001046022 001__ 1046022
001046022 005__ 20250908134749.0
001046022 0247_ $$2doi$$a10.1002/solr.202500499
001046022 037__ $$aFZJ-2025-03662
001046022 082__ $$a600
001046022 1001_ $$0P:(DE-Juel1)191369$$aMashkov, Oleksandr$$b0$$eCorresponding author
001046022 245__ $$aNondestructive Detection of Water Ingress in Solar Modules Using Near‐Infrared Absorbance Spectroscopy
001046022 260__ $$aWeinheim$$bWiley-VCH$$c2025
001046022 3367_ $$2DRIVER$$aarticle
001046022 3367_ $$2DataCite$$aOutput Types/Journal article
001046022 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1757331672_28227
001046022 3367_ $$2BibTeX$$aARTICLE
001046022 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001046022 3367_ $$00$$2EndNote$$aJournal Article
001046022 520__ $$aMoisture ingress is a key factor in the degradation of photovoltaic module components. This study employs near-infrared absorption spectroscopy to nondestructively quantify water uptake in backsheets and encapsulants, using a water index derived from the 1910-1920 nm absorption band. Measurements covered short-term dynamics during rainfall, long-term outdoor monitoring, and spatial mapping. Short-term monitoring showed a 14% increase in the water index within 20 min of observations. Five months of rooftop measurements revealed strong sensitivity to humidity and temperature: the index rose by 75% as relative humidity increased from 20% to 50%, and fell by 50% as temperature rose from 0°C to 40°C. Comparative field campaigns in 2021 and 2023 showed material-specific trends: under identical conditions, polyamide and fluoropolymer-coated backsheets exhibited average water index increases of 32%, while polyvinylidene fluoride showed only a 17% increase. Changes in distribution shape indicated differing moisture resistance among materials. Gravimetric analysis confirmed material-dependent water retention. Spatial mapping and immersion tests revealed localized moisture accumulation and saturation-type sorption, with uptake rates—derived via kinetic fitting—ca. 27% higher in field-aged modules than in stored ones. These results establish near-infrared spectroscopy as a scalable and noninvasive tool for detecting moisture-related degradation in photovoltaic modules.
001046022 536__ $$0G:(DE-HGF)POF4-1214$$a1214 - Modules, stability, performance and specific applications (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001046022 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001046022 7001_ $$0P:(DE-Juel1)178670$$aStroyuk, Oleksandr$$b1
001046022 7001_ $$0P:(DE-Juel1)176906$$aBuerhop, Claudia$$b2
001046022 7001_ $$aBind, Sanna$$b3
001046022 7001_ $$aClark, Dylan$$b4
001046022 7001_ $$0P:(DE-Juel1)177626$$aHauch, Jens$$b5
001046022 7001_ $$0P:(DE-Juel1)179536$$aPeters, Ian Marius$$b6$$ufzj
001046022 773__ $$0PERI:(DE-600)2882014-9$$a10.1002/solr.202500499$$gp. 202500499$$p202500499$$tSolar RRL$$v $$x2367-198X$$y2025
001046022 8564_ $$uhttps://onlinelibrary.wiley.com/doi/10.1002/solr.202500499
001046022 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191369$$aForschungszentrum Jülich$$b0$$kFZJ
001046022 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178670$$aForschungszentrum Jülich$$b1$$kFZJ
001046022 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176906$$aForschungszentrum Jülich$$b2$$kFZJ
001046022 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177626$$aForschungszentrum Jülich$$b5$$kFZJ
001046022 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179536$$aForschungszentrum Jülich$$b6$$kFZJ
001046022 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1214$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001046022 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-09$$wger
001046022 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOL RRL : 2022$$d2024-12-09
001046022 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
001046022 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
001046022 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
001046022 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-09
001046022 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-09
001046022 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-09
001046022 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-09
001046022 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
001046022 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSOL RRL : 2022$$d2024-12-09
001046022 920__ $$lyes
001046022 9201_ $$0I:(DE-Juel1)IET-2-20140314$$kIET-2$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
001046022 980__ $$ajournal
001046022 980__ $$aEDITORS
001046022 980__ $$aVDBINPRINT
001046022 980__ $$aI:(DE-Juel1)IET-2-20140314
001046022 980__ $$aUNRESTRICTED