001     1046021
005     20251103202054.0
024 7 _ |a 10.1002/solr.202500323
|2 doi
024 7 _ |a 10.34734/FZJ-2025-03661
|2 datacite_doi
037 _ _ |a FZJ-2025-03661
082 _ _ |a 600
100 1 _ |a Mashkov, Oleksandr
|0 P:(DE-Juel1)191369
|b 0
|e Corresponding author
245 _ _ |a High‐Throughput PV Module Diagnostics using a Compact NIR Spectrometer
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1762164568_6331
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The degradation of backsheets and encapsulants in photovoltaic (PV) modules compromises their long-term performance and reliability. This study investigates the use of a compact near-infrared (NIR) spectrometer for high-throughput field diagnostics of PV materials. Operating in the 1550–1950 nm spectral range, the spectrometer detects key molecular absorption bands to characterize polymer compositions. Principal component analysis (PCA) applied to the spectral data significantly improved material differentiation compared to raw data, achieving classification reliability exceeding 95%. Field deployment at a 10 mw PV installation demonstrated the method's scalability, with 981 modules analyzed at a rate of one module every 3 s. Spatial mapping revealed that all analyzed backsheets featured polyethylene terephthalate (PET) cores, with approximately 65% incorporating fluoropolymer- and 35% PET-based outer layers. These findings demonstrate the scalability and efficiency of a portable NIR spectrometer for rapid, nondestructive diagnostics of PV modules. The ability to directly identify polymer compositions during high-throughput field measurements enables applications in predictive maintenance, reliability assessment, bill-of-materials verification, and efficient sorting and recycling of end-of-life modules.
536 _ _ |a 1214 - Modules, stability, performance and specific applications (POF4-121)
|0 G:(DE-HGF)POF4-1214
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Leihkamm, Lewin
|0 P:(DE-Juel1)206902
|b 1
700 1 _ |a Stroyuk, Oleksandr
|0 P:(DE-Juel1)178670
|b 2
700 1 _ |a Buerhop, Claudia
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Winkler, Thilo
|0 P:(DE-Juel1)180637
|b 4
700 1 _ |a Ghaffari, Ones
|0 P:(DE-Juel1)202073
|b 5
700 1 _ |a Vorstoffel, Stefanie
|0 P:(DE-Juel1)200348
|b 6
700 1 _ |a Wittmann, Ernst
|0 P:(DE-Juel1)194185
|b 7
700 1 _ |a Hauch, Jens
|0 P:(DE-Juel1)177626
|b 8
700 1 _ |a Peters, Ian Marius
|0 P:(DE-Juel1)179536
|b 9
773 _ _ |a 10.1002/solr.202500323
|g p. 202500323
|0 PERI:(DE-600)2882014-9
|n 18
|p 202500323
|t Solar RRL
|v 9
|y 2025
|x 2367-198X
856 4 _ |u https://juser.fz-juelich.de/record/1046021/files/Solar%20RRL%20-%202025%20-%20Mashkov%20-%20High%E2%80%90Throughput%20PV%20Module%20Diagnostics%20using%20a%20Compact%20NIR%20Spectrometer.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1046021
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)191369
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)206902
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)178670
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)180637
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)194185
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)177626
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)179536
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1214
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-09
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOL RRL : 2022
|d 2024-12-09
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SOL RRL : 2022
|d 2024-12-09
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-09
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-09
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-2-20140314
|k IET-2
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IET-2-20140314
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21