001     1046019
005     20251027132710.0
024 7 _ |a 10.1021/jacs.5c10340
|2 doi
024 7 _ |a 0002-7863
|2 ISSN
024 7 _ |a 1520-5126
|2 ISSN
024 7 _ |a 1943-2984
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-03659
|2 datacite_doi
024 7 _ |a 40839343
|2 pmid
024 7 _ |a WOS:001555400300001
|2 WOS
037 _ _ |a FZJ-2025-03659
082 _ _ |a 540
100 1 _ |a Wu, Jianchang
|0 P:(DE-Juel1)192542
|b 0
|e Corresponding author
245 _ _ |a Diastereomeric Fullerene Composite Engineering for Enhanced Perovskite Solar Cells
260 _ _ |a Washington, DC
|c 2025
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1761305576_21804
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Achieving high performance and long-term stability in perovskite solar cells (PSCs) typically requires the use of surface passivation layers to suppress the interfacial defects. However, these additional passivation agents often introduce chemical and structural instabilities, limiting the device lifetime. Here, we present a molecular engineering strategy utilizing a chiral series of C60-Furan-Sugar (CFS) fullerene derivatives blended with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) to modify the electron transport layer (ETL). The incorporation of CFSs significantly enhances the electron mobility and dielectric constant of the ETL, while their intrinsic passivation functionality effectively passivates perovskite surface defects. As a result, PSCs employing PCBM:CFS-RS blends achieve a power conversion efficiency (PCE) of 25.81% without the use of additional passivation layers and retain 95% of their initial performance after 1000 h of aging. Notably, CFS-RS is a chiral molecule bearing a side chain with R/S configurational isomers, which facilitates interfacial compatibility and contributes to the enhanced device performance. This work demonstrates that tuning the orientation of polar substituents in fullerene side chains can effectively influence the optoelectronic properties of the blended films, thereby simultaneously enhancing both efficiency and stability in PSCs.
536 _ _ |a 1213 - Cell Design and Development (POF4-121)
|0 G:(DE-HGF)POF4-1213
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zhang, Jiyun
|0 P:(DE-Juel1)194716
|b 1
700 1 _ |a Wang, Luyao
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Jakšić, Jovana
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Barabash, Anastasia
|0 P:(DE-Juel1)210193
|b 4
700 1 _ |a Veljković, Dušan
|0 0000-0002-1382-8785
|b 5
700 1 _ |a Bornschlegl, Andreas J.
|0 0000-0001-9992-5449
|b 6
700 1 _ |a Jovanov, Vladislav
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Lahn, Leopold
|0 P:(DE-Juel1)191082
|b 8
|u fzj
700 1 _ |a Kasian, Olga
|0 P:(DE-Juel1)191088
|b 9
|u fzj
700 1 _ |a Pérez-Ojeda, M. Eugenia
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Götz, Klaus
|0 0000-0003-2019-2137
|b 11
700 1 _ |a Unruh, Tobias
|0 0000-0002-8903-4850
|b 12
700 1 _ |a Li, Chaohui
|0 0000-0002-8399-4244
|b 13
700 1 _ |a Peng, Zijian
|0 0000-0003-3678-6538
|b 14
700 1 _ |a Wang, Yunuo
|0 P:(DE-Juel1)208897
|b 15
700 1 _ |a Hauch, Jens
|0 P:(DE-Juel1)177626
|b 16
700 1 _ |a Deng, Lin-Long
|0 0000-0002-8588-1825
|b 17
700 1 _ |a Maslak, Veselin
|b 18
700 1 _ |a Mitrović, Aleksandra
|0 P:(DE-HGF)0
|b 19
|e Corresponding author
700 1 _ |a Li, Gang
|0 0000-0001-8399-7771
|b 20
|e Corresponding author
700 1 _ |a Brabec, Christoph
|0 P:(DE-Juel1)176427
|b 21
|e Corresponding author
773 _ _ |a 10.1021/jacs.5c10340
|g Vol. 147, no. 35, p. 32045 - 32053
|0 PERI:(DE-600)1472210-0
|n 35
|p 32045 - 32053
|t Journal of the American Chemical Society
|v 147
|y 2025
|x 0002-7863
856 4 _ |u https://juser.fz-juelich.de/record/1046019/files/Diastereomeric%20Fullerene%20Composite%20Engineering%20for%20Enhanced%20Perovskite%20Solar%20Cells.pdf
|y Published on 2025-08-21. Available in OpenAccess from 2026-08-21.
909 C O |o oai:juser.fz-juelich.de:1046019
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)192542
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)194716
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)210193
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)191082
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)191088
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)208897
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)177626
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 21
|6 P:(DE-Juel1)176427
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1213
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-13
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b J AM CHEM SOC : 2022
|d 2024-12-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CHEM SOC : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2024-12-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-13
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-13
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-2-20140314
|k IET-2
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IET-2-20140314
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21