001     1046033
005     20251125202200.0
024 7 _ |a 10.1109/MIPRO65660.2025.11131987
|2 doi
037 _ _ |a FZJ-2025-03673
100 1 _ |a Curtis, T.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a 2025 MIPRO 48th ICT and Electronics Convention
|g MIPRO2025
|c Opatija
|d 2025-06-02 - 2025-06-06
|w Croatia
245 _ _ |a Improving Surface Soil Moisture Estimation with Distributed Deep Learning and HPC
260 _ _ |c 2025
|b IEEE
300 _ _ |a 1222-1227
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1764057662_29110
|2 PUB:(DE-HGF)
520 _ _ |a Soil Moisture (SM) is crucial for land surface hydrology, impacting agriculture, ecology, wildlife, and public health. This paper explores the use of Machine Learning (ML) and Deep Learning (DL) models for SM data analysis and estimation, leveraging High-Performance Computing (HPC) for efficient model training and hyperparameter tuning. The research was performed with a commercial partner and SM experts. However, utilising HPC environments requires knowledge of many low-level HPC modules (e.g., various application libraries or vendor-specific drivers like Nvidia’s CUDA, NCCL, etc.) and their specific versions needed for interoperability. Such challenges can be overcome using the Unique AI Framework (UAIF) developed in The European Center of Excellence in Exascale Computing “Research on AI- and Simulation-Based Engineering at Exascale” (CoE RAISE) project. The research in this paper contributed to the co-design of several UAIF components using HPC to search for the optimal hyperparameter setup for each ML model. It compares Artificial Neural Networks (ANNs) and Recurrent Neural Networks (RNNs) to a baseline Random Forest (RF) model. Our result demonstrates a significant improvement in accuracy through distributed learning and systematic hyperparameter tuning. The findings suggest that HPC-driven DL can offer scalable, high-resolution SM predictions while leveraging the UAIF by application-domain-specific experts (e.g., SM experts, etc.), enabling easier use of HPC.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 1
536 _ _ |a RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)
|0 G:(EU-Grant)951733
|c 951733
|f H2020-INFRAEDI-2019-1
|x 2
536 _ _ |a EUROCC - National Competence Centres in the framework of EuroHPC (951732)
|0 G:(EU-Grant)951732
|c 951732
|f H2020-JTI-EuroHPC-2019-2
|x 3
536 _ _ |a BMBF 01ZZ1803B - SMITH - Medizininformatik-Konsortium - Beitrag Universitätsklinikum Aachen (01ZZ1803B)
|0 G:(BMBF)01ZZ1803B
|c 01ZZ1803B
|x 4
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 1
700 1 _ |a Neukirchen, H.
|0 P:(DE-Juel1)169980
|b 2
700 1 _ |a Busch, J.
|0 P:(DE-Juel1)185652
|b 3
700 1 _ |a Montzka, C.
|0 P:(DE-Juel1)129506
|b 4
700 1 _ |a Aach, Marcel
|0 P:(DE-Juel1)180916
|b 5
700 1 _ |a Hassanian, R.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Barakat, Chadi
|0 P:(DE-Juel1)178934
|b 7
770 _ _ |z 979-8-3315-3597-1
773 _ _ |a 10.1109/MIPRO65660.2025.11131987
856 4 _ |u https://juser.fz-juelich.de/record/1046033/files/MIPRO2025_HPC_soil_mosture.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1046033
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a University of Iceland
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132239
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)185652
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129506
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)180916
910 1 _ |a University of Iceland
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)178934
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 1
914 1 _ |y 2025
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 1
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21