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A B S T R A C T

Alterations in DNA methylation (DNAm) profiles have been implicated in affective and psychotic disorders. 
However, no comprehensive understanding of peripheral DNAm profiles associated with diagnostic groups, 
course of illness, and other clinical variables has emerged yet. In particular, studies exploring commonalities and 
differences across diagnoses are lacking. Here we conducted a systematic epigenetic characterization of the 
transdiagnostic German FOR2107 cohort, including individuals with major depressive disorder (MDD, n = 342), 
bipolar disorder (BD, n = 99), or a schizophrenia spectrum disorder (SSD, n = 101) and healthy controls (HC, n 
= 339). For 183 MDD cases and 178 HC, we assessed additional DNAm data from the two-year follow-up study 
visit. To explore DNAm differences between and across diagnostic groups, case-control and case-case methylome- 
wide association studies were performed. Our sample was further characterized using methylation risk scores 
(MRS) for MDD and SSD. Finally, epigenetic age acceleration was examined and compared to a measure of brain 
age acceleration. We identified few methylome-wide significant associations with diagnostic groups. MRS for 
MDD did not differ between diagnostic groups, and an increase in MRS for SSD in SSD compared to HC did not 
remain significant when adjusting for smoking behavior and BMI. An increase in epigenetic age acceleration was 
most evident for SSD compared to HC, which did not remain significant when adjusting for covariates. No 
correlation between epigenetic and brain age acceleration was observed. Our findings emphasize the relevance of 
potential confounding factors in epigenetics research in psychiatry and contribute to a growing body of studies 
on DNAm profiles across affective and psychotic disorders.
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1. Introduction

Major depressive disorder (MDD), bipolar disorder (BD), and 
schizophrenia spectrum disorders (SSD), including schizophrenia (SCZ) 
and schizoaffective disorder, are severe mental disorders that contribute 
significantly to the global burden of disease [1]. They are characterized 
by affective and psychotic symptoms, with overlapping clinical pre
sentations [2] and substantial cross-disorder genetic correlations [3]. 
While extensive research has been devoted to understanding the etiol
ogy and pathophysiology of these disorders, the molecular mechanisms 
underlying their development and progression remain incompletely 
understood. Emerging evidence suggests that epigenetic modifications, 
particularly DNA methylation (DNAm), might play a crucial role, given 
their capacity to integrate both genetic and environmental factors [4,5]. 
DNAm describes the addition of a methyl group to cytosine residues 
predominantly in CpG dinucleotides and has important regulatory ef
fects on gene expression [6]. Due to their accessibility, epigenetic al
terations in peripheral blood are of particular interest, making them a 
potential source for biomarkers of affective and psychotic disorders [7].

Previous studies in the field of affective and psychotic disorders have 
investigated DNAm in different cell types and tissues, particularly in 
post-mortem brain and peripheral blood samples [7,8]. Targeted ap
proaches have identified disorder-associated DNAm differences in 
candidate genes, including NR3C1, SLC6A4, BDNF, PDYN, COMT, RELN, 
and OXTR, which are related to the hypothalamic-pituitary-adrenal axis 
stress response and different neural processes [7,9,10]. In addition, 
methylome-wide association studies (MWAS) investigating differential 
methylation across the genome have been conducted for MDD [11–14] 
and SSD [15–17]; for BD, large-scale MWAS were not yet available at the 
time of writing. Most studies detected a number of differentially meth
ylated positions (DMPs) and differentially methylated regions between 
cases and controls. Despite some overlap between the findings, no 
comprehensive understanding has emerged within or across disorders, 
and transdiagnostic studies to elucidate commonalities and differences 
in peripheral DNAm profiles between MDD, BD, and SSD are lacking.

DNAm is dynamic in nature, and changes in response to exogenous or 
endogenous signals have been conceptualized as an epigenetic memory, 
especially since some changes exhibit long-term persistence [18]. 
Cigarette smoking and body mass index (BMI) are two prominent ex
amples of modifiable health and lifestyle-associated factors with rele
vance to psychiatric conditions [19] for which characteristic DNAm 
signatures have been identified [20]. Moreover, changes in DNAm over 
time could potentially be associated with changes in disorder states, 
such as the presence or absence of mood episodes in MDD and BD. For 
the differentiation between state-dependent and trait-like characteris
tics, longitudinal study designs may prove particularly useful, e.g., by 
accounting for intraindividual variability [21].

One way to examine whether disorder-associated DNAm profiles in a 
given sample match DNAm profiles identified by previous MWAS is via 
methylation risk scores (MRS). MRS are weighted sums of CpG sites 
based on MWAS associations and they reflect the individual-level 
manifestations of a specific DNAm profile [22]. The concept of MRS is 
closely related to that of polygenic risk scores (PRS), which are calcu
lated based on large-scale genome-wide association studies (GWAS). 
PRS are a frequently used research tool for summarizing individual-level 
genetic risk in complex disorders, such as MDD, BD, and SSD, that 
exhibit high polygenicity and considerable heritability [23]. As PRS only 
capture a static risk component, MRS may provide a complimentary 
view by capturing more dynamic aspects, which makes joint modeling of 
PRS and MRS interesting.

The disorders investigated in this study – MDD, BD, and SSD – are all 
associated with an increased mortality compared to the general popu
lation, which is not fully explained by suicide and other unnatural 
causes of death [24]. An accelerated aging has been hypothesized, 
which has motivated studies on biomarkers of aging in psychiatric 
conditions [25]. Epigenetic clocks, i.e., statistical models trained to 

predict chronological or biological age based on DNAm data [26–28], 
provide a valuable tool to examine the hypothesis of accelerated aging 
by quantifying the deviation of the estimated epigenetic age from the 
chronological age. First-generation epigenetic clocks, such as the Skin & 
Blood clock developed by Horvath et al. [26] (estimate hereinafter 
denoted as DNAm Age) were trained to predict chronological age. In 
contrast, second-generation clocks, such as the DNAm PhenoAge by 
Levine et al. [27] and the DNAm GrimAge by Lu et al. [28], were 
designed as biomarkers of biological aging and were shown to be asso
ciated with lifespan and mortality by the respective authors. Despite 
some inconsistencies in the results, mostly related to the usage of 
different epigenetic clocks, previous research has indicated an epige
netic age acceleration in SSD [29–34], BD [35,36], and MDD [37–41]. 
However, transdiagnostic characterizations, i.e. joint examinations of 
the three disorders within one study sample to enable direct compari
sons, are rarely conducted. Moreover, while first studies (e.g. [42,43]) 
have started to investigate the relationship between epigenetic age ac
celeration and the so-called brain age gap, a biomarker of brain aging 
based on magnetic resonance imaging (MRI) data [44], little is known 
about this relationship in the context of the investigated disorders [30].

Against this backdrop, the present study describes a comprehensive 
exploration of methylome-wide DNAm profiles across affective and 
psychotic disorders within the German FOR2107 study. The FOR2107 
study was previously established to investigate the neurobiology of af
fective and psychotic disorders and is characterized by its deep pheno
typing and longitudinal design, which comprises a baseline assessment 
and a two-year follow-up study visit [45]. Within the scope of this study, 
we generated DNAm data for (1) a cross-sectional transdiagnostic 
sample including healthy controls (HC) and individuals with a diagnosis 
of MDD, BD, or SSD, and (2) a longitudinal sample including HC and 
individuals with a diagnosis of MDD. Based on this dataset, we pursued 
three main objectives. First, we aimed to identify DNAm differences 
associated with a lifetime diagnosis of MDD, BD, and SSD via case- 
control and case-case MWAS and with dynamic clinical variables via 
MWAS in the longitudinal sample. In the main MWAS models, covariates 
accounting for smoking behavior and BMI were included for a focus on 
effects directly related to the examined disorders. In addition, reduced 
models were fitted for a characterization of indirect effects of mental 
health-linked differences in lifestyle on DNAm profiles in affective and 
psychotic disorders. Second, we evaluated the manifestation of previ
ously identified MDD- and SSD-associated DNAm profiles in our sample 
via a MRS approach, and compared the variance explained by MRS with 
the variance explained by corresponding disorder-specific PRS. Lastly, 
we aimed to test the hypothesis of epigenetic age acceleration and the 
correlation between epigenetic and brain age acceleration using three 
epigenetic clock models. Our study is innovative and unique in its 
transdiagnostic and multifaceted design, providing a broad comparative 
perspective across affective and psychotic disorders.

2. Methods

2.1. Sample

The present analyses were performed using data retrieved from the 
German FOR2107 cohort [45]. 881 FOR2107 participants were included 
in the present analyses, comprising HC (n = 339) and individuals with a 
lifetime diagnosis of MDD (n = 342), BD (n = 99), or SCZ/schizoaffective 
disorder (SSD, n = 101) derived from the German version of the fourth 
edition of the Diagnostic and Statistical Manual of Mental Disorders 
(DSM-IV-TR) [46]. Inclusion in the HC group required absence of any 
current or past psychiatric disorders according to DSM-IV. The MDD and 
BD groups comprised both individuals experiencing an affective episode 
at study visit and individuals in a euthymic mood state. For further 
details regarding study inclusion and exclusion criteria see [45]. All 
participants provided written informed consent during the recruitment 
process. Ethical approval was obtained from the local ethics committees 
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of the Universities of Marburg and Münster, Germany. For all 881 par
ticipants, data and DNA extracted from peripheral blood collected at the 
baseline study visit (T1) were retrieved for cross-sectional analyses. For 
53 % of the participants of the MDD and HC groups (n = 361), data and 
DNA from the two-year follow-up study visit (T2) were retrieved for 
longitudinal analyses.

2.2. Genotyping, quality control, imputation, and PRS calculation

Genome-wide genotyping was previously performed using DNA 
extracted from peripheral blood and the Infinium PsychArray-24 
BeadChip (Illumina, San Diego, CA, USA) [47]. Genomic positions 
were assigned relative to hg19. Data quality control (QC) for variants 
and samples was conducted using PLINK v1.9 [48]. First, variants were 
pre-filtered for a call rate < 98 % and a minor allele frequency (MAF) <
1 %. Samples were then filtered on the basis of the following criteria: (1) 
call rate < 98 %; (2) absolute autosomal heterozygosity coefficient >
0.2; (3) sex mismatch; (4) genetic duplicates and genetic relatedness (π̂ 
> 0.125); (5) non-European ancestry as inferred using KING [49]; and 
(6) genetic outliers with a distance from the mean of >6 standard de
viations within the first ten principal components (PCs). After filtering, a 
sample of 859 individuals remained. Additional variants were removed 
in the event of: (1) non-autosomal position; (2) ambiguous alleles; (3) 
call rate < 98 %; (4) Hardy-Weinberg equilibrium test p value <1e-06; or 
(5) MAF < 1 %. Genotype phasing and imputation were conducted using 
Eagle 2.4.1 [50] and Minimac 4.1.2 [51] with the 1000 Genomes Phase 
3 reference panel [52]. After imputation, variants were filtered for an 
imputation INFO score < 0.3 and MAF < 1 %. From the imputed ge
notype data, PRS for MDD and SSD were calculated using PRS-CS [53], 
with ϕ set to 1e-02 reflecting high polygenicity, and PLINK v1.9 [48] 
based on summary statistics of previous large-scale genome-wide asso
ciation study (GWAS) meta-analyses [54,55], in which the FOR2107 
sample was not part of the contributing cohorts. PRS were z-scaled for 
downstream analysis.

2.3. DNA methylation profiling

DNAm was profiled in genomic DNA extracted from peripheral blood 
using the Infinium MethylationEPIC v1.0 BeadChip (Illumina, San 
Diego, CA, USA). Samples were randomized across microarrays with 
respect to sex and case-control status. On each microarray, samples of 
the HC group and of at least one of the case groups were present. In 
respect to the latter, it should be noted that due to the different group 
sizes, it was unavoidable that individual diagnostic groups were not 
represented on every array. For the longitudinal measurements, both 
samples of a single individual were placed on the same methylation 
microarray to reduce technical noise. Data QC and processing were 
conducted in R (v3.6.1) [56] using the minfi (v1.32.0) [57] and ewas
tools (v1.7.2) [58] packages. Samples were excluded in the event of: (1) 
call rate < 98 % (n = 5); (2) failure in Illumina control metrics (n = 0); 
(3) sex mismatch (n = 7); or (4) single nucleotide polymorphism (SNP) 
fingerprint mismatch that could not be resolved (n = 10). For the latter, 
SNP fingerprints were generated based on 59 genetic markers present on 
both the MethylationEPIC array and the PsychArray, and checked for 
pairwise discordance between samples originating from different par
ticipants / concordance between samples from the same participant, as 
implemented in the ewastools package. In total, seven T1 samples and 
eight T2 samples were excluded. Of note, seven samples met two out of 
the four above listed exclusion criteria, therefore the sum of exclusions 
indicated for each criterion exceeds the total number of excluded sam
ples. The methylation intensities of the remaining samples were 
normalized using the stratified quantile normalization approach, as 
implemented in minfi [59]. For downstream data analysis, M values 
were calculated from normalized data. After normalization, methylation 
probes were removed according to the following criteria: (1) call rate <
98 % (n = 9913); (2) non-CpG sites (n = 2890); (3) non-autosomal sites 

(n = 18,704); (4) sites with SNPs inside the probe body (n = 27,754); 
and (5) polymorphic (with MAF > 1 % in European populations, n =
3588) or cross-hybridizing probe binding sites (n = 38,455) [60].

To obtain the analysis sample, the quality-controlled dataset was 
filtered for the availability of high-quality genotype data and non- 
relatedness (cf. QC of genotype data described above). In case of par
ticipants for which baseline samples were missing, any respective 
follow-up samples were removed. In total, 854 individuals remained for 
analysis (Table 1). Of these, 349 individuals had data from both T1 and 
T2 (Table 2).

2.4. Data-derived covariates

Both the genotype and the methylation data were used to estimate 
covariates for the downstream analyses. Four ancestry principal com
ponents (aPCs) calculated from pruned pre-imputation genotype data 
using PLINK v1.9 [48] were used as covariates to account for effects of 
population stratification. To account for technical variation in the 
methylation data, 30 methylation principal components (mPCs) were 
calculated in R (v3.6.1) [56] from the intensity values of Illumina 
MethylationEPIC control probes (excluding negative control probes), 
following the Control Probe Adjustment approach described by Lehne 
and colleagues [61]. Blood cell type composition was estimated from 
normalized methylation data in accordance with Houseman et al. [62] 
and as implemented in minfi. mCigarette scores were calculated based 
on DNAm beta values according to Chybowska et al. [63] as a quanti
tative biomarker of smoking behavior. In addition, M values of the 
AHRR probe cg05575921, a well-established single-site smoking 
biomarker [64], were retrieved to adjust for residual effects of smoking 
behavior on DNAm unaccounted for by the mCigarette score (Supple
mentary Fig. 1 A-B). Both mCigarette and cg05575921 levels reflect 
current smoking and, to a lesser extent, past smoking history (Supple
mentary Fig. 1C-D).

2.5. MWAS

To test the association of DNAm with selected variables of interest, 
linear mixed models were fitted in R (v3.6.1) [56] using the limma 
(v3.42.0) package [65], with DNAm M values as dependent variables. 
Based on Mansell et al. [66], association p values <9e-08 were consid
ered methylome-wide significant. Case-control and case-case MWAS as 
well as supplementary MWAS of smoking status and BMI were con
ducted using the combined dataset of all baseline and follow-up mea
surements to maximize power. For the case-control and case-case 
comparisons, the diagnostic group was included as independent variable 
of interest, together with a set of fixed effect covariates of no interest. 
The covariates included the sex, age (in years with two decimal places), 
estimates of cell type composition (CD8+ T cells, CD4+ T cells, natural 
killer cells, B cells, monocytes), four aPCs, 30 mPCs, the mCigarette 
score, M values of the AHRR probe cg05575921, and BMI. To account 
for the subset of longitudinally measured participants, the proband 
identity was included as a random effect, with the correlation between 
repeated measures estimated from 10,000 randomly selected CpG sites. 
Since the effect of the fixed effect covariates on DNAm was expected to 
be consistent across diagnostic groups, joint models were fitted 
including all available samples, and contrasts between diagnostic groups 
were specified to identify DMPs. In addition to the three case-control 
and the three case-case comparisons, a joint comparison of all in
dividuals with a psychiatric diagnosis to the HC group was conducted. 
For the annotation of CpG sites, the IlluminaHumanMethylationEPI
Canno.ilm10b4.hg19 Bioconductor package was used, which is based on 
the Infinium MethylationEPIC Manifest file provided by Illumina. Sta
tistical power was estimated using the pwrEWAS (v1.12.0, R version 
4.2.2) package [67]. As supplementary analyses, reduced MWAS models 
were fitted, in which covariates related to modifiable lifestyle-related 
factors (mCigarette score, the AHRR probe cg05575921, and BMI) 
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were excluded, to obtain a general characterization of DNAm profiles 
associated with the investigated disorders. Moreover, supplementary 
MWAS of self-reported smoking status (ever versus never) and BMI, 
respectively, were conducted with the same covariates as in the reduced 
MWAS models, to enable direct comparisons with the results of the case- 
control and case-case MWAS.

For a focus on state-dependent DNAm differences, an MWAS of mood 
state (depressed versus euthymic) was conducted within the longitudi
nal subset of HC and participants with a diagnosis of MDD. Where 
possible, the mood state at study visit was derived from DSM-IV codes 
(Supplementary Table 1). All HC were classified as euthymic. Additional 
MWAS within the longitudinal subset were conducted for the number of 
depressive episodes and the number of psychiatric hospitalizations re
ported for the lifetime up to the first and second study visit, respectively.

All sets of DMPs resulting from the main MWAS with a p value <1e- 
05 were functionally characterized via Gene Ontology (GO) gene set 
enrichment analyses using the gometh function implemented in the 
missMethyl (v1.40.3, R version 4.4.3) package, which accounts for 
biases due to differences in the number of methylation probes per gene 
and due to probes mapping to multiple genes [68]. As background set, 
all probes present in the post-QC methylation dataset were used. All 
22,298 GO gene sets available via the missMethyl package were 
included in the analysis. Enrichment p values were adjusted for multiple 
testing using the Benjamini and Hochberg method [69] for controlling 
the false discovery rate.

2.6. MRS calculation and analysis

MRS for MDD and SSD were calculated within the cross-sectional 

baseline sample in R (v3.6.1) [56] as weighted sums of M values, 
using weights from previously published studies that had no sample 
overlap with the FOR2107 cohort. To maximize the overlap between 
CpGs included in the published MRS models and our dataset, all 
methylation sites of good technical quality, which remained after the 
call rate-based filtering step (n = 855,946, see section 2.3), were 
considered for MRS calculation. For the MDD MRS, weights derived by 
Barbu et al. [13] from a LASSO penalized regression of MDD case- 
control status on blood DNAm were used; all 196 CpGs with non-zero 
weights were available in our dataset. For the SSD MRS, MWAS beta 
coefficients from Hannon et al. [15] of CpGs significantly associated 
with SCZ were used as weights; 938 out of the 1048 significant CpGs 
were available in our dataset. MRS were z-scaled across all baseline 
samples and compared between groups using the analysis of variance 
(ANOVA). In case of an observed p value <0.05 in the ANOVA, Tukey’s 
Honest Significant Difference (HSD) post hoc tests were performed be
tween all pairs of diagnostic groups. In order to set the inter-group dif
ferences in epigenetic risk in relation to the underlying genetic risk, the 
same statistical tests were performed on the PRS for MDD and SSD. 
Moreover, logistic regression models of case-control status of MDD and 
SSD, respectively, were fitted in the baseline samples of HC and the 
respective disorder group. Both the disorder-specific MRS and PRS were 
included as variables of interest, as well as sex, age (in years with two 
decimal places), the mCigarette score, and BMI as covariates. As a 
sensitivity analysis, the logistic regression was repeated with the same 
set of covariates included in the main MWAS model (sex, age, CD8+ T 
cells, CD4+ T cells, natural killer cells, B cells, monocytes, four aPCs, 30 
mPCs, the mCigarette score, M values of the AHRR probe cg05575921, 
and BMI). Numerical variables were z-scaled to mean of zero and 

Table 1 
Characteristics of the cross-sectionally measured sample at the baseline FOR2107 study visit.

HC MDD BD SSD Comparison

n 326 337 96 95
%Female 63.19 63.80 52.08 43.16 p = 6.6e-04
Age 36.04 (13.19) 35.49 (13.09) 41.41 (11.97) 37.17 

(11.25)
p = 8.6e-05 (HC < BD, p = 2.3e-04; MDD < BD, p = 6.8e-05)

BMI 24.12 
(NA: 29; SD 

= 4.23)

25.33 
(NA: 18; SD =

5.56)

26.85 
(NA: 2; SD =

4.82)

28.38 
(NA: 6; SD =

6.34)

p = 1.1e-11 (HC < BD, p = 3.6e-06; HC < SSD, p = 1.3e-09; 
MDD < BD, p = 1.6e-03; MDD < SSD, p = 3.9e-06)

Self-reported smoking status: ever 
/ never / NA

78 / 245 / 3 121 / 207 / 9 55 / 37 / 4 62 / 33 / 0 p = 3.3e-16

mCigarette score − 0.4799 
(0.0311)

− 0.4736 
(0.0424)

− 0.4514 
(0.0576)

− 0.4322 
(0.0669)

p = 4.2e-11 (HC < BD, p = 1e-04; HC < SSD, p = 3.7e-09; MDD < BD, p 
= 9.2e-04; MDD < SSD, p = 1.1e-07)

cg05575921 0.8738 
(0.0436)

0.8564 
(0.0685)

0.8226 
(0.0993)

0.7837 
(0.1160)

p = 1.7e-16 (HC > MDD, p = 1.1e-03; HC > BD, p = 1e-05; HC > SSD, p 
= 9.4e-16; MDD > BD, p = 2e-02; MDD > SSD, p = 1.8e-08; BD > SSD, p 

= 8.1e-03)
Mood state: euthymic / depressed 

/ (hypo-) manic / mixed / NA
326 / 0 / 0 / 

0 / 0
104 / 229 / 

0 / 0 / 4
30 / 32 / 17 / 

2 / 15
0 / 0 / 0 / 0 / 

95
CD8+ T cells 0.0705 

(0.0381)
0.0656 

(0.0356)
0.0533 

(0.0376)
0.0532 

(0.0346)
p = 1.5e-06 (HC > BD, p = 1.2e-04; HC > SSD, p = 1.2e-04; 

MDD > BD, p = 7.5e-03; MDD > SSD, p = 7.5e-03)
CD4+ T cells 0.1655 

(0.0480)
0.1666 

(0.0516)
0.1710 

(0.0625)
0.1483 

(0.0453)
p = 7.7e-03 (HC > SSD, p = 8.4e-03; 

MDD > SSD, p = 7.7e-03; BD > SSD, p = 2.2e-02)
Natural killer cells 0.0557 

(0.0392)
0.0510 

(0.0355)
0.0499 

(0.0346)
0.0466 

(0.0376)
p = 0.130

B cells 0.0534 
(0.0194)

0.0543 
(0.0219)

0.0519 
(0.0191)

0.0520 
(0.0206)

p = 0.833

Monocytes 0.0715 
(0.0204)

0.0728 
(0.0197)

0.0693 
(0.0231)

0.0736 
(0.0173)

p = 0.178

Granulocytes 0.5965 
(0.0763)

0.6023 
(0.0792)

0.6167 
(0.0949)

0.6384 
(0.0766)

p = 1.7e-05 (HC < BD, p = 2.5e-02; 
HC < SSD, p = 2.4e-05; MDD < SSD, p = 9.7e-04)

Characteristics of the sample remaining after quality control. Unless otherwise specified, values indicate the number of participants for categorical variables, and group 
means with SD for continuous variables. The age was recorded in years with two decimal places. For the methylation probe cg05575921, which represents a 
quantitative biomarker for smoking behavior, beta values (bound between 0 and 1) are provided. Proportions of six major leukocyte cell types (CD8+ T cells, CD4+ T 
cells, natural killer cells, B cells, monocytes, and granulocytes) were estimated from DNAm data using the Houseman approach as implemented in minfi. Group 
comparisons are based on Chi-squared tests for categorical variables (sex and self-reported smoking status), and Kruskal-Wallis tests with post hoc Dunn’s tests for 
continuous variables (age, BMI, mCigarette score, cg05575921, and cell type proportions). BD, bipolar disorder, BMI, body mass index; HC, healthy controls; MDD, 
major depressive disorder; NA, data not available/applicable; SD, standard deviation; SSD, schizophrenia spectrum disorders.
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standard deviation of one prior to fitting the regression models. P values 
of regression coefficients were adjusted for the number of predictors in 
the respective model using the Benjamini-Hochberg procedure for con
trolling the false discovery rate. The incremental variance explained 
(ΔR2) by MRS and PRS was calculated as the difference between R2 of 
the full model and R2 of the model without MRS or PRS, respectively. 
Finally, the hypothesis of a decreased MDD MRS and an increased SSD 
MRS in BD type 1 compared to type 2, analogous to the known genetic 
architecture of BD subtypes [70,71], was tested. BD cases were divided 
into BD type 1 (n = 50) and type 2 (n = 46), as based on DSM-IV codes, 
and MRS were compared using one-sided t-tests.

2.7. Age acceleration

Epigenetic age estimates based on the Skin & Blood clock (DNAm 
Age) [26], DNAm PhenoAge [27], and DNAm GrimAge [28] were 
calculated in R (v4.4.3) [72]. DNAm Age and DNAm PhenoAge were 
estimated using the methylclock package (v1.12.0) [73], and DNAm 
GrimAge was calculated based on R scripts and regression weights 
provided by the authors of the DNAm GrimAge model (equivalent to the 
implementation in the publicly available DNA Methylation Age Calcu
lator webtool (https://dnamage.clockfoundation.org)). To maximize 
the overlap between CpGs included in the published epigenetic clock 
models and our dataset, all methylation sites of good technical quality, 
which remained after the call rate-based filtering step (n = 855,946, see 
section 2.3), were considered for epigenetic age calculation. The relative 
impact of probe missingness was estimated by calculating the proportion 
of absolute weights of the missing CpGs in relation to the sum of absolute 
weights of all CpGs in a clock model [74]. All 391 CpGs included in the 
Skin & Blood clock were present in our data, as well as 511 out of 513 

CpGs in the DNAm PhenoAge model (0.4 % missing CpGs, 0.3 % missing 
weights) and 1017 out of 1030 CpGs in the DNAm GrimAge model (1.3 
% missing CpGs, 0.2 % missing weights). For all three epigenetic clocks, 
residuals of the linear regression of epigenetic age on chronological age 
(in years with two decimal places) were considered estimates of epige
netic age acceleration, as there was a systematic deviation of epigenetic 
age estimates from chronological age.

Cross-sectional group differences in epigenetic age acceleration 
within the baseline sample were analyzed using ANOVA and Tukey’s 
HSD post hoc tests in case of a p value <0.05 in the ANOVA. Linear 
regression models were fitted within the cross-sectional baseline sample 
to estimate the effect on MDD, BD, and SSD case status compared to HC 
when adjusting for sex, smoking as reflected by the mCigarette score, 
and BMI. Moreover, to disentangle the impact of individual covariates, a 
stepwise regression was fitted, in which the following covariates were 
added in a stepwise manner: (1) sex, (2) the mCigarette score, (3) BMI, 
and (4) five out of six estimates of cell type composition (CD8+ T cells, 
CD4+ T cells, natural killer cells, B cells, monocytes). As a sensitivity 
analysis, the linear regression was repeated with the same set of cova
riates included in the main MWAS model (sex, CD8+ T cells, CD4+ T 
cells, natural killer cells, B cells, monocytes, four aPCs, 30 mPCs, the 
mCigarette score, M values of the AHRR probe cg05575921, and BMI), 
except for the omission of age, as this was already accounted for in the 
calculation of the epigenetic age acceleration. Numerical variables were 
z-scaled to mean of zero and standard deviation of one prior to fitting the 
regression models. P values of regression coefficients were adjusted for 
the number of predictors in the respective model using the Benjamini- 
Hochberg procedure for controlling the false discovery rate.

To analyze the correlation between epigenetic and brain age accel
eration, estimates of the brain age gap derived from MRI data at the 

Table 2 
Characteristics of the longitudinally measured sample at the baseline and follow-up FOR2107 study visits.

HC MDD Comparison

Study visit Baseline Follow-up Baseline Follow-up

n 174 174 175 175
%Female 62.64 62.64 66.29 66.29 p = 0.799
Age 37.00 (13.69) 39.19 (13.68) 36.17 (13.76) 38.38 (13.76) p = 0.058
BMI 24.13 

(NA: 14; SD =
4.22)

24.56 
(NA: 3; SD =

4.03)

25.34 
(NA: 6; SD =

5.36)

26.21 
(NA: 6; SD =

5.61)

p = 1.0e-02 
(HC1 < MDD2, p = 6.5e-03)

Self-reported smoking status: ever / never 
/ NA

54 / 120 / 0 56 / 110 / 8 81 / 91 / 3 80 / 87 / 8 p = 5.5e-04

cg05575921 0.8713 (0.0485) 0.8705 (0.0462) 0.8483 (0.0786) 0.8452 (0.0795) p = 4.6e-03 
(HC1 > MDD2, p = 1.7e-02; HC2 > MDD2, p =

3.9e-02)
mCigarette score − 0.4766 (0.0330) − 0.4791 

(0.0324)
− 0.4683 
(0.0481)

− 0.4673 
(0.0488)

p = 0.416

Depressive episodes 3.05 
(NA: 9; SD =

3.13)

3.82 
(NA: 9; SD =

3.36)
Hospitalizations 1.41 

(NA: 1; SD =
1.80)

1.82 
(NA: 3; SD =

2.22)
Mood state: euthymic / depressed / NA 174 / 0 / 0 174 / 0 / 0 59 / 114 / 2 106 / 69 / 0
CD8+ T cells 0.0668 (0.0364) 0.0655 (0.0369) 0.0665 (0.0350) 0.0671 (0.0386) p = 0.981
CD4+ T cells 0.1685 (0.0509) 0.1662 (0.0519) 0.1717 (0.0532) 0.1731 (0.0525) p = 0.566
Natural killer cells 0.0569 (0.0378) 0.0538 (0.0354) 0.0500 (0.0355) 0.0461 (0.0340) p = 3.0e-02 (HC1 > MDD2, p = 3.0e-02)
B cells 0.0557 (0.0202) 0.0555 (0.0205) 0.0527 (0.0190) 0.0554 (0.0213) p = 0.429
Monocytes 0.0708 (0.0211) 0.0720 (0.0222) 0.0721 (0.0199) 0.0700 (0.0180) p = 0.852
Granulocytes 0.5953 (0.0761) 0.6011 (0.0795) 0.5996 (0.0792) 0.6019 (0.0749) p = 0.777

Characteristics of the sample remaining after quality control. Unless otherwise specified, values indicate the number of participants for categorical variables, and group 
means with SD for continuous variables. The age was recorded in years with two decimal places. For the methylation probe cg05575921, which represents a 
quantitative biomarker for smoking behavior, beta values (bound between 0 and 1) are provided. Proportions of six major leukocyte cell types (CD8+ T cells, CD4+ T 
cells, natural killer cells, B cells, monocytes, and granulocytes) were estimated from DNAm data using the Houseman approach as implemented in minfi. Group 
comparisons are based on Chi-squared tests for categorical variables (sex and self-reported smoking status), and Kruskal-Wallis tests with post hoc Dunn’s tests for 
continuous variables (age, BMI, mCigarette score, cg05575921, and cell type proportions). BMI, body mass index; HC, healthy controls; HC1, HC sample at baseline 
study visit; HC2, HC sample at follow-up study visit; MDD, major depressive disorder; MDD2, MDD sample at follow-up study visit; NA, data not available/applicable; 
SD, standard deviation.
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baseline study visit, which were previously calculated by Hahn et al. 
[44], were obtained for 843 out of 854 participants. For the remaining 
11 participants, brain age estimates were not available due to missing
ness or insufficient quality of MRI data. The brain age estimation was 
based on an uncertainty-aware, transparent neural network model that 
was trained on the neuroimaging data of more than 10,000 individuals 
from the German National Cohort and which was shown to yield a low 
median absolute error in independent validation cohorts [44].

Following the approach described by Iftimovici et al. [75], a longi
tudinal analysis of epigenetic aging was conducted within the subset of 
HC and MDD for which epigenetic age estimates were available from 
both the baseline and the follow-up study visit. The change in epigenetic 
age (epigenetic age at follow-up minus epigenetic age at baseline) 
relative to the change in chronological age (chronological age at follow- 
up minus chronological age at baseline), hereafter referred to as slope of 
epigenetic aging, was taken as longitudinal measure of epigenetic aging. 
As the interval between baseline and follow-up study visit was approx
imately two years, chronological age in years with two decimal places 
was used for all calculations to improve the resolution compared to the 
commonly used age in full years without decimal places. Two-sided t- 
tests were conducted to compare the slope of epigenetic aging between 
the HC and MDD group. To account for the effect of covariates, linear 
regression models of MDD case-control status on the slope of epigenetic 
aging were fitted, including sex, chronological age at baseline, mCi
garette scores at baseline, the change of mCigarette scores between 
baseline and follow-up, BMI at baseline, and the change of BMI between 
baseline and follow-up as covariates of no interest. Numerical variables 
were z-scaled to mean of zero and standard deviation of one prior to 
fitting the regression models. P values of regression coefficients were 
adjusted for the number of predictors in the respective model using the 
Benjamini-Hochberg procedure for controlling the false discovery rate.

3. Results

Post-QC, the dataset comprised 764,555 CpG methylation sites from 
854 deeply phenotyped, unrelated individuals with a lifetime diagnosis 
of MDD, BD, or SSD, as well as HC (Table 1). For all of these individuals, 
high-quality genotype data were available. Longitudinal DNAm mea
surements were obtained for 175 MDD cases and 174 HC (Table 2).

3.1. MWAS

In the main case-control and case-case MWAS, only few methylome- 
wide significant DMPs were identified (Table 3, maximum of two sig
nificant DMPs between SSD and HC). In comparison, with a reduced 
MWAS model, in which the adjustment for smoking behavior and BMI 
was omitted, a larger number of DMPs reached methylome-wide sig
nificance (maximum of 28 significant DMPs between SSD and HC). 
Relative to the MWAS of smoking and BMI, yielding 267 and 307 sig
nificant DMPs, respectively, the amount of identified differential 
methylation between diagnostic groups was low, and the majority of 
disorder-related DMPs detected using the reduced model design over
lapped with the DMPs identified in the MWAS of smoking or BMI. This 

corresponds to the recorded phenotypic information, which showed a 
significant overrepresentation of ever-smokers among the BD and SSD 
group compared to HC and MDD, as well as a significantly increased BMI 
in BD and SSD compared to HC and MDD (Table 1). The main MWAS of 
mood state, number of depressive episodes, and number of hospitali
zations within the longitudinal subsample of individuals with MDD and 
HC yielded two, 19, and 37 methylome-wide significant DMPs, respec
tively. Supplementary Fig. 2 provides an overview of the identified 
methylome-wide significant DMPs across all conducted MWAS (main 
and supplementary), and depicts the overlap between sets of DMPs. The 
full list of methylome-wide significant DMPs is provided in Supple
mentary Table 2. QQ-plots including estimates of the inflation factor 
lambda (ranging from 0.97 to 1.06) for the main MWAS are shown in 
Supplementary Figs. 3–12. With regard to the statistical power of the 
case-control and case-case MWAS, power calculations (Supplementary 
Fig. 13) showed that there was 80 % power to detect mean methylation 
differences equal to or larger than 5 % in the best-powered model (MDD 
vs. HC) and differences equal to or larger than 17.5 % in the worst- 
powered model (SSD vs. BD). In the gene set enrichment analyses of 
DMPs with suggestive evidence of association (p < 1e-05), none of the 
GO gene sets were significantly enriched for DMPs after correction for 
multiple testing. Gene sets with nominally significant enrichment for 
DMPs of the main MWAS are listed in Supplementary Table 3.

3.2. MRS

To extend the epigenetic characterization of the present study sam
ple based on previously identified DNAm profiles, MRS for MDD and 
SSD were compared between diagnostic groups. While no statistically 
significant inter-group differences were observed for the MDD MRS, an 
increase of the SSD MRS in SSD cases in comparison to HC (Tukey’s HSD 
post hoc test p < 0.05) was identified (Fig. 1A). The distribution of PRS 
for MDD and SSD showed the expected significant differences between 
groups. When modeling the effect of the SSD MRS on SSD case-control 
status together with the SSD PRS and covariates such as BMI and bio
markers of smoking behavior, the association of the SSD MRS with case- 
control status was no longer significant (Fig. 1B, Supplementary Fig. 14). 
The variance explained by both the MDD MRS (ΔR2 = 0.0007) and SSD 
MRS (ΔR2 = 0.0078) was considerably lower than the variance 
explained by their genetic counterparts (MDD PRS ΔR2 = 0.0433; SSD 
PRS ΔR2 = 0.1064) in the respective case-control regression models 
depicted in Fig. 1B. For the examination of BD-related epigenetic sig
natures in the present study sample, no well-powered BD MWAS was 
publicly available at the time of analysis. Therefore, the available MDD 
and SSD MRS were used to explore the hypothesis of higher epigenetic 
similarity of BD type 1 cases with SSD and BD type 2 cases with MDD. 
When comparing the MRS between BD subtypes, no significant differ
ences were observed (Fig. 1C).

3.3. Age acceleration

For all three epigenetic clocks, the correlation between epigenetic 
age estimates and chronological age was high (R ≥ 0.92, Fig. 2A). 

Table 3 
Methylome-wide significant DMPs in case-control / case-case MWAS.

Contrast CpG Chr Position (hg19) Log Fold Change Average M value P value Gene

MDD vs. HC cg07524214 16 86,825,363 0.2856 2.0196 2.26e-08
SSD vs. HC cg00207441 2 3,175,600 − 0.1956 3.3593 5.26e-08
SSD vs. HC cg11224906 16 70,453,427 0.0874 0.2791 6.33e-08 ST3GAL2
SSD vs. BD cg27396293 9 21,028,665 0.2288 0.0642 5.37e-08 HACD4
Psych vs. HC cg25330192 5 34,494,278 − 0.1562 − 0.9436 7.85e-08

All differentially methylated positions (DMPs) with methylome-wide significant association (p < 9e-08) identified in the main case-control / case-case MWAS are 
listed, sorted by their p value. “Psych vs. HC” denotes the joint comparison of all psychiatric case groups against HC. Gene annotations are based on the UCSC database, 
as specified in the MethylationEPIC Manifest provided by Illumina. BD, bipolar disorder; Chr, chromosome; DMP, differentially methylated position; HC, healthy 
controls; MDD, major depressive disorder; MWAS, methylome-wide association study; SSD, schizophrenia spectrum disorders.
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Similarly, pairwise correlations between the three epigenetic age esti
mates ranged between 0.91 and 0.93 (Supplementary Fig. 15). For the 
DNAm Age based on the Skin & Blood clock, no significant difference in 
epigenetic age acceleration was observed between diagnostic groups, 
whereas a highly significant increase in DNAm GrimAge acceleration 
was evident in BD and SSD compared to MDD and HC (Fig. 2B). For the 
DNAm PhenoAge, epigenetic age acceleration was significantly 
increased in MDD and SSD compared to HC. When adjusting for sex, 
smoking behavior, and BMI in a multivariable regression model, only an 
effect of SSD case status compared to HC on DNAm PhenoAge acceler
ation was observed (Fig. 2C). However, with additional adjustment for 
cell type composition, no significant effects of diagnostic group on 
epigenetic age acceleration remained (Supplementary Figs. 16, 17).

The brain age, which was estimated on the basis of neuroimaging 
data, showed high correlations with epigenetic age estimates for all 
three epigenetic clocks (R ≥ 0.86, Supplementary Fig. 18 A). However, 
no correlation of the brain age gap with epigenetic age acceleration was 

observed (Supplementary Fig. 18B). There was no evidence for differ
ences in the brain age gap between diagnostic groups (Supplementary 
Fig. 18C).

In the longitudinal analysis of epigenetic aging in MDD compared to 
HC, the slope of epigenetic aging between baseline and follow-up study 
visit (Supplementary Fig. 19 A) was significantly increased for the 
DNAm GrimAge estimates in MDD (t-test p = 0.001, Supplementary 
Fig. 19B). When adjusting for the effects of baseline age, smoking, and 
BMI, this effect did not remain significant (Supplementary Fig. 19C).

4. Discussion

The present study involved the epigenetic characterization of a 
subset of the transdiagnostic FOR2107 sample, which comprised in
dividuals with a lifetime diagnosis of MDD (n = 337), BD (n = 96), or 
SSD (n = 95), as well as HC (n = 326). In the main case-control and case- 
case MWAS, only few CpG sites with methylome-wide significant 

p

p

p

p

t p t p

Fig. 1. MRS analysis. 
(A) Distribution of polygenic and methylation risk scores for MDD and SSD within different diagnostic groups. Asterisks above pairs of groups indicate significant 
differences identified via Tukey’s Honest Significant Difference post hoc test conducted in case of a p value <0.05 in the ANOVA. (B) Logistic regression of MDD MRS 
and MDD PRS on MDD case-control status (top) and SSD MRS and SSD PRS on SSD case-control status (bottom), with sex, age (in years with two decimal places), 
BMI, and the mCigarette score included as covariates. Numerical variables were z-scaled to mean of zero and standard deviation of one prior to fitting the regression 
models. P values of regression coefficients were adjusted for the number of predictors in the respective model using the Benjamini-Hochberg procedure for controlling 
the false discovery rate. (C) MDD and SSD MRS in cases with a diagnosis of BD type 1 (BD1, n = 50) and type 2 (BD2, n = 46). ANOVA, analysis of variance; BD, 
bipolar disorder; BMI, body mass index; FDR-adj., false discovery rate adjusted; HC, healthy controls; MDD, major depressive disorder; MRS, methylation risk score; 
non-sig., non-significant; PRS, polygenic risk score; SSD, schizophrenia spectrum disorders; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.
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differential methylation were identified. However, MWAS of smoking 
status and BMI demonstrated good data quality, and power calculations 
proved that the sample sizes were sufficient to detect large effects. In line 
with previous research, this indicates that blood-based DNAm profiles in 
MDD, BD, and SSD may not harbor uniform trait-related signals of large 
effect sizes, neither within nor across diagnostic boundaries.

The present findings are consistent, for example, with a previous 
study on DNAm in MDD by Barbu et al. [13], in which only a limited 
predictive value of blood-based DNAm profiles in regard to psychiatric 
diagnosis could be demonstrated. Importantly, signals of small effect 
size might still be present in blood-based DNAm profiles of individuals 
with affective and psychotic disorders, and more distinctive DNAm 
profiles may exist within disorder subtypes. In addition to increasing the 
total sample size, future studies may thus also need to focus on more 
homogeneous subgroups, e.g., with regards to symptom profiles, in 
order to identify stronger association signals [76].

Two out of the five CpG sites significantly associated with case- 

control or case-case status in the main MWAS mapped to protein- 
coding genes, namely ST3GAL2 (annotated to cg11224906, significant 
difference between SSD and HC) and HACD4 (annotated to cg27396293, 
significant difference between SSD and BD). Interestingly, ST3GAL2 has 
previously been implicated in the context of schizophrenia based on 
transcriptional and proteomic signatures [77]. The protein encoded by 
ST3GAL2, a beta-galactoside alpha2–3 sialyltransferase, is involved in 
the sialylation of gangliosides and glycoproteins. While sialyation plays 
a role in a wide range of physiological and pathophysiological contexts, 
it appears to be of particular relevance to neuronal development and 
plasticity [78–81]. For HACD4, which encodes the enzyme 3-hydrox
yacyl-CoA dehydratase 4 involved in fatty acid elongation pathways, 
no apparent functional link to affective or psychotic disorders could be 
identified.

Compared to the case-control and case-case MWAS, the MWAS of the 
number of depressive episodes and hospitalizations in MDD, conducted 
in the longitudinally measured subsample, revealed a slightly higher 

p

p

p p

Fig. 2. Epigenetic age acceleration. 
(A) For all three epigenetic clocks, the estimated epigenetic age was highly correlated with chronological age. (B) Significant differences in epigenetic age accel
eration between diagnostic groups were identified for the DNAm GrimAge and DNAm PhenoAge. Asterisks above pairs of groups indicate significant differences 
identified via Tukey’s Honest Significant Difference post hoc test conducted in case of a p value <0.05 in the ANOVA. (C) When adjusting for sex, the mCigarette 
score as proxy of smoking behavior, and BMI in a multivariable regression, the only remaining significant effect of a diagnosis on epigenetic age acceleration in 
comparison to HC was of SSD case status on DNAm PhenoAge acceleration. Numerical variables were z-scaled to mean of zero and standard deviation of one prior to 
fitting the regression models. P values of regression coefficients were adjusted for the number of predictors in the respective model using the Benjamini-Hochberg 
procedure for controlling the false discovery rate. ANOVA, analysis of variance; BD, bipolar disorder; BMI, body mass index; DNAm, DNA methylation; FDR-adj., false 
discovery rate adjusted; HC, healthy controls; MDD, major depressive disorder; non-sig., non-significant; R, Pearson correlation coefficient; SSD, schizophrenia 
spectrum disorders; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.
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number of CpG sites with significant differential methylation unrelated 
to smoking and BMI. Among the genes annotated to the 19 and 37 CpG 
sites significantly associated with the number of depressive episodes and 
number of hospitalizations, respectively, multiple genes were previously 
described to be involved in neurobiological processes or to be associated 
with psychiatric conditions. This includes CRYBB2 [82–84], GAS7 
[85,86], and HOXB3 [14] (DNAm associated with number of depressive 
episodes) as well as DLGAP4 [87], MRGPRF [88,89], and VAMP2 
[90–92] (DNAm associated with number of hospitalizations). However, 
as no significant gene set enrichment was found in the present analyses, 
no global functional interpretation of these findings can be made at 
present.

Consistent with the limited findings from the case-control MWAS, 
the MRS analysis showed no significant effect of the MDD MRS on MDD 
case-control status, and only a weak effect of the SSD MRS on SSD case- 
control status, which did not remain significant when adjusting for 
smoking and BMI. In contrast, the genetic risk measured by PRS for MDD 
and SSD was significantly increased in cases compared to controls, 
respectively, attesting the validity of the diagnostic groupings in our 
sample. Given that sample sizes in the DNAm discovery studies 
employed by Barbu et al. [13] and Hannon et al. [15] were below 5000 
individuals, while GWAS sample sizes have been well in excess of 
100,000, this might be one explanation for the pronounced difference in 
variance explained between the respective disorder-specific PRS and 
MRS. Although it is unclear at present whether MRS may ever reach the 
predictive power of PRS, their predictive power might increase with 
growing discovery MWAS sample sizes via meta-analytical efforts. In the 
context of MDD, for example, a case-control MWAS meta-analysis is 
currently being conducted within the Psychiatric Genomics Consortium 
(see preprint by Shen et al. [93]), to which we are contributing with our 
data. Other possible explanations for the limited amount of variance 
explained by MRS include a lack of stability of disorder-associated 
methylation differences over time, insufficient generalizability of the 
DNAm profiles detected in the discovery studies to other samples, and a 
general absence of distinctive DNAm profiles associated with psychiatric 
diagnoses in peripheral blood. Concerning the similarity of DNAm 
profiles between BD type 1 and SSD or between BD type 2 and MDD, the 
currently available MRS preclude any conclusions, as the absence of 
observable differences might be due to the limited predictive power of 
the MRS and the limited target sample size.

Based on the results of the supplementary MWAS, the indirect 
contribution of the lifestyle-related factors smoking behavior and BMI to 
DNAm profiles observable in affective and psychotic disorders was 
strikingly apparent. This is consistent with previous knowledge on the 
relation between the investigated disorders and smoking/BMI and the 
effect of smoking/BMI on DNAm. While these indirectly disorder- 
associated profiles per se may not be diagnostically informative, they 
provide important clinical information on modifiable risk factors that 
might contribute to the increase in mortality [94]. The challenge of 
distinguishing lifestyle-related from directly disorder-associated signa
tures in MWAS highlights the need for comprehensively phenotyped 
samples, in which systematic differences between groups can be un
covered. The effect of exogenous factors on DNAm also relates to the 
epigenetic age acceleration observed in the DNAm GrimAge and Phe
noAge model, since smoking behavior, for example, is known to increase 
mortality and was explicitly included in the design of the DNAm 
GrimAge model [28]. Our results are consistent with previous findings 
of epigenetic age acceleration in affective and psychotic disorders 
captured by second-generation epigenetic clocks [29,33–36,39,40] and 
emphasize that all contributions to an association signal should be 
dissected in order to derive insights of potential clinical relevance. Of 
note, while we did not observe a difference in epigenetic aging between 
any of the diagnostic groups based on the first-generation Skin & Blood 
clock, some previous studies had suggested a decrease in epigenetic 
aging in schizophrenia compared to controls [95,96] based on Horvath’s 
first-generation multi-tissue clock [97]. However, almost 10 % of the 

training data for Horvath’s multi-tissue clock consisted of individuals 
with schizophrenia (due to the inclusion of the publicly available 
schizophrenia case-control datasets GSE41037 and GSE41169), which 
diminishes the utility of this multi-tissue clock for the detection of SSD- 
related differences [98]. Moreover, Wu et al. [95] had also included 
GSE41037 and GSE41169 in their study sample, leading to considerable 
sample overlap between training and test data. Therefore, we do not 
consider our results on epigenetic age acceleration in SSD to be in 
contrast to prior evidence. The absence of correlations between esti
mates of epigenetic and brain age acceleration in the present FOR2107 
sample is in line with a study by Teeuw et al. [30], and thus provides 
additional evidence that blood-based epigenetic clocks and brain age 
models might not capture equivalent aspects of biological aging.

The present study had four main limitations, which must be 
considered when interpreting the results. First, in the context of psy
chiatric disorders, blood represents only a surrogate tissue, and may not 
fully reflect any disorder-related DNAm profiles that are present in brain 
tissue. This, however, does not rule out the potential value of blood- 
based DNAm profiles as clinical biomarkers in psychiatry, and tools 
such as BECon [99], designed for interpreting DNAm findings from 
blood in the context of brain, may be used to generate hypotheses about 
causal mechanisms. Second, these initial analyses did not consider more 
specific factors, such as medication effects. Since previous research has 
suggested the existence of DNAm changes secondary to pharmaco
therapy [100], this should be taken into account in future studies. Third, 
the present sample size was limited. If alterations in blood-based DNAm 
profiles do exist, but have only small effect sizes at the level of individual 
CpG sites, larger sample sizes are needed to obtain the statistical power 
that is required to detect these effects. Finally, it is conceivable that the 
mood state influenced the methylation results of the BD group. Due to 
the limited sample size, the present study did not conduct additional 
analyses in BD with regard to mood state. Future studies with larger 
samples should systematically investigate the association of mood state 
(e.g. euthymic, depressive, (hypo-)manic and mixed) with DNA 
methylation profiles.

5. Conclusion

The present study has added further evidence that no large-scale 
differences in blood-based DNAm profiles are directly associated with 
affective and psychotic disorders. Moreover, our study has confirmed 
that the disorder-associated DNAm signatures are strongly influenced by 
lifestyle-associated factors, in particular smoking behavior and BMI. 
Beyond the first line of analyses presented in this study, the generated 
DNAm dataset – in combination with the deep phenotype, genotype, and 
MRI data as well as other omics layers available for the FOR2107 cohort 
– represents a valuable resource for future multimodal studies and in
ternational meta-analyses of DNAm profiles in MDD, BD, and SSD.
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