001     1046024
005     20250930132714.0
024 7 _ |a 10.1002/solr.202500156
|2 doi
024 7 _ |a 10.34734/FZJ-2025-03664
|2 datacite_doi
024 7 _ |a WOS:001543554400001
|2 WOS
037 _ _ |a FZJ-2025-03664
082 _ _ |a 600
100 1 _ |a Wortmann, Jonas
|0 P:(DE-Juel1)196016
|b 0
|e Corresponding author
245 _ _ |a Improved ZnO Post‐Treatment for High Performance Organic Solar Cell Materials
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1757403630_25030
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Zinc oxide (ZnO) is a widely used electron transport layer for organic solar cells which has been optimized and established for the first generation of organic photovoltaic (OPV) materials. With the emergence of novel OPV materials which can reach up to 20% efficiency, several limitations of ZnO have become apparent. In particular, interactions of the active layer with ZnO under illumination can severely limit the device efficiency and stability. In this study, we investigate how various treatment options of ZnO like thermal annealing, ultraviolet exposure, as well as vacuum treatment can improve ZnO properties. Calcium tests show the release of reactive components form ZnO, and space charge limited current measurements allow to model energy level alignment using drift diffusion simulations. Crucially, permanent Jsc losses related to insufficient treatment of ZnO are observed for high performing material systems. An additional UV treatment step under vacuum is shown to significantly reduce those Jsc losses and allows using ZnO annealing temperatures of only 80°C.
536 _ _ |a 1213 - Cell Design and Development (POF4-121)
|0 G:(DE-HGF)POF4-1213
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Du, Xiaoyan
|b 1
700 1 _ |a Wagner, Jerrit
|b 2
700 1 _ |a Weitz, Paul
|0 0000-0002-2259-6736
|b 3
700 1 _ |a Arnold, Simon
|b 4
700 1 _ |a Liu, Chao
|0 P:(DE-Juel1)201377
|b 5
700 1 _ |a Le Corre, Vincent M.
|b 6
700 1 _ |a Barabash, Anastasiia
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Hauch, Jens
|0 P:(DE-Juel1)177626
|b 8
700 1 _ |a Heumüller, Thomas
|0 P:(DE-Juel1)180635
|b 9
|e Corresponding author
700 1 _ |a Brabec, Christoph
|0 P:(DE-Juel1)176427
|b 10
|e Corresponding author
773 _ _ |a 10.1002/solr.202500156
|g Vol. 9, no. 16, p. 2500156
|0 PERI:(DE-600)2882014-9
|n 16
|p 2500156
|t Solar RRL
|v 9
|y 2025
|x 2367-198X
856 4 _ |u https://juser.fz-juelich.de/record/1046024/files/Solar%20RRL%20-%202025%20-%20Wortmann%20-%20Improved%20ZnO%20Post%E2%80%90Treatment%20for%20High%20Performance%20Organic%20Solar%20Cell%20Materials.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1046024
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)196016
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)201377
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)177626
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)180635
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)176427
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1213
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-09
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOL RRL : 2022
|d 2024-12-09
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SOL RRL : 2022
|d 2024-12-09
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-09
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-09
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-2-20140314
|k IET-2
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IET-2-20140314
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21