001     1046032
005     20251127202202.0
024 7 _ |a 10.1109/MIPRO65660.2025.11131920
|2 doi
037 _ _ |a FZJ-2025-03672
041 _ _ |a English
100 1 _ |a Busch, J. S.
|0 P:(DE-Juel1)185652
|b 0
|u fzj
111 2 _ |a 2025 MIPRO 48th ICT and Electronics Convention
|g MIPRO2025
|c Opatija
|d 2025-06-02 - 2025-06-06
|w Croatia
245 _ _ |a Leveraging Vision Transformers with Hyperparameter Optimization for the Classification of Acute Respiratory Distress Syndrome
260 _ _ |c 2025
|b IEEE
300 _ _ |a 1293-1298
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1764232447_29108
|2 PUB:(DE-HGF)
520 _ _ |a Acute respiratory distress syndrome (ARDS) is a serious lung condition associated with a high mortality rate. The classification of this condition poses a challenge in intensive care medicine and diagnostic imaging. Artificial intelligence methods, particularly deep learning, can assist the diagnostic process. Recent advances have demonstrated the potential of vision transformers to improve image analysis through their ability to extract relevant features and complex patterns in images. In this study, a vision transformer is implemented for classifying ARDS in chest X-Rays using a two-step transfer learning approach. For this purpose, publicly available databases of X-rays are used, some of which have been annotated by a radiologist for the use case ARDS. Furthermore, in order to uncover the optimal combination of model parameters to streamline the training process, we implement a two-tier hyperparameter optimization using the Ray Tune framework on high-performance computing infrastructure. The retrained vision transformer was able to classify ARDS data with 95% accuracy, outperforming previous approaches employing residual networks. Our results highlight the improvement that can be achieved through a two-step transfer learning approach leveraging vision transformers and taking advantage of powerful supercomputing architecture. Ultimately, our work facilitates timely and accurate classification of ARDS thereby enabling improved outcomes for patients receiving critical care.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 1
536 _ _ |a SDI-S - SDI-S: Smart Data Innovation Services - Experimentelle Erprobung und Entwicklung von KI-Dienstverbünden für Innovationen auf industriellen Daten (01IS22095D)
|0 G:(BMBF)01IS22095D
|c 01IS22095D
|x 2
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Barakat, C. S.
|0 P:(DE-Juel1)178934
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Pauli, T.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Fonck, S.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Stollenwerk, A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Fritsch, S. J.
|0 P:(DE-Juel1)185651
|b 5
|u fzj
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 6
|u fzj
770 _ _ |z 979-8-3315-3597-1
773 _ _ |a 10.1109/MIPRO65660.2025.11131920
856 4 _ |u https://juser.fz-juelich.de/record/1046032/files/VIT_4_ARDS_MIPRO.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1046032
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185652
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178934
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)185651
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)132239
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 1
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21