001046024 001__ 1046024
001046024 005__ 20250930132714.0
001046024 0247_ $$2doi$$a10.1002/solr.202500156
001046024 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03664
001046024 0247_ $$2WOS$$aWOS:001543554400001
001046024 037__ $$aFZJ-2025-03664
001046024 082__ $$a600
001046024 1001_ $$0P:(DE-Juel1)196016$$aWortmann, Jonas$$b0$$eCorresponding author
001046024 245__ $$aImproved ZnO Post‐Treatment for High Performance Organic Solar Cell Materials
001046024 260__ $$aWeinheim$$bWiley-VCH$$c2025
001046024 3367_ $$2DRIVER$$aarticle
001046024 3367_ $$2DataCite$$aOutput Types/Journal article
001046024 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1757403630_25030
001046024 3367_ $$2BibTeX$$aARTICLE
001046024 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001046024 3367_ $$00$$2EndNote$$aJournal Article
001046024 520__ $$aZinc oxide (ZnO) is a widely used electron transport layer for organic solar cells which has been optimized and established for the first generation of organic photovoltaic (OPV) materials. With the emergence of novel OPV materials which can reach up to 20% efficiency, several limitations of ZnO have become apparent. In particular, interactions of the active layer with ZnO under illumination can severely limit the device efficiency and stability. In this study, we investigate how various treatment options of ZnO like thermal annealing, ultraviolet exposure, as well as vacuum treatment can improve ZnO properties. Calcium tests show the release of reactive components form ZnO, and space charge limited current measurements allow to model energy level alignment using drift diffusion simulations. Crucially, permanent Jsc losses related to insufficient treatment of ZnO are observed for high performing material systems. An additional UV treatment step under vacuum is shown to significantly reduce those Jsc losses and allows using ZnO annealing temperatures of only 80°C.
001046024 536__ $$0G:(DE-HGF)POF4-1213$$a1213 - Cell Design and Development (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001046024 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001046024 7001_ $$aDu, Xiaoyan$$b1
001046024 7001_ $$aWagner, Jerrit$$b2
001046024 7001_ $$00000-0002-2259-6736$$aWeitz, Paul$$b3
001046024 7001_ $$aArnold, Simon$$b4
001046024 7001_ $$0P:(DE-Juel1)201377$$aLiu, Chao$$b5
001046024 7001_ $$aLe Corre, Vincent M.$$b6
001046024 7001_ $$0P:(DE-HGF)0$$aBarabash, Anastasiia$$b7
001046024 7001_ $$0P:(DE-Juel1)177626$$aHauch, Jens$$b8
001046024 7001_ $$0P:(DE-Juel1)180635$$aHeumüller, Thomas$$b9$$eCorresponding author
001046024 7001_ $$0P:(DE-Juel1)176427$$aBrabec, Christoph$$b10$$eCorresponding author
001046024 773__ $$0PERI:(DE-600)2882014-9$$a10.1002/solr.202500156$$gVol. 9, no. 16, p. 2500156$$n16$$p2500156$$tSolar RRL$$v9$$x2367-198X$$y2025
001046024 8564_ $$uhttps://juser.fz-juelich.de/record/1046024/files/Solar%20RRL%20-%202025%20-%20Wortmann%20-%20Improved%20ZnO%20Post%E2%80%90Treatment%20for%20High%20Performance%20Organic%20Solar%20Cell%20Materials.pdf$$yOpenAccess
001046024 909CO $$ooai:juser.fz-juelich.de:1046024$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001046024 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196016$$aForschungszentrum Jülich$$b0$$kFZJ
001046024 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201377$$aForschungszentrum Jülich$$b5$$kFZJ
001046024 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b7$$kFZJ
001046024 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177626$$aForschungszentrum Jülich$$b8$$kFZJ
001046024 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180635$$aForschungszentrum Jülich$$b9$$kFZJ
001046024 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176427$$aForschungszentrum Jülich$$b10$$kFZJ
001046024 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001046024 9141_ $$y2025
001046024 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
001046024 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-09
001046024 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-09
001046024 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001046024 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOL RRL : 2022$$d2024-12-09
001046024 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSOL RRL : 2022$$d2024-12-09
001046024 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-09$$wger
001046024 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-09
001046024 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
001046024 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001046024 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-09
001046024 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
001046024 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
001046024 920__ $$lyes
001046024 9201_ $$0I:(DE-Juel1)IET-2-20140314$$kIET-2$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
001046024 980__ $$ajournal
001046024 980__ $$aVDB
001046024 980__ $$aUNRESTRICTED
001046024 980__ $$aI:(DE-Juel1)IET-2-20140314
001046024 9801_ $$aFullTexts