001046171 001__ 1046171
001046171 005__ 20250930132712.0
001046171 0247_ $$2doi$$a10.1016/j.jmps.2025.106325
001046171 0247_ $$2ISSN$$a0022-5096
001046171 0247_ $$2ISSN$$a1873-4782
001046171 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03714
001046171 0247_ $$2WOS$$aWOS:001572477800001
001046171 037__ $$aFZJ-2025-03714
001046171 082__ $$a530
001046171 1001_ $$0P:(DE-Juel1)190548$$aTandogan, I. T.$$b0
001046171 245__ $$aA multi-physics model for dislocation driven spontaneous grain nucleation and microstructure evolution in polycrystals
001046171 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2026
001046171 3367_ $$2DRIVER$$aarticle
001046171 3367_ $$2DataCite$$aOutput Types/Journal article
001046171 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1757919662_11287
001046171 3367_ $$2BibTeX$$aARTICLE
001046171 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001046171 3367_ $$00$$2EndNote$$aJournal Article
001046171 520__ $$aThe granular microstructure of metals evolves significantly during thermomechanical processing through viscoplastic deformation and recrystallization. Microstructural features such as grain boundaries, subgrains, localized deformation bands, and non-uniform dislocation distributions critically influence grain nucleation and growth during recrystallization. Traditionally, modeling this coupled evolution involves separate, specialized frameworks for mechanical deformation and microstructural kinetics, typically used in a staggered manner. Nucleation is often introduced ad hoc, with nuclei seeded at predefined sites based on criteria like critical dislocation density, stress, or strain. This is a consequence of the inherent limitations of the staggered approach, where newly formed grain boundaries or grains have to be incorporated with additional processing.In this work, we propose a unified, thermodynamically consistent field theory that enables spontaneous nucleation driven by stored dislocations at grain boundaries. The model integrates Cosserat crystal plasticity with the Henry–Mellenthin–Plapp orientation phase field approach, allowing the simulation of key microstructural defects, as well as curvature- and stored energy-driven grain boundary migration. The unified approach enables seamless identification of grain boundaries that emerge from deformation and nucleation. Nucleation is activated through a coupling function that links dislocation-related free energy contributions to the phase field. Dislocation recovery occurs both at newly formed nuclei and behind migrating grain boundaries.The model’s capabilities are demonstrated using periodic bicrystal and polycrystal simulations, where mechanisms such as strain-induced boundary migration, subgrain growth, and coalescence are captured. The proposed spontaneous nucleation mechanism offers a novel addition to the capabilities of phase field models for recrystallization simulation.
001046171 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001046171 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001046171 7001_ $$0P:(DE-Juel1)186706$$aBudnitzki, M.$$b1$$eCorresponding author
001046171 7001_ $$0P:(DE-Juel1)186075$$aSandfeld, S.$$b2
001046171 773__ $$0PERI:(DE-600)2012341-3$$a10.1016/j.jmps.2025.106325$$gVol. 206, p. 106325 -$$nPart A$$p106325 -$$tJournal of the mechanics and physics of solids$$v206$$x0022-5096$$y2026
001046171 8564_ $$uhttps://juser.fz-juelich.de/record/1046171/files/1-s2.0-S0022509625003011-main.pdf$$yOpenAccess
001046171 909CO $$ooai:juser.fz-juelich.de:1046171$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001046171 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190548$$aForschungszentrum Jülich$$b0$$kFZJ
001046171 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186706$$aForschungszentrum Jülich$$b1$$kFZJ
001046171 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186075$$aForschungszentrum Jülich$$b2$$kFZJ
001046171 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001046171 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001046171 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
001046171 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-02
001046171 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001046171 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-02
001046171 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
001046171 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001046171 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001046171 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review$$bASC$$d2025-01-02
001046171 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001046171 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-02$$wger
001046171 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001046171 920__ $$lyes
001046171 9201_ $$0I:(DE-Juel1)IAS-9-20201008$$kIAS-9$$lMaterials Data Science and Informatics$$x0
001046171 980__ $$ajournal
001046171 980__ $$aVDB
001046171 980__ $$aUNRESTRICTED
001046171 980__ $$aI:(DE-Juel1)IAS-9-20201008
001046171 9801_ $$aFullTexts