001     1046031
005     20250909202257.0
024 7 _ |a 10.29363/nanoge.hopv.2025.078
|2 doi
037 _ _ |a FZJ-2025-03671
100 1 _ |a Majewski, Martin
|0 P:(DE-Juel1)187003
|b 0
|u fzj
111 2 _ |a 12º nternational Conference on Hybrid and Organic Photovoltaics
|c Roma
|d 2025-05-12 - 2025-05-14
|w Italy
245 _ _ |a Simulation of the impact of processing conditions for solution-processed thick perovskite layers
260 _ _ |c 2025
|b FUNDACIO DE LA COMUNITAT VALENCIANA SCITO València
295 1 0 |a Proceedings of the International Conference on Hybrid and Organic Photovoltaics - FUNDACIO DE LA COMUNITAT VALENCIANA SCITO València, 2025. - ISBN - doi:10.29363/nanoge.hopv.2025.078
300 _ _ |a -
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1757399520_24767
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a Fabricating thick (1000 nm) solution-processed perovskite layers is expected to increase the efficiency of carbon-contact-based solar cells compared to thinner (500 nm) films. However, increasing only the deposited layer thickness often results in buried voids inside the dry film. This is detrimental to the efficiency of the device. Recently, we have developed a theoretical framework based on Phase Field simulations[1]. It is capable of describing the main physical processes determining the morphology: evaporation, diffusion, spontaneous nucleation, crystal growth, and advection[2]. With the help of the simulations, it is possible to explain why voids form in the film. The crystals nucleate at random spots inside the liquid film. The movement of the condensed-vapor interface, due to evaporation, leads to an agglomeration of the crystals at the film surface. The crystals block further evaporation and the remaining solvent is the origin of the buried voids inside the dry film. We explain how adding seeds on the substrate before coating the thick film can prevent this. In this case, processing conditions have to be modified compared to standard operating procedures for thin films. The theoretical expectations can be verified experimentally, leading to a performance improvement of the devices.
536 _ _ |a 1214 - Modules, stability, performance and specific applications (POF4-121)
|0 G:(DE-HGF)POF4-1214
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Qiu, Shudi
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ronsin, Olivier J.
|0 P:(DE-Juel1)173965
|b 2
|u fzj
700 1 _ |a Du, Tian
|0 P:(DE-Juel1)200304
|b 3
|u fzj
700 1 _ |a Egelhaaf, Hans-J.
|0 P:(DE-Juel1)190193
|b 4
700 1 _ |a Brabec, Christoph
|0 P:(DE-Juel1)176427
|b 5
700 1 _ |a Harting, Jens
|0 P:(DE-Juel1)167472
|b 6
|u fzj
773 _ _ |a 10.29363/nanoge.hopv.2025.078
909 C O |o oai:juser.fz-juelich.de:1046031
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)187003
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)173965
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)200304
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)176427
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)167472
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1214
|x 0
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-2-20140314
|k IET-2
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)IET-2-20140314
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21