| Home > Publications database > Assessment of 18F-FET PET-based response in patients with gliomas using the PET RANO 1.0 criteria > print |
| 001 | 1046027 | ||
| 005 | 20260122203303.0 | ||
| 024 | 7 | _ | |a 10.1093/noajnl/vdaf198 |2 doi |
| 024 | 7 | _ | |a 10.34734/FZJ-2025-03667 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2025-03667 |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Galldiks, Norbert |0 P:(DE-Juel1)143792 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Assessment of 18F-FET PET-based response in patients with gliomas using the PET RANO 1.0 criteria |
| 260 | _ | _ | |a Oxford |c 2025 |b Oxford University Press |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1769082805_22749 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a BackgroundWe evaluated the amino acid PET-based response assessment criteria (PET RANO 1.0) for their proficiency in predicting longer survival in patients with gliomas undergoing adjuvant temozolomide chemotherapy.MethodsIn a previous study, 38 patients with newly diagnosed grade 4 gliomas according to the World Health Organisation classification underwent O-(2-[18F]fluoroethyl)-L-tyrosine (18F-FET) PET at baseline and after the second cycle of adjuvant temozolomide chemotherapy. The ability of PET parameter changes to predict favorable progression-free and overall survival (PFS, OS) of ≥ 9 and ≥15 months was evaluated. Here, we performed a post-hoc analysis of these PET data to evaluate the PET RANO 1.0 criteria. In addition, the value of the RANO 2.0 criteria for MRI to predict response was evaluated and compared with the PET RANO 1.0 criteria.ResultsAccording to the PET RANO 1.0 criteria, patients with Stable Disease (n = 16), Partial Response (n = 9), or Complete Response (n = 0) had a significantly longer OS than patients with Progressive Disease (n = 13) (16.8 vs. 12.0 months; P = 0.016). This difference remained significant in the multivariate survival analysis (HR, 4.185; 95% CI, 1.715-10.530, P = 0.002). In contrast, PFS was not significantly different between the two groups (9.7 vs. 8.1 months; P = 0.147). PET RANO 1.0 criteria could not identify patients with a PFS ≥ 9 months (P = 0.503) or OS ≥ 15 months (P = 0.722). RANO 2.0 criteria for MRI was unable to predict a longer PFS (8.8 vs. 9.8 months; P = 0.565) or OS (16.4 vs. 16.8 months; P = 0.625).ConclusionsOur data suggest that PET RANO 1.0 criteria identify survival differences between predefined groups. |
| 536 | _ | _ | |a 5252 - Brain Dysfunction and Plasticity (POF4-525) |0 G:(DE-HGF)POF4-5252 |c POF4-525 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to DataCite |
| 700 | 1 | _ | |a Ceccon, Garry |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Wollring, Michael Matthias |0 P:(DE-Juel1)190394 |b 2 |
| 700 | 1 | _ | |a Stetter, Isabelle |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Werner, Jan-Michael |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Peplinski, Jana-Marie |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Rosen, Jurij |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Rosen, Elena K. |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Fink, Gereon Rudolf |0 P:(DE-Juel1)131720 |b 8 |u fzj |
| 700 | 1 | _ | |a Langen, Karl-Josef |0 P:(DE-Juel1)131777 |b 9 |u fzj |
| 700 | 1 | _ | |a Lohmann, Philipp |0 P:(DE-Juel1)145110 |b 10 |u fzj |
| 773 | _ | _ | |a 10.1093/noajnl/vdaf198 |g p. vdaf198 |0 PERI:(DE-600)3009682-0 |n 1 |p vdaf198 |t Neuro-oncology advances |v 7 |y 2025 |x 2632-2498 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1046027/files/Invoice_SOA25LT011306.pdf |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1046027/files/vdaf198.pdf |
| 909 | C | O | |o oai:juser.fz-juelich.de:1046027 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)143792 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)131720 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)131777 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)145110 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5252 |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
| 915 | p | c | |a DOAJ Journal |0 PC:(DE-HGF)0003 |2 APC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2024-12-18 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NEURO-ONCOL ADV : 2022 |d 2024-12-18 |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0 |0 LIC:(DE-HGF)CCBYNC4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-04-03T10:37:56Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-04-03T10:37:56Z |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-18 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-04-03T10:37:56Z |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-3-20090406 |k INM-3 |l Kognitive Neurowissenschaften |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-4-20090406 |k INM-4 |l Physik der Medizinischen Bildgebung |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)INM-3-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)INM-4-20090406 |
| 980 | _ | _ | |a APC |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|