

Z
vfbulk

K

ð1 � KÞ
2
þ

g

Z2
vfbulk

K2

ð1 � KÞ
2

þ
1

Z2
vfbulk

K2

ð1 � KÞ
3

)

: ð80Þ

Note that K is proportional to �1, and it is large when one

enters deeply in the quantum-mechanical regime. In the limit

of infinitely large K, the scattering amplitude is

AðqÞ ¼ �
��

Z2
gvfbulkðqÞ �

�1

4
afsurfðqÞ

� �

þOð1=KÞ: ð81Þ

In contrast, small K refers to small corrections of the simple

Born approximation. This means for K! 0 we are left with

only one term, namely the simple bulk scattering.

APPENDIX D

More details about the integral of T

The expression T results from the innermost integral of

equation (31) of the higher-order scattering amplitude AnðqÞ.

In this sense it is a rescaled indicator function IðxÞ or �I�ðxÞ

that then gives a typical size �. The first step is the partial

integration over the variable cos � in equation (33). One

defines the subterm S according to

S ¼

Z1

� 1

d cos � expð� ik�s cos �Þ �I�ðxþ �sÞ ð82Þ

¼ �
1

ik�s
expð� ik�sÞ �I�ðxþ �szÞ � expðik�sÞ �I�ðx � �szÞ
� �

ð83Þ

þ
1

ik�s

Z1

� 1

d cos � expð� ik�s cos �Þ
ds

d cos �
rs

�I�ðxþ �sÞ ð84Þ

¼
�ðsÞ

iks
ð� 2þ 1Þ

d

drz

�I�ðrÞ

� �

þ
random

phases

� �

: ð85Þ

The first line (83) refers to the integrated term and the second

line (84) includes the derivative of �I� which is expanded with

respect to the argument �s. In the last line (85), we distinguish

the cases for small s and finite s. In the first case, the differ-

ential quotient for the z component arises from (83): similarly

for (84), where only even terms in cos � occur. The sinðk�sÞ

term introduces higher orders of s and random phases that can

all be neglected. Finally, all terms for finite s produce random

phases that we can safely neglect (k� large) within the

approximation. This means practically that all resonances are

omitted.

APPENDIX E

Scattering functions of random media

For many random structures the scattering function developed

by Teubner & Strey (1987) applies quite well. Initially, this was

developed for microemulsions and the arguments are based

on a functional for the thermodynamic free energy. However,

it was found that the scattering functions also work quite well

for porous media (Dahl et al., 2024), possibly because in the

production of the material similar arguments hold. Finally,

spinodal decomposition at late stages (Cahn, 1965; Ban et al.,

2023; Skripov & Skripov, 1979) produces structures related to

a peak in the scattering function and a Porod behavior for

large q. The well known formula for the scattering profile

(Endo et al., 2001) is

d�

d�
ðqÞ ¼

8���2�Hð1 � �HÞ=�

ðk2
0 þ �

� 2Þ
2
� 2ðk2

0 � �
� 2Þq2 þ q4

: ð86Þ

Note that �H is connected to the fraction of hydrogenous

material for neutron scattering, i.e. usually to the fraction of

one bulk material (oil or water) plus the surfactant. The

scattering function is tightly connected to the real-space

correlation function �ðrÞ = expð� r=�Þ sinðk0rÞ=ðk0rÞ [this term

would replace the original spherical correlation function of a

spherical colloid in equation (18)]. The correlation length �

describes a finite correlation volume in the sample in which

the structure is related to itself. The modulus of the wave-

vector k0 ¼ 2�=d describes the preferred distance d of alter-

nating domains. Even for k0 ! 0 the whole formalism makes

sense and was developed by Debye and Büche (Koberstein &

Stein, 1980). For microemulsions, this formalism describes the

bulk scattering (i.e. the two domains oil and water carry the

major contrast). For a heuristic approach to the surface scat-

tering (or the film scattering in microemulsions), we want to

develop a relatively simple formula that involves only a

minimum set of additional parameters. Usually, the film

contrast is related to the square of the original real-space

correlation function (Stephenson, 1966; Roux et al., 1990;

Roux et al., 1992), i.e. �2ðrÞ � expð� 2r=�Þ½1 � cosð2k0rÞ�=

ðk0rÞ2. However, the origin of the bulk correlation function is

in the middle of a domain, while for the film contrast we need

to place the spatial origin onto the film, i.e. �2ðrÞ �

expð� 2r=�Þ sinð2k0rÞ=ðk0rÞ2. This correlation function now

describes a divergence for r! 0, but it causes a q� 2 asymp-

tote at large q, which is desired for a surface scattering func-

tion. The scattering function is now

d�

d�
ðqÞ ¼

���2�Hð1 � �HÞ�

k0q
ln
�� 2 þ ðk0 þ q=2Þ

2

�� 2 þ ðk0 � q=2Þ
2

� �

þ
Acompr

1þ q2�2=4
: ð87Þ
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Here, the respective composition of hydrogenous material is

called �H. The first term now describes the film scattering

(with a thickness � = 12 Å for the surfactant C10E4) which is

tightly connected to fluctuations of the oil and water domains.

The structural volume a� connected to this term arises from

the patch area a ¼ 2��2=ð1þ k2
0�

2Þ. The second term was

heuristically added (Nallet et al., 1990) because the surfactant

concentration may also fluctuate on large scales like a two-

component Ising critical fluid (without preferred structure)

but seems to be invisible under bulk contrast (however, it

might be connected to the extra surface of the bulk Porod

scattering at higher q resulting from short-wavelength fluc-

tuations). While Nallet connected this term to a Lorentz peak

centered at q = 0, Daicic et al. (1995) connected the amplitude

to the osmotic compressibility (Nallet et al., 1990), i.e. Acompr =

��2kBT�mem=ðd�=d�memÞ � �
� 1
mem to �mem. The first propor-

tionality holds for simple microemulsions with three

components only, and the latter one for polymer-filled

microemulsions, i.e. the system then becomes dominated by

entropic springs that keep the membranes apart from each

other (Endo et al., 2001). The energy density or pressure �

arises from the arrangement of the membranes with a volume

fraction �mem. Note that �mem � d� 1. This second term of

equation (87) of the osmotic compressibility is based on

thermodynamics and may be zero for static porous materials.

In the classical Debye–Büche approach, the two different

terms become indistinguishable anyway.

The strength of this heuristic approach for equation (87) lies

in the fact that the structural parameters � and d are shared

between bulk and film contrast and only one additional

amplitude Acompr is introduced. Finally, it also has a physical

meaning that is connected to the osmotic compressibility.

Now we discuss the quality of equation (87) in the context

of measurements (Endo et al., 2001). We multiplied this

expression by a factor expð� �2q2Þ to account for the film

roughness. As the structural parameters d and � are given by

the bulk measurements and one only needs to interpolate the

values as a function of the membrane volume fraction �, there

are only two amplitudes that we treat as free parameters:

A1 ¼ ���2�Hð1 � �HÞ� and Acompr. The results are displayed

in Fig. 10 and the parameters are given in Table 2. The

obtained values for A1 agree within �7% with the calculated

expectations, thus demonstrating the quality of the new

expression.

While in the beginning we focused on real microemulsions

which allow us to compare the derived functions with real

experiments, the focus now is on porous materials which could

have extended pore spaces of d � 0.1 to 10 mm. Thus, the

description becomes interesting for multiple scattering issues,

and so we derive the corresponding scattering functions that

were used in the main article [equation (38)] and may apply

for porous materials. For the bulk scattering we obtain

f 2
bulkðqÞ ¼

ðk2
0 þ �

� 2Þ
2

ðk2
0 þ �

� 2Þ
2
� 2ðk2

0 � �
� 2Þq2 þ q4

: ð88Þ

The corresponding volume is v ¼ 8��3ð1þ k2
0�

2Þ� 2. For the

surface scattering we obtain

f 2
surfðqÞ ¼

k2
0 þ �

� 2

2k0q
ln
�� 2 þ ðk0 þ q=2Þ

2

�� 2 þ ðk0 � q=2Þ
2

� �

: ð89Þ

As mentioned above, the corresponding area is

a ¼ 2��2=ð1þ k2
0�

2Þ. The classical Debye–Büche (Koberstein

& Stein, 1980) correlation function is obtained in the limit of

k0 ! 0. The corresponding correlation function is a single

exponential according to �ðrÞ ¼ expð� r=�Þ. The simpler bulk

scattering is now

f 2
bulkðqÞ ¼

1

ð1þ q2�2Þ
2
: ð90Þ

Here, the volume v ¼ 8��3 applies. For the surface scattering

we arrive at the following:

f 2
surfðqÞ ¼

1

1þ q2�2=4
: ð91Þ

The corresponding area is a ¼ 2��2. With these formulae we

have another set of expressions that would allow the modeling

of porous media including coherent multiple scattering.
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Figure 10
The film contrast measurements from Endo et al. (2001) (shifted by a
factor of 0.3 each) described by equation (87) (red lines) with inter-
polated parameters d and � from the bulk measurements and only two
free parameters A1 and Acompr.

Table 2
The parameters used to describe the film scattering of microemulsions
(Endo et al., 2001).

The parameters d and � were obtained by interpolation of the bulk scattering
model fitting. The only free parameters were the amplitudes A1 and Acompr.

Sample d (Å) � (Å)
A1 � 103

(cm� 1 Å � 2)
Acompr

(cm� 1) � (Å)

20 325 170 1.77 23.1 3.3
21 451 243 1.39 28.2 3.3

23 746 414 1.07 12.8 3.3
24 912 510 0.89 � 0.02 27.9 � 1.0 3.3
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