001046021 001__ 1046021
001046021 005__ 20251103202054.0
001046021 0247_ $$2doi$$a10.1002/solr.202500323
001046021 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03661
001046021 037__ $$aFZJ-2025-03661
001046021 082__ $$a600
001046021 1001_ $$0P:(DE-Juel1)191369$$aMashkov, Oleksandr$$b0$$eCorresponding author
001046021 245__ $$aHigh‐Throughput PV Module Diagnostics using a Compact NIR Spectrometer
001046021 260__ $$aWeinheim$$bWiley-VCH$$c2025
001046021 3367_ $$2DRIVER$$aarticle
001046021 3367_ $$2DataCite$$aOutput Types/Journal article
001046021 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1762164568_6331
001046021 3367_ $$2BibTeX$$aARTICLE
001046021 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001046021 3367_ $$00$$2EndNote$$aJournal Article
001046021 520__ $$aThe degradation of backsheets and encapsulants in photovoltaic (PV) modules compromises their long-term performance and reliability. This study investigates the use of a compact near-infrared (NIR) spectrometer for high-throughput field diagnostics of PV materials. Operating in the 1550–1950 nm spectral range, the spectrometer detects key molecular absorption bands to characterize polymer compositions. Principal component analysis (PCA) applied to the spectral data significantly improved material differentiation compared to raw data, achieving classification reliability exceeding 95%. Field deployment at a 10 mw PV installation demonstrated the method's scalability, with 981 modules analyzed at a rate of one module every 3 s. Spatial mapping revealed that all analyzed backsheets featured polyethylene terephthalate (PET) cores, with approximately 65% incorporating fluoropolymer- and 35% PET-based outer layers. These findings demonstrate the scalability and efficiency of a portable NIR spectrometer for rapid, nondestructive diagnostics of PV modules. The ability to directly identify polymer compositions during high-throughput field measurements enables applications in predictive maintenance, reliability assessment, bill-of-materials verification, and efficient sorting and recycling of end-of-life modules.
001046021 536__ $$0G:(DE-HGF)POF4-1214$$a1214 - Modules, stability, performance and specific applications (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001046021 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001046021 7001_ $$0P:(DE-Juel1)206902$$aLeihkamm, Lewin$$b1
001046021 7001_ $$0P:(DE-Juel1)178670$$aStroyuk, Oleksandr$$b2
001046021 7001_ $$0P:(DE-HGF)0$$aBuerhop, Claudia$$b3
001046021 7001_ $$0P:(DE-Juel1)180637$$aWinkler, Thilo$$b4
001046021 7001_ $$0P:(DE-Juel1)202073$$aGhaffari, Ones$$b5
001046021 7001_ $$0P:(DE-Juel1)200348$$aVorstoffel, Stefanie$$b6
001046021 7001_ $$0P:(DE-Juel1)194185$$aWittmann, Ernst$$b7
001046021 7001_ $$0P:(DE-Juel1)177626$$aHauch, Jens$$b8
001046021 7001_ $$0P:(DE-Juel1)179536$$aPeters, Ian Marius$$b9
001046021 773__ $$0PERI:(DE-600)2882014-9$$a10.1002/solr.202500323$$gp. 202500323$$n18$$p202500323$$tSolar RRL$$v9$$x2367-198X$$y2025
001046021 8564_ $$uhttps://juser.fz-juelich.de/record/1046021/files/Solar%20RRL%20-%202025%20-%20Mashkov%20-%20High%E2%80%90Throughput%20PV%20Module%20Diagnostics%20using%20a%20Compact%20NIR%20Spectrometer.pdf$$yOpenAccess
001046021 909CO $$ooai:juser.fz-juelich.de:1046021$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001046021 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191369$$aForschungszentrum Jülich$$b0$$kFZJ
001046021 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)206902$$aForschungszentrum Jülich$$b1$$kFZJ
001046021 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178670$$aForschungszentrum Jülich$$b2$$kFZJ
001046021 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
001046021 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180637$$aForschungszentrum Jülich$$b4$$kFZJ
001046021 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194185$$aForschungszentrum Jülich$$b7$$kFZJ
001046021 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177626$$aForschungszentrum Jülich$$b8$$kFZJ
001046021 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179536$$aForschungszentrum Jülich$$b9$$kFZJ
001046021 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1214$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001046021 9141_ $$y2025
001046021 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
001046021 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-09
001046021 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-09
001046021 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001046021 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOL RRL : 2022$$d2024-12-09
001046021 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSOL RRL : 2022$$d2024-12-09
001046021 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-09$$wger
001046021 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-09
001046021 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
001046021 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001046021 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-09
001046021 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
001046021 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
001046021 920__ $$lyes
001046021 9201_ $$0I:(DE-Juel1)IET-2-20140314$$kIET-2$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
001046021 980__ $$ajournal
001046021 980__ $$aVDB
001046021 980__ $$aUNRESTRICTED
001046021 980__ $$aI:(DE-Juel1)IET-2-20140314
001046021 9801_ $$aFullTexts