001046018 001__ 1046018
001046018 005__ 20250909202257.0
001046018 0247_ $$2doi$$a10.1109/PVSC59419.2025.11132595
001046018 037__ $$aFZJ-2025-03658
001046018 1001_ $$0P:(DE-HGF)0$$aBuerhop, Claudia$$b0$$eCorresponding author
001046018 1112_ $$a2025 IEEE 53rd Photovoltaic Specialists Conference (PVSC)$$cMontreal$$d2025-06-08 - 2025-06-13$$wCanada
001046018 245__ $$aCombined Non-Destructive Techniques for On-Site Failure Analysis -Showcase of Glass Cracks with Burn Marks in a PV Power Station
001046018 260__ $$bIEEE$$c2025
001046018 300__ $$a-
001046018 3367_ $$2ORCID$$aCONFERENCE_PAPER
001046018 3367_ $$033$$2EndNote$$aConference Paper
001046018 3367_ $$2BibTeX$$aINPROCEEDINGS
001046018 3367_ $$2DRIVER$$aconferenceObject
001046018 3367_ $$2DataCite$$aOutput Types/Conference Paper
001046018 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1757399451_25945
001046018 520__ $$aReliability of PV modules is important for power production and to maximize energy yield. Module faults represent a potential risk of yield loss when their causes and implications are unclear. We present a strategy to efficiently perform failure analysis in solar power parks with simple methods using the example of double glass modules with glass cracks and burn marks in a single-axis tracking multi-MWp PV power plant. In a sample of 984 modules, 8.5% exhibited glass cracks, with 86% of these located directly next to the tracker elements, as detected by visual inspection. Some 34% of the 180 modules next to the tracker had glass cracks and 47% of these also had burn marks. IR and UVF imaging showed anomalies for all modules with glass cracks and for another 15% that had no glass cracks. The targeted use of electroluminescence and for the first time in superposition with UVF imaging highlights deactivated cell areas with local hotspots. Our hypothesis is that due to short cables mechanical stresses are transferred to the junction box and weaken the solder joints to such an extent that temperature increases with glass cracks and burn marks are the result. Through the consistent use of simple methods of an extensive sample and the targeted use of more complex methods, the vulnerable positions of the modules next to the tracker could be identified; we estimate that approx. 33-46% of the modules next to the tracker in this power plant could have been affected.
001046018 536__ $$0G:(DE-HGF)POF4-1212$$a1212 - Materials and Interfaces (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001046018 588__ $$aDataset connected to CrossRef Conference
001046018 7001_ $$aDe Oliveira, Aline Kirsten Vidal$$b1
001046018 7001_ $$0P:(DE-HGF)0$$aMashkov, Oleskandr$$b2
001046018 7001_ $$aNascimento, Lucas$$b3
001046018 7001_ $$aBraga, Marília$$b4
001046018 7001_ $$aRüther, Ricardo$$b5
001046018 7001_ $$0P:(DE-Juel1)179536$$aPeters, Ian Marius$$b6$$ufzj
001046018 773__ $$a10.1109/PVSC59419.2025.11132595
001046018 8564_ $$uhttps://ieeexplore.ieee.org/document/11132595/authors#authors
001046018 909CO $$ooai:juser.fz-juelich.de:1046018$$pVDB
001046018 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
001046018 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b2$$kFZJ
001046018 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179536$$aForschungszentrum Jülich$$b6$$kFZJ
001046018 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001046018 9141_ $$y2025
001046018 920__ $$lyes
001046018 9201_ $$0I:(DE-Juel1)IET-2-20140314$$kIET-2$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
001046018 980__ $$acontrib
001046018 980__ $$aVDB
001046018 980__ $$aI:(DE-Juel1)IET-2-20140314
001046018 980__ $$aUNRESTRICTED