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 A B S T R A C T

The granular microstructure of metals evolves significantly during thermomechanical processing 
through viscoplastic deformation and recrystallization. Microstructural features such as grain 
boundaries, subgrains, localized deformation bands, and non-uniform dislocation distributions 
critically influence grain nucleation and growth during recrystallization. Traditionally, modeling 
this coupled evolution involves separate, specialized frameworks for mechanical deformation 
and microstructural kinetics, typically used in a staggered manner. Nucleation is often intro-
duced ad hoc, with nuclei seeded at predefined sites based on criteria like critical dislocation 
density, stress, or strain. This is a consequence of the inherent limitations of the staggered 
approach, where newly formed grain boundaries or grains have to be incorporated with 
additional processing.

In this work, we propose a unified, thermodynamically consistent field theory that enables 
spontaneous nucleation driven by stored dislocations at grain boundaries. The model integrates 
Cosserat crystal plasticity with the Henry–Mellenthin–Plapp orientation phase field approach, 
allowing the simulation of key microstructural defects, as well as curvature- and stored energy-
driven grain boundary migration. The unified approach enables seamless identification of grain 
boundaries that emerge from deformation and nucleation. Nucleation is activated through a 
coupling function that links dislocation-related free energy contributions to the phase field. 
Dislocation recovery occurs both at newly formed nuclei and behind migrating grain boundaries.

The model’s capabilities are demonstrated using periodic bicrystal and polycrystal simu-
lations, where mechanisms such as strain-induced boundary migration, subgrain growth, and 
coalescence are captured. The proposed spontaneous nucleation mechanism offers a novel 
addition to the capabilities of phase field models for recrystallization simulation.

. Introduction

The granular microstructure of crystalline metals significantly transforms during mechanical processing and heat treatment. 
iscoplastic deformation generates a large number of dislocations, often non-uniformly and concentrated at defects such as grain 
oundaries and second phase particles (Ashby, 1970). Within the grains, localized regions of intense deformation (slip bands), and 
eorientation (kink bands) can form (Asaro and Rice, 1977; Stinville et al., 2023), or the grains may fragment into smaller subgrains 

∗ Corresponding author.
E-mail address: m.budnitzki@fz-juelich.de (M. Budnitzki).
ttps://doi.org/10.1016/j.jmps.2025.106325
eceived 10 June 2025; Received in revised form 5 August 2025; Accepted 14 August 2025
vailable online 10 September 2025 
022-5096/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license 
 http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/jmps
https://www.elsevier.com/locate/jmps
https://orcid.org/0000-0003-0081-4832
https://orcid.org/0000-0002-4516-0425
https://orcid.org/0000-0001-9560-4728
mailto:m.budnitzki@fz-juelich.de
https://doi.org/10.1016/j.jmps.2025.106325
https://doi.org/10.1016/j.jmps.2025.106325
http://creativecommons.org/licenses/by/4.0/


I.T. Tandogan et al. Journal of the Mechanics and Physics of Solids 206 (2026) 106325 
separated by low-angle grain boundaries (Sedláček et al., 2002). These locations of high stored energy act as nucleation sites during 
recrystallization through mechanisms such as strain induced boundary migration (SIBM) and nucleation as well as subgrain growth 
and coalescence, where dislocation-free nuclei expand into other grains reducing total energy. High-angle grain boundaries and triple 
junctions with large lattice orientation jumps are also preferential sites for nucleation (Beck and Sperry, 1950; Cahn, 1950; Rios et al., 
2005; Raabe, 2014; Alaneme and Okotete, 2019; Ferdinand Knipschildt, 2022). After recrystallization, grain coarsening increases 
the overall size of the grains reducing the total area of the grain boundaries; in this regime the migration of grain boundaries is 
driven by curvature as well as stored energy (Gottstein and Shvindlerman, 2009). A non-uniform distribution of the latter can cause 
abnormal growth of some grains (Rollett et al., 2017).

The kinetics of recrystallization and grain boundary motion have been studied with a variety of methods such as vertex techniques 
(cf. Gill and Cocks (1996) and McElfresh and Marian (2023)), cellular automata (e.g. Hesselbarth and Göbel (1991), Raabe (2002), 
Chen et al. (2021) and Liu et al. (2024)), Monte Carlo Potts (Anderson et al., 1984; Mason et al., 2015; Tutcuoglu et al., 2019; Yu 
et al., 2021) and level-set methods (Sarrazola et al., 2020a,b; Bernacki, 2024) as well as phase field models (cf. Tourret et al. (2022) 
for a review), where the last two can implicitly keep track of moving interfaces. Phase field approaches that treat grain boundaries 
(GB) as continuous diffuse interfaces, are divided mainly into two families. Multi-phase field (MPF) models (see Steinbach et al. 
(1996), Steinbach and Pezzolla (1999) and Fan and Chen (1997)) where each grain is represented by an individual order parameter, 
and orientation phase field models (cf. Kobayashi et al. (2000), Warren et al. (2003) and Henry et al. (2012)), where a single order 
parameter and lattice orientation field describe the whole structure. While the phase field methods originally use curvature as the 
driving force, by construction, their free energy can be modified to include other physical effects such as stored energy (Steinbach 
and Apel, 2006; Abrivard et al., 2012a). Still, on their own, they do not account for microstructural changes caused by mechanical 
deformation. The coupled evolution problem is usually tackled by employing a model for GB migration sequentially with a mechanics 
model, such as crystal plasticity (CP), in order to capture deformation, where information is passed back and forth between them. 
The nucleation is incorporated in an intermediate step, requiring a third model governed by a probabilistic method or trigger criteria 
such as critical stress, strain or dislocation density, where a nucleus is planted in an ad-hoc manner at a possible nucleation site if 
requirements are met. Such an approach to modeling static and dynamic recrystallization was taken by Takaki and Tomita (2010), 
Li et al. (2020) and Chatterjee et al. (2024), where MPF was combined with CP frameworks. Three dimensional recrystallization 
and twinning in polycrystals were efficiently simulated by Chen et al. (2015), Zhao et al. (2016) and Hu et al. (2021) using spectral 
Fast-Fourier-Transform (FFT) based MPF and CP solvers. Takaki et al. (2007) coupled KWC type orientation phase field to finite 
element CP, whereas Abrivard et al. (2012a,b) and Luan et al. (2020) additionally enhanced the KWC phase field with a stored 
dislocation energy term.

Along with staggered schemes, some researchers have pursued a unified, thermodynamically consistent framework that strongly 
couples the evolution of mechanical and kinetic variables. In this regard, orientation phase field models are well suited for a strong 
coupling with crystal plasticity as the lattice orientation is an independent degree of freedom. Admal et al. (2018) and He and Admal 
(2021) have proposed a model that couples strain gradient CP with Kobayashi-Warren-Carter (KWC) type orientation phase field, 
by identifying the lattice orientation gradient in the KWC model’s free energy as the geometrically necessary dislocation density 
tensor (Nye, 1953). Hence, it is capable of predicting both shear-induced and curvature driven GB motion, where the GB motion is 
accommodated by plastic slip processes. It is also able to model subgrain nucleation through self-assembly of dislocations into cell 
walls. At the same time, Ask et al. (2018a,b, 2019, 2020) have utilized Cosserat type CP with independent micro-rotation degrees 
of freedom (Forest et al., 1997, 2000), recognizing it as a natural framework for the coupling. Cosserat (micropolar) continuum is 
a special case of the more general micromorphic continuum, where only the lattice curvature part of the full dislocation density 
tensor is considered (Forest et al., 2018). This reduces the number of additional degrees of freedom from 9 to 3 in 3D, making the 
model computationally more feasible; however, direct interaction of dislocation plasticity and grain boundaries is not considered. 
Still, in the coupled model, lattice orientation can evolve simultaneously due to viscoplastic deformation and GB migration, and the 
latter is driven by both curvature and accumulated dislocations. The coupling of Cosserat continuum with orientation phase field 
allows heterogeneous reorientation and subgrain formation in the bulk. Recently, Ghiglione et al. (2024) and Doghman et al. (2025) 
showed through the torsion of a single crystal rod that the model can also trigger spontaneous grain nucleation. New grains are 
formed as the result of an instability caused by the torsion-induced strong gradient in lattice orientation. Another unified framework, 
coupling Henry-Mellenthin-Plapp (HMP) type orientation phase field (Henry et al., 2012; Staublin et al., 2022) with Cosserat CP 
(CCP) was proposed by Tandogan et al. (2025), where the HMP model offered some improvements compared to the KWC orientation 
phase field.

In this paper, we present an improved version of the HMP-CCP model (Tandogan et al., 2025), enhanced with model-free 
spontaneous dislocation driven grain nucleation in polycrystals with preferred nucleation sites at the grain boundaries. The 
microstructure can evolve by viscoplastic deformation and GB migration, where the latter is driven by curvature and stored energy 
gradients. The coupled model with the proposed nucleation mechanism reproduce SIBM, subgrain coarsening and coalescence 
mechanisms seamlessly in a strongly coupled setting. This is achieved by using a modified form of the stored energy contribution of 
dislocations to the free energy in the grain boundaries. By adjusting the model parameters, it is possible to strengthen or weaken the 
nucleation mechanism. Dislocations are recovered at the nuclei and in the wake of GBs using a modified Kocks-Mecking-Teodosiu 
law. Furthermore, similar to the KWC-CCP model, localized deformation and resulting formation of slip, kink bands, as well as 
fragmentation of grains into subgrains are captured, which significantly affect the nucleation behavior. To the best of authors 
knowledge, no such a coupled treatment of nucleation in a unified and thermodynamically consistent network has been proposed 
to date.
2 
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The paper is structured as follows: Section 2 summarizes the coupled Cosserat crystal plasticity and HMP orientation phase 
field framework, presenting the governing equations, constitutive model, and the proposed nucleation mechanism. In Section 3, the 
nucleation mechanism and its dependency on misorientation, dislocation distribution and GB velocity is explored. The capabilities 
of the model are demonstrated based on periodic bicrystal and polycrystal examples. Finally, the paper is concluded with a summary 
and outlook in Section 4.

2. Diffuse interface Cosserat crystal plasticity-HMP orientation phase field framework

In this section, a summary of the modeling framework is presented in a small deformation setting. The details of the model, 
which couples Cosserat crystal plasticity with the HMP type orientation phase field (Henry et al., 2012; Staublin et al., 2022), were 
introduced previously in Tandogan et al. (2025). For the detailed derivations the reader is referred to this publication. In the present 
work, a fully coupled, dislocation density based mechanism for spontaneous grain nucleation is proposed. Sections 2.1 and 2.2 give 
an overview over the balance equations and the constitutive equations, respectively. Finally, Section 2.3 presents the modifications 
proposed to enable the grain nucleation mechanism.

Notation

In the following, vectors 𝐴𝑖 are denoted by 𝑨, 2nd order tensors 𝐴𝑖𝑗 by 𝑨∼ , 3rd order Levi-Civita permutation tensor 𝜖𝑖𝑗𝑘 by 𝝐≃, 
4th order tensors 𝐶𝑖𝑗𝑘𝑙 by 𝑪≈ . The Kronecker delta is denoted by 𝛿𝑖𝑗 . Gradient is denoted by ∇(.), divergence by ∇ ⋅ (.), trace by 𝑡𝑟(.), 
transpose by (.)T, dot product by (.) ⋅ (.), double contraction by (.) ∶ (.), and tensor product by (.)⊗ (.). The partial derivative of (.)
with respect to 𝜂 is denoted by (.),𝜂 . The transformation between pseudo-vector 

×
𝑨 and skew-symmetric tensor 𝑨∼ skew is given by 

×
𝑨 = axi(𝑨∼

skew) ∶= −1
2
𝝐
≃
∶ 𝑨∼

skew and 𝑨∼
skew = −𝝐

≃
⋅

×
𝑨. (1)

2.1. Balance laws

At each material point, the Cosserat continuum enhances the classical displacement degrees of freedom 𝒖 with the additional in-
dependent microrotation degrees of freedom represented by the pseudo-vector 𝜣. In the small deformation setting, the microrotation 
tensor is given by 

𝑹∼ = 𝑰∼ − 𝝐
≃
⋅𝜣, (2)

where 𝑰∼ is the identity tensor. The objective deformation measures are, the deformation tensor 𝒆∼ and the curvature tensor 𝜿∼ where 

𝒆∼ = ∇𝒖 + 𝝐
≃
⋅𝜣, 𝜿∼ = ∇𝜣, (3)

respectively (Eringen and Kafadar, 1976; Forest et al., 1997). The former is additively decomposed into elastic and plastic parts 
𝒆∼ = 𝒆∼

e + 𝒆∼
p, (4)

while a plastic curvature is not considered for simplicity, though its inclusion is possible [see Forest et al. (1997)].
In the coupled model, the Cosserat theory is enhanced with the orientation phase field model introducing a course-grained 

measure of the crystalline order, 𝜂 ∈ [0, 1]. It is equal to 1 in the bulk of the grains and <1 in the diffuse grain boundaries. Moreover, 
the lattice orientation is represented by the Cosserat microrotation 𝜣. By manipulating Eqs. (3) and (4), defining the spin tensor 
𝝎∼ =

[

∇𝒖̇ −
(

∇𝒖̇
)T] ∕2, and its additive elastic–plastic decomposition ×𝝎e ∶= ×𝝎 − ×𝝎p and ×𝝎p ∶=

×
𝒆̇p, it is found that 

×
𝒆̇e = ×𝝎e − 𝜣̇. (5)

According to Eq.  (5), the rate of change of the lattice orientation and the Cosserat microrotation will be equal if the constraint ×𝒆e ≡ 0
is fulfilled. It can be enforced on the constitutive level with a penalty parameter (Forest et al., 2000), or by a more sophisticated 
and efficient duality-based formulation proposed recently by Baek et al. (2022). We follow the former approach for simplicity.

The balance equations and the boundary conditions are derived by applying the principle of virtual power. The phase field 
portion of the resulting equations corresponds to Gurtin’s microforce balance (Gurtin, 1996; Gurtin and Lusk, 1999). The boundary 
value problem is given by the following equations (cf. Ask et al. (2018b) for a detailed derivation)

∇ ⋅ 𝝃
𝜂
+ 𝜋𝜂 + 𝜋ext𝜂 = 0 in 𝛺, (6)

∇ ⋅ 𝝈∼ + 𝒇 ext = 𝟎 in 𝛺, (7)

∇ ⋅𝒎∼ + 2 ×𝝈 + 𝒄ext = 𝟎 in 𝛺, (8)

𝝃
𝜂
⋅ 𝒏 = 𝜋c𝜂 on 𝜕𝛺, (9)

𝝈∼ ⋅ 𝒏 = 𝒇 c on 𝜕𝛺, (10)

𝒎∼ ⋅ 𝒏 = 𝒄c on 𝜕𝛺, (11)
3 
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where 𝒇 and 𝒄 are forces and couples, respectively. The superscript (.)ext denotes external forces and couples, while (.)c denotes 
contact forces and couples. The vector 𝒏 is the outward normal to the surface 𝜕𝛺 of material body 𝛺. 𝜋𝜂 and 𝝃𝜂 are the generalized 
microforce and stress, respectively. 𝝈∼ is the (generally unsymmetrical) stress tensor and 𝒎∼  is the couple-stress. Eqs. (6)–(11) are 
derived without any assumption on the constitutive behavior and the work conjugate pairs used in the derivation are given by 
{

𝜂 ∶ 𝜋𝜂 ,∇𝜂 ∶ 𝝃
𝜂
, 𝒆∼ ∶ 𝝈∼ ,𝜿∼ ∶ 𝒎∼

}

.

2.2. Constitutive equations

We define the Helmholtz free energy density as 𝜓 ∶= 𝜓
(

𝜂,∇𝜂, 𝒆∼
e,𝜿∼, 𝑟𝛼

) where 𝑟𝛼 are plasticity related internal variables. Applying 
the Clausius-Duhem inequality results in 

−
[

𝜋𝜂 +
𝜕𝜓
𝜕𝜂

]

𝜂̇ +
[

𝝃
𝜂
−
𝜕𝜓
𝜕∇𝜂

]

⋅ ∇𝜂̇ +
[

𝝈∼ −
𝜕𝜓
𝜕𝒆∼e

]

∶ 𝒆̇∼
e +

[

𝒎∼ −
𝜕𝜓
𝜕𝜿∼

]

∶ 𝜿̇∼ + 𝝈∼ ∶ 𝒆̇∼
p −

∑

𝛼

𝜕𝜓
𝜕𝑟𝛼

𝑟̇𝛼 ≥ 0. (12)

The relaxation dynamics of the phase field is recovered by decomposing the scalar microforce 𝜋𝜂 = 𝜋eq𝜂 + 𝜋dis𝜂  into energetic 𝜋eq𝜂
and dissipative 𝜋dis𝜂  parts. Then, the constitutive relations are given by, 

𝜋eq𝜂 = −
𝜕𝜓
𝜕𝜂
, 𝝃

𝜂
=

𝜕𝜓
𝜕∇𝜂

, 𝝈∼ =
𝜕𝜓
𝜕𝒆∼e

, 𝒎∼ =
𝜕𝜓
𝜕𝜿∼

. (13)

Introducing thermodynamic forces related to 𝑟𝛼 as 𝑅𝛼 = 𝜕𝜓∕𝜕𝑟𝛼 , and the dissipation potential 𝛺 = 𝛺p(𝝈∼ , 𝑅𝛼 ; 𝜂) + 𝛺
𝜂(𝜋dis𝜂 ), the 

evolution of dissipative processes are obtained as 

𝒆̇∼
p = 𝜕𝛺p

𝜕𝝈∼
, 𝑟̇𝛼 = − 𝜕𝛺

p

𝜕𝑅𝛼
, 𝜂̇ = − 𝜕𝛺𝜂

𝜕𝜋𝑑𝑖𝑠𝜂
. (14)

Now specific forms of the free energy density 𝜓 and dissipation potential 𝛺 are provided for closure. Similar to Tandogan et al. 
(2025), the problem is restricted to two dimensions and isotropic grain boundary energies for simplicity. Therefore, it follows that 
𝜣 = [0 0 𝜃]T, ×𝝎 =

[

0 0 ×𝜔
]T, ×𝒆 =

[

0 0 ×𝑒
]T and 𝒎𝜃 = [𝑚31 𝑚32 𝑚33]T.

2.2.1. Free energy density
With the above considerations, the following free energy density is proposed 

𝜓
(

𝜂,∇𝜂, 𝒆∼
e,∇𝜃, 𝑟𝛼

)

= 𝑓0

[

𝛼𝑉 (𝜂) + 𝜈2

2
|∇𝜂|2 + 𝜇2𝑔(𝜂)𝑎2(𝒏gb, 𝜃)|∇𝜃|

2
]

+ 1
2
𝜺∼
e ∶ 𝑬

≈
s ∶ 𝜺∼

e + 2𝜇c
(×𝑒e

)2 + 𝜙(𝜂)
𝑁
∑

𝛼=1

𝜆
2
𝜇e𝑟2𝛼 ,

(15)

where 𝑓0 is a normalization coefficient. The terms in the first line are inherited from the Henry-Mellenthin-Plapp (Henry et al., 2012) 
orientation phase field model. The coefficients 𝛼, 𝜈 and 𝜇 can be used to tune the equilibrium profiles of diffuse grain boundaries, 
i.e., the order parameter 𝜂 and lattice orientation 𝜃. The potential 𝑉 (𝜂) is a single-well function penalizing the existence of grain 
boundaries, i.e. 𝜂 < 1, while the second and third terms penalize gradients in 𝜂 and 𝜃. It is easy to see that all terms are minimized 
for a single grain solution. The coupling function 𝑔(𝜂) is constructed such that it is singular for 𝜂 = 1, which makes localized grain 
boundary solutions possible (Henry et al., 2012). 𝑎(𝒏gb, 𝜃) in the last term is the anisotropy coefficient used in the HMP model to 
introduce inclination dependent grain boundary energy, where 𝒏gb is the grain boundary normal. In this work, we assume isotropic 
interfaces for simplicity and set 𝑎(𝒏gb, 𝜃) = 1.

The second line of (15) contains the elastic energy contributions, where 𝑬
≈
s is the 4th order elasticity tensor with minor and 

major symmetry and 𝜇c is the Cosserat couple modulus. As shown in Ask et al. (2018a) and Tandogan et al. (2025), a large 𝜇c
penalizes the skew-symmetric part of the elastic deformation, which enforces the constraint ×𝒆e ≡ 0; then the Cosserat microrotation 
follows the lattice orientation. The last term is the energy contribution due to accumulated dislocations where 𝑁 is the number of 
slip systems, 𝜆 is a parameter close to 0.3 (Hirth et al., 1983) and 𝜇e is the shear modulus. 𝜙(𝜂) is a coupling function, which results 
in a driving force for migration of grain boundaries in the presence of stored dislocations. Previously, in Tandogan et al. (2025), it 
was shown that the form of this function directly affects the equilibrium of the order parameter 𝜂 and the dynamics of the grain 
boundary migration. In this work, we show that the same function can be used to implement dislocation driven grain nucleation.

By inserting (15) into (13), the microforces, couple-stress and stress are derived as

𝜋eq𝜂 = − 𝑓0
[

𝛼𝑉,𝜂 + 𝜇2𝑔,𝜂|∇𝜃|
2] − 𝜙,𝜂

𝑁
∑

𝛼=1

𝜆
2
𝜇e𝑟2𝛼 , (16)

𝝃
𝜂
=𝑓0

[

𝜈2∇𝜂
]

, (17)

𝒎𝜃 =𝑓0
[

2𝜇2𝑔(𝜂)∇𝜃
]

, (18)

𝝈∼ =𝑬
≈
s ∶ 𝜺∼

e − 2𝜇c 𝝐≃ ⋅
×𝒆e. (19)

The last term in (19) is the skew part of the stress tensor and it is equivalent to ×𝜎 = 2𝜇 ×𝑒e in 2D.
c

4 
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2.2.2. Dissipation potential
The dissipation potential is chosen as 

𝛺p(𝝈∼ , 𝑅𝛼 ; 𝜂) =
𝑁
∑

𝛼=1

𝐾v
𝑛 + 1

⟨

|𝜏𝛼eff | − 𝑅𝛼∕𝜙(𝜂)
𝐾v

⟩𝑛+1

+ 1
2
𝜏−1∗ (𝜂) ×𝝈 ⋅

×𝝈 , (20)

where ⟨⋅⟩ are Macaulay brackets defined by ⟨⋅⟩ ∶= max(0, ⋅), 𝐾v and 𝑛 are viscosity parameters. 𝜏𝛼eff  is the resolved shear stress given 
by 𝜏𝛼eff = 𝒍𝛼 ⋅ 𝝈∼ ⋅ 𝒏𝛼 for the slip direction 𝒍𝛼 and the slip plane normal 𝒏𝛼 . Note that in the Cosserat framework the skew part of 𝝈∼
results in a back stress 𝜏𝛼𝑏  contribution to 𝜏𝛼eff = 𝜏𝛼 − 𝜏𝛼𝑏  acting as a size dependent kinematic hardening (Forest, 2008; Mayeur and 
McDowell, 2015; Forest and Ghiglione, 2023). The term 𝑅𝛼∕𝜙(𝜂) is identified as the critically resolved shear stress of slip system 𝛼. 
From its definition, 

𝑅𝛼 =
𝜕𝜓
𝜕𝑟𝛼

= 𝜆𝜙(𝜂)𝜇e𝑟𝛼 with 𝑟𝛼 = 𝑏

√

√

√

√

√

𝑁
∑

𝛽=1
ℎ𝛼𝛽𝜌𝛽 , (21)

where 𝑏 is the norm of the Burgers vector, ℎ𝛼𝛽 is the slip system interaction matrix and 𝜌𝛼 are statically stored dislocation (SSD) 
densities. Inserting (20) in (14), we get the plastic deformation rate 

𝒆̇∼
p =

𝑁
∑

𝛼=1
𝛾̇𝛼 𝒍𝛼 ⊗ 𝒏𝛼 + 1

2
𝜏−1∗ (𝜂) skew(𝝈∼) with 𝛾̇𝛼 =

⟨

|𝜏𝛼eff | − 𝑅𝛼∕𝜙(𝜂)
𝐾v

⟩𝑛

sign 𝜏𝛼eff (22)

as the slip rate according to the viscoplastic flow rule from Cailletaud (1992). The unconventional purely skew symmetric term in 
(22) is associated with the atomic reshuffling and the accompanying reorientation process during migration of grain boundaries (Ask 
et al., 2018b). It is restricted to the grain boundaries by choosing an appropriate form of inverse mobility function 𝜏∗(𝜂), i.e., 

𝜏∗ = 𝜏∗𝑔(𝜂), (23)

where the singular function 𝑔(𝜂) is large in the bulk and small in the grain boundary. Let ×𝒆p = ×𝒆slip + ×𝒆∗, where ×𝒆∗ is an eigenrotation. 
Then,

×
𝒆̇slip = ×𝝎p − ×𝝎∗, 𝝎∼

p−𝝎∼
∗= skew

( 𝑁
∑

𝛼=1
𝛾̇𝛼 𝒍𝛼 ⊗ 𝒏𝛼

)

, (24)

×
𝒆̇∗ = ×𝝎∗, ×𝝎∗=𝜏−1∗

×𝝈 . (25)

From (3) and (4) we have 
×𝒆e = axi(skew[∇𝒖]) − ×𝒆p −𝜣 = axi(skew[∇𝒖]) − ×𝒆slip − ×𝒆∗ −𝜣, (26)

where the undeformed state is not stress free, due to non-zero 𝜣, unless the eigenrotation ×𝒆∗ is initialized as (Ask et al., 2018b; 
Tandogan et al., 2025) 

×𝒆∗(𝑡 = 0) = ×𝒆p(𝑡 = 0) = −𝜣(𝑡 = 0). (27)

According to (26), a migrating grain boundary (or an initially sharp grain boundary that evolves into diffuse form) generates ×𝒆e
and ×𝝈 inside the interface due to differences between ×𝒆∗ and 𝜣, which are relaxed by the evolution of eigenrotation ×𝒆∗ in (25). 
This process bears some similarity to the rearrangement of atoms in a real interface to accommodate lattice mismatch and minimize 
energy.

An SSD density based hardening is used, whose evolution is governed by a modified Kocks-Mecking-Teodosiu law (Abrivard 
et al., 2012a; Ask et al., 2018a,b) 

𝜌̇𝛼 =

⎧

⎪

⎨

⎪

⎩

1
𝑏

(

𝐾
√

∑

𝛽 𝑎𝛼𝛽𝜌𝛽 − 2𝑑𝜌𝛼
)

|𝛾̇𝛼| − 𝜌𝛼𝐶D𝐴(𝜂)𝜂̇ if 𝜂̇ > 0,

1
𝑏

(

𝐾
√

∑

𝛽 𝑎𝛼𝛽𝜌𝛽 − 2𝑑𝜌𝛼
)

|𝛾̇𝛼| if 𝜂̇ ≤ 0,
(28)

where 𝐾 is the mobility constant, 𝑑 is the critical annihilation distance between dislocations of opposite sign, and 𝑎𝛼𝛽 is an interaction 
matrix for cross-slip. The extra term −𝜌𝛼𝐶D𝐴(𝜂)𝜂̇ is active only when the order parameter 𝜂 increases, for example in the wake of 
a migrating grain boundary or in a nucleating grain. It represents the static recovery of dislocations (Abrivard et al., 2012a; Ask 
et al., 2018a; Bailey and Hirsch, 1962). This is a simplistic representation of the combined absorption and annihilation recovery 
mechanisms that occur during the migration of a grain boundary. For sufficiently large 𝐶D, full recovery can be achieved. The 
function 𝐴(𝜂) localizes this recovery to the grain boundary region. In this work we use the form 

𝐴(𝜂) =
7𝜂3 − 6𝜂4

(1 − 𝜂)
. (29)

In the previous works by Ask et al. (2018a,b, 2019, 2020) and in Tandogan et al. (2025), a hyperbolic tangent form based on |∇𝜃|
was employed. However, we observed that such a form does not allow full recovery when two migrating grain boundaries merge, 
and that Eq.  (29) performs better. This is, firstly, because |∇𝜃| > 0 is a more strict representation of the GB which is active in a 
5 
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narrower region compared to the 𝜂 < 1 condition (cf. Fig.  4). Secondly, towards the end of a merge the grain in between two GBs 
rotates to decrease misorientation to zero, and at small misorientations tanh(|∇𝜃|2) is negligible while 1 − 𝜂 is not.

The quadratic dissipation potential 

𝛺𝜂 = 1
2
𝜏−1𝜂

(

𝜋dis𝜂
)2

(30)

is chosen for the evolution of the order parameter 𝜂 (Gurtin, 1996; Abrivard et al., 2012a). From (14) we get 
𝜋dis𝜂 = −𝜏𝜂 𝜂̇. (31)

Inserting (16)–(18) and (31) into the balance laws (6) and (8), while assuming the absence body forces and couple forces, gives the 
evolution equations for the order parameter 𝜂 and lattice orientation 𝜃

𝜏𝜂 𝜂̇ = 𝑓0𝜈
2∇2𝜂 − 𝑓0

[

𝛼𝑉,𝜂 + 𝜇2𝑔,𝜂|∇𝜃|
2] − 𝜙,𝜂

𝑁
∑

𝛼=1

𝜆
2
𝜇e𝑟2𝛼 , (32)

0 = 𝑓0∇ ⋅
[

𝜇2𝑔(𝜂)∇𝜃
]

+ 2𝜇c
×𝑒e. (33)

Eq. (33) can be rewritten using (25) as 
− 𝜏∗

×
𝑒̇∗ = 𝑓0∇ ⋅

[

𝜇2𝑔(𝜂)∇𝜃
]

. (34)

As before (Tandogan et al., 2025), the potential 𝑉 (𝜂) and the singular coupling function 𝑔(𝜂) are chosen as 

𝑉 (𝜂) = 1
2
(1 − 𝜂)2 and 𝑔(𝜂) =

7𝜂3 − 6𝜂4

(1 − 𝜂)3
+ 𝑐 ln(1 − 𝜂) + 𝐶0, (35)

where 

𝐶0 = min
(

7𝜂3∗ − 6𝜂4∗
(1 − 𝜂∗)3

+ 𝑐 ln(1 − 𝜂∗)

)

+ 0.01 with 𝜂∗ = [0, 1]. (36)

For conditions restricting the choice of these functions see Staublin et al. (2022) and Tandogan et al. (2025). The logarithmic term 
in 𝑔(𝜂) is used to obtain a Read-Shockley type grain boundary energy. Moreover, in order to control the singularity and improve 
convergence, the coupling function is modified as 𝑔(𝜂) → 𝑔

(

min(𝜂, 𝜂 cutoff)
)

, where 𝜂 cutoff is taken as (1 − 10−4).

2.3. Grain nucleation mechanism

The orientation phase field models by Kobayashi et al. (2000) and Henry et al. (2012) are constructed such that the free energy 
is minimized for a localized grain boundary solution. Recently, Ghiglione et al. (2024) showed that the Kobayashi-Warren-Carter 
(KWC) type phase field is capable of nucleating new grains starting with the (unstable) initial condition of a uniform orientation 
gradient. Utilizing this mechanism with the KWC-CCP coupled model, these authors were able to reproduce grain nucleation in a 
single crystal cylindrical rod which was plastically deformed by twisting. However, a prerequisite for this nucleation mechanism 
is the uniform orientation gradient inside a single crystal, which can be observed in a twisted rod, but is unlikely to occur in a 
deformed oligocrystal. Grain nucleation is observed to occur in deformed polycrystals at the grain boundaries, where energy content 
is increased due to stored dislocations (Rollett et al., 2017). In this work, we show that nucleation at the grain boundaries driven 
by stored dislocations is captured with the HMP-CCP coupled model by using a new form of SSD energy coupling function 𝜙(𝜂).

Previously, we have shown that the form of the coupling function 𝜙(𝜂) and its derivative 𝜙,𝜂 in the SSD energy term in (32) 
are important for the equilibrium profile of the order parameter and the grain boundary dynamics (Tandogan et al., 2025). When 
𝜙(𝜂) = 𝜂 and 𝜙,𝜂 = 1, the equilibrium value of the order parameter 𝜂 becomes <1 in the presence of stored dislocations (Ask et al., 
2018a), which is incompatible with the HMP model since it breaks the singularity of 𝑔(𝜂) in the bulk. Therefore, we have proposed 
some polynomial forms shown in Fig.  1 with 𝜙,𝜂(𝜂 = 1) = 0, which do not affect the equilibrium in the bulk (Tandogan et al., 2025). 
Building upon that, in this work we use, 

𝜙(𝜂) = 1
2
𝑐3

{

𝜂 − 𝑐−11 ln
[

cosh(𝑐1(𝑐2 − 𝜂))
]}

+ 𝑐0, (37)

with 

𝜙,𝜂(𝜂) =
𝑐3
2

−
𝑐3 tanh(𝑐1(𝜂 − 𝑐2))

2
, (38)

where the coefficients 𝑐1, 𝑐2 and 𝑐3 are non-negative scalars.
Fig.  1 shows the comparison of the coupling function used in this work with the previous polynomial forms. Since 𝜂 is a measure 

of order, the physical interpretation of 𝜙(𝜂) is that the energetic contribution of SSDs is more significant in the ordered, crystalline 
state. The new form sets a saturation value, of this dependence on the order parameter, such that above a given 𝜂 = 𝜂, the material 
is assumed to be ‘crystalline enough’, in terms of SSD energy contribution. This assumption makes the diffuse GB representation, 
which is some orders wider than a real GB, somewhat more physical, since the outer region of the diffuse GB is treated as bulk 
material. From the modeling perspective, the main feature of the new function is the step like form of its derivative, where the 
steepness and the position of the step are controlled by 𝑐  and 𝑐 , respectively. As seen in Eq. (32), 𝜙  creates a driving force on 
1 2 ,𝜂
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Fig. 1. Comparison of the SSD energy multiplier function 𝜙(𝜂) forms (left) and their derivatives 𝜙,𝜂(𝜂) (right). For the new form, 𝑐1 = 100 and 
𝑐2 = 0.9 is used. 𝑐0 = 𝑐3(1 − 𝜙|𝜂=1) for visualization purposes.

𝜂 in the presence of SSDs. However, for 𝜂 > 𝑐2, 𝜙,𝜂∕𝑐3 asymptotically approaches 0, while for 𝜂 < 𝑐2 it approaches 1. Hence, the 
equilibrium of 𝜂 is not affected in the bulk of the grain, while it is affected inside the grain boundary with the magnitude of the 
effect depending on the value of the SSD density. Note that if 𝑐2 ≫ 1, the function reduces to the form proposed by Abrivard et al. 
(2012a), where 𝜙,𝜂 = 1, and if 𝑐2 = 0, the driving force on the order parameter is effectively deactivated. When the SSD density is 
too large, the minimum value of 𝜂 can become less than zero, which is incompatible with the model. To prevent this, 𝑐3 is used 
as a scaling coefficient to keep 𝜂 inside the limits. The consequence of the new form is a dislocation driven grain nucleation and 
growth, which is demonstrated in the next section using numerical examples.

3. Numerical examples

In this section, the capabilities of the model are demonstrated with 2D finite element simulations. In Section 3.1 the chosen 
model parameters are given, where the grain boundary energy for misorientations up to 30◦ is fitted to data from literature for 
pure Copper (Cu). Section 3.2 focuses on the proposed grain nucleation mechanism, and presents plastic deformation driven grain 
boundary migration and grain nucleation with a periodic bicrystal example. Finally, in Section 3.3.2 the potential of the coupled 
HMP-CCP model is explored with periodic polycrystal examples containing 6 and 32 grains.

The model has been implemented in the FEniCS 2019 open-source finite element library (Alnaes et al., 2015) used together with 
the MFront code generator for the material models (Helfer et al., 2015). FEniCS handles the finite element framework and the global 
Newton procedure, while MFront is responsible for the constitutive portion of the model and iteration at the material point level. 
The communication between them is handled through the MGIS:fenics library (Helfer et al., 2020), which has been modified and 
extended for our purposes. The system of equations is solved with a monolithic approach where, in two dimensions, each node has 
4 degrees of freedom: the order parameter 𝜂, the Cosserat microrotation 𝜃 as well as two displacements (𝑢1, 𝑢2). A semi-implicit time 
discretization is used, and the resulting nonlinear system of equations is solved with the Newton–Raphson algorithm. The continuous 
and evolving lattice orientation 𝜃 is used to rotate between the global and the local coordinate systems.

3.1. Model parameters

In the simulations, the model parameters presented in Table  1 are used, unless otherwise stated. The material considered is pure 
copper. For the mechanical part of the model, the parameters for elasticity and plasticity are adopted from the literature (Gérard 
et al., 2009; Cheong and Busso, 2004). The Cosserat coupling modulus is chosen high enough to penalize Eq. (5). The recovery 
parameter 𝐶D in (28) is chosen to allow full recovery of dislocations.

The phase field parameters 𝜈, 𝛼 and 𝜇 determine the equilibrium profile of the order parameter and the orientation. They 
should be chosen by considering the length scale of the problem, which determines the admissible grain boundary thickness. The 
asymptotic analysis of the HMP model, which is also valid for the undeformed state in the HMP-CCP model, can be used to find 
equilibrium profiles and the grain boundary energy dependence on misorientation (Staublin et al., 2022; Tandogan et al., 2025). As 
an alternative, it is straightforward to calculate them from 1D grain boundary simulations. Fig.  2 shows the calibration of the grain 
boundary energy to the values from atomistic simulations of copper for ⟨100⟩ tilt grain boundaries. Fitting is achieved by adjusting 
𝑐 in (35) and 𝑓0 in (15). Calibration is limited to 30◦ misorientation, since the model does not account for the symmetry and cusps 
at larger angles.
7 
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Fig. 2. Grain boundary energies at increasing misorientations calibrated to atomistic simulations of ⟨100⟩ tilt grain boundaries (Wolf, 1990). 
Only the Read-Shockley part of the curve up to 30◦ is calibrated since the model does not capture the cusps at larger misorientations. Singular 
function 𝑔(𝜂) has the form (7𝜂3 − 6𝜂4)∕(1 − 𝜂)3 + 𝑐 ln(1 − 𝜂) + 𝐶0 to generate Read-Shockley type grain boundary energy, with 𝑐 = 3.

Table 1
Parameter set used for the coupled Cosserat crystal plasticity - HMP orientation phase field model.
 Phase field 𝑓0 (in kPa) 𝜏𝜂 (in J sm−3) 𝜏∗ (in J sm−3) 𝜈 (in μm) 𝛼 𝜇 (in μm) 𝑐  
 371 102𝑓0𝑡0; 104𝑓0𝑡0 102𝑓0𝑡0; 101𝑓0𝑡0 1 20 2.5/𝜋 3  
 
Mechanics

C11 (in GPa) C12 (in GPa) C44 (in GPa) 𝜇c (in GPa) 𝜆 𝑏 (in nm)  
 160 110 75 75 0.3 0.2556  
 𝐾v (in MPa s1∕𝑛) 𝑛 𝐾 𝑑 (in nm) ℎ𝛼𝛽 𝑎𝛼𝛽 𝐶D  
 10 10 1 10 𝛿𝛼𝛽 𝛿𝛼𝛽 100 

The motion of grain boundaries in the coupled model has two main sources, curvature as well as stored dislocation energy 
difference between neighboring grains. Currently, there is no available asymptotic procedure to include both effects, but it is possible 
to estimate them with simple numerical simulations. In this work, we focus on qualitative examples to show grain nucleation and 
grain boundary migration mechanisms, instead of fitting to experimental mobility data. If desired, the mobility data in Vandermeer 
et al. (1997) for pure copper can be used to adjust the mobility to the desired corresponding temperature. The inverse mobility 𝜏𝜂 is 
chosen to obtain a reasonable time scale for recrystallization, while 𝜏∗ is limited by the choice of 𝜏𝜂 (Tandogan et al., 2025). During 
the mechanical loading phase, 𝜏𝜂 is chosen as 102𝑓0𝑡0, whereas in the recrystallization phase it is 104𝑓0𝑡0 with 𝑡0 = 1, in order to 
emulate a temperature dependency. Accordingly, 𝜏∗ is 102𝑓0𝑡0 and 101𝑓0𝑡0 during loading and recrystallization, respectively.

The reasoning for the two different values of 𝜏𝜂 is that, as a simple constant inverse mobility coefficient, it is not able to cover the 
separate physics and different time scales of both mechanical loading and heat treatment phases at the same time. Lattice orientation 
𝜃 evolves in both phases, where during deformation it changes very rapidly in several seconds, while during heat treatment it changes 
slowly in the span of several hours. The 𝜏𝜂 that is inherited from the HMP orientation phase field is physically meaningful for the 
heat treatment phase, where it corresponds to a temperature, and we choose the value 104𝑓0𝑡0 according to that. If the same value 
is used during the deformation phase, the evolution of the order parameter 𝜂 cannot keep up with the rapid changes in orientation 
𝜃, and does not represent the deformed microstructure correctly. Therefore, it is necessary make 𝜏𝜂 process dependent. We assume 

𝜏𝜂 ∶= 𝜏𝜂(𝜃̇), (39)

such that in the presence of rapid reorientation, i.e. during loading, 𝜏𝜂 takes the value 102𝑓0𝑡0, where (⋅) is the domain average.

3.2. Dislocation driven grain nucleation and grain boundary migration

In the following simulations, the 2D periodic bicrystal structure shown in Fig.  3 is considered. The grains are 10 μm wide and 
have alternating orientations of 𝜃1 and 𝜃2. Periodic boundary conditions are applied on the solution variables at opposite points of 
the surface. The displacement 𝒖 is decomposed into a mean displacement field 𝑩∼ ⋅ 𝒙 and periodic fluctuations 𝒗 as, 

𝒖 = 𝑩∼ ⋅ 𝒙 + 𝒗, with 𝑩∼ =

⎡

⎢

⎢

⎢

⎣

0 𝐵12 0

𝐵21 0 0

0 0 0

⎤

⎥

⎥

⎥

⎦

, (40)

where 𝒙 is the position measured relative to lower left corner. The fluctuations 𝒗 are set to zero at the corners, and 𝐵12 or 𝐵21 is 
used to apply shear loading. Due to boundary conditions, the solution field is constant along 𝑥 ; hence, the extension of the domain 
2
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Fig. 3. Periodic bicrystal structure with variation in 𝑥1 direction.

Fig. 4. Order parameter 𝜂 (a), orientation 𝜃 (b) and SSD density 𝜌 (c) with SSD recovery activated (𝐶D = 100) or deactivated (𝐶D = 0) at times 
0, 1× 103 and 3× 103 s. The profiles are the same at 𝑡 = 0 s. The driving terms for 𝜂̇ on the right hand side of Eq.  (32) (d) for 𝐶D = 0. Parameters 
of 𝜙(𝜂) are 𝑐1 = 100, 𝑐2 = 0.95 and 𝑐3 = 1.7.

along 𝑥2 is only for visualization purposes. The domain is discretized into 400 blocks in 𝑥1 direction, each with two second order 
triangular elements with reduced integration.

In order to use the coupled model, first it is necessary to initialize the phase field. A detailed investigation of this process was 
presented by Tandogan et al. (2025), showing the effects of the model parameters such as the mobilities 𝜏𝜂 and 𝜏∗, and the Cosserat 
coupling modulus 𝜇c. Here, the focus is on plastic deformation and the new nucleation mechanism. The order parameter is initialized 
with 𝜂0 = 0.99. The eigenrotation is set to ×𝒆∗0 = −𝜣0 with 𝜣0 =

[

0 0 𝜃0
]T, so that stresses in the undeformed state are zero. Then, 

the fields are relaxed until equilibrium is reached, where ×𝒆∗ evolves according to (25), following the changes of 𝜃 inside the grain 
boundary.

In order to demonstrate the grain nucleation mechanism we focus on the GB at 𝑥1 = 5μm in Fig.  3. The initial profiles of 𝜂 and 
𝜃 at 𝑡 = 0 s are shown in Fig.  4a/b. Fig.  4d shows the forces in (32) that drive the evolution of the order parameter 𝜂, where 

𝑓𝜂1 = 𝑓0𝜈
2∇2𝜂, 𝑓𝜂2 = −𝑓0

[

𝛼𝑉,𝜂
]

, 𝑓𝜂3 = −𝑓0
[

𝜇2𝑔,𝜂|∇𝜃|
2] , 𝑓𝜂4 = −𝜙,𝜂

𝜆
2
𝜇e𝑏2𝜌. (41)

At 𝑡 = 0 s, we introduce a constant dislocation density of 𝜌0 = 2.5 × 1015 m−2 in both grains, assuming that we have a single slip 
system. Before the introduction of 𝜌0, we have 𝑓𝜂4 = 0, and the forces 𝑓𝜂1 , 𝑓𝜂2  and 𝑓𝜂3  are in equilibrium. A non-zero dislocation 
density creates a net driving force on 𝜂 [see (41) and Fig.  4d] and changes the equilibrium profile. 𝑓𝜂4  is active only inside the grain 
boundary and not in the bulk, because of the form of 𝜙,𝜂 shown in Fig.  1. Its magnitude is controlled by the coefficient 𝑐3 and the 
dislocation density 𝜌. The sharpness and width of the 𝑓𝜂4  profile in Fig.  4d at 𝑡 = 0 s is controlled by the coefficients 𝑐1 and 𝑐2 in Eq. 
(38), respectively. When the magnitude of 𝑓  is small, i.e., the dislocation density 𝜌 is small, then the change in the 𝜂 profile is 
𝜂4
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minimal since 𝑓𝜂4  can be compensated by the other terms. However, if 𝜌 is sufficiently large, the grain boundary starts to evolve. 
Two distinct evolution patterns are observed, depending on whether or not the dislocation recovery mechanism in (28) is active.

3.2.1. No dislocation recovery
In this case 𝐶D = 0 in Eq.  (28). After 𝜌 is introduced, due to the driving force 𝑓𝜂4 , the value of 𝜂 decreases in the outer region 

of the diffuse grain boundary, as can be predicted from Fig.  4d, resulting in the widening of the 𝜂 profile at the GB (Fig.  4a). The 
orientation 𝜃 follows this change and its gradient |∇𝜃| decreases (Fig.  4b) resulting in a further diffused profile. As the grain boundary 
expands, at 𝑡 = 3×103 s, only the terms 𝑓𝜂2  and 𝑓𝜂4  in Fig.  4d remain relevant, since the gradients are so small (𝑓𝜂1 , 𝑓𝜂3 ≈ 0). Hence, 
the equilibrium value of 𝜂 inside the GB at this state can be found from, 

𝜂eq = 1 −
𝜙,𝜂(𝜂eq)

𝜆
2𝜇

e𝑏2𝜌

𝑓0𝛼
, (42)

where 𝜙,𝜂(𝜂eq) = 𝑐3 according to (38).
This state of expanding grain boundary constitutes the first part of the grain nucleation mechanism, where we obtain a non-

localized uniform orientation gradient similar to Ghiglione et al. (2024). The non-localized orientation gradient is an unstable 
state for the KWC and HMP orientation phase field models, since their energy is minimized for a localized GB solution. The new 
formulation of 𝜙(𝜂) creates such an unstable state in the presence of SSDs at GBs, whereas Ghiglione et al. (2024) created it by 
external torsional loading.

3.2.2. With dislocation recovery
The final piece of the puzzle for nucleation is provided by the dislocation recovery mechanism in Eq.  (28), which is activated 

when 𝜂̇ > 0 and 𝐶D is non-zero. This recovery mechanism was originally proposed by Abrivard et al. (2012a) to model recovery of 
dislocations in the wake of a moving grain boundary, hence the 𝜂̇ > 0 condition. Combining the expansion of the grain boundary due 
to dislocations and the recovery mechanism results in the dislocation driven spontaneous nucleation of a new grain. For 𝐶D = 100, 
Fig.  4a/b shows the nucleation of a new grain, where its orientation is the average of the orientations of the two neighboring grains. 
As the new grain nucleates, dislocations are recovered at the nucleation site; further recovery takes place during grain growth in the 
wake of the moving boundaries, as seen in Fig.  4c. In the end, we obtain a dislocation-free new grain. From a physical perspective, 
this means that the stored energy of dislocations is expended to nucleate and grow the new grain. Dislocation recovery is activated, 
since the equilibrium value for 𝜂 given by Eq. (42) inside the GB in the presence of dislocations is higher compared to the initial 
equilibrium value at 𝑡 = 0 s, i.e., the introduction of a dislocation density 𝜌 > 0 inside the GB leads to 𝜂̇ > 0, which activates the 
recovery term in Eq. (28). This reduces 𝜌 (Fig.  4c) and thus the magnitude of 𝑓𝜂4 , which in turn causes 𝜂 to increase even more 
resulting in a self-perpetuating process. This continues until 𝜌 reduces to 0 and 𝜂 increases to 1. As a result, two separate grain 
boundaries are created from the single expanding boundary, which move away from each other, resembling nucleation by SIBM 
at grain boundaries. As 𝜂 goes to 1 in the nucleus, |∇𝜃| reduces to 0 (Fig.  4b), and a stable bulk crystal is formed. Throughout 
this process the eigenrotation ×𝑒∗ evolves together with 𝜃 (see Fig.  4b), keeping the new grain stress free. This completes the basic 
mechanism of nucleation in the model.

3.2.3. The effects of misorientation, dislocation distribution and GB velocity
In Fig.  5, the effect of misorientation 𝛥𝜃 on the nucleation behavior is shown, where 𝛥𝜃 varies between 2.5◦−20◦. In the model, the 

degree of misorientation between neighboring grains determines the minimum value of the order parameter at the grain boundaries. 
As misorientation increases, we obtain a deeper well in the equilibrium profile of 𝜂 as seen in Fig.  5a for 𝑡 = 0 s. This fact directly 
affects the nucleation behavior, because, as discussed previously, the nucleation and the recovery of 𝜌 are triggered if 𝜂 initially 
increases inside the GB, where its equilibrium value 𝜂eq is determined by (42) (cf. the dotted red line in Fig.  5a). This is true for the 
cases with 𝛥𝜃 = 10◦, 15◦, 20◦ (Fig.  5a). However, for the cases with 𝛥𝜃 = 2.5◦, 5◦, the initial value of 𝜂 at the center of the GB is 
already higher than 𝜂eq, causing it to decrease instead and nucleation is not triggered immediately. For 𝛥𝜃 = 5◦, nucleation is still 
triggered at 𝑡 = 4 × 103 s after the grain boundary expands significantly, as seen by the recovery at the nucleation site (𝑥 = 5μm) 
in Fig.  5c. Nucleation can also be recognized by the bulge of order parameter 𝜂 forming at the same position in Fig.  5a, and the 
corresponding crystalline bulk, i.e., ∇𝜃 = 0, region forming in Fig.  5b. For 𝛥𝜃 = 2.5◦ dislocation recovery is never triggered. Due 
to the presence of dislocations and the resulting 𝑓𝜂4 > 0, the initially localized gradient in lattice orientation 𝜃 becomes more 
and more diffuse until it disappears (see Fig.  5b). Dislocation density 𝜌 keeps its initial value since it is not recovered, and order 
parameter 𝜂 becomes a constant 𝜂eq = 0.579 (see Fig.  5a), which is determined by Eq. (42). Consequently, we can state that there 
is a threshold value 5◦ < 𝛥𝜃T < 10◦ above which the nucleation is easily triggered, and below which it may trigger after the GB 
widens significantly, (𝛥𝜃 =5◦), or does not trigger at all (𝛥𝜃 = 2.5◦). This threshold can be controlled by adjusting the values of 𝛼
and 𝑐3. The parameter 𝑐3 can also be used to scale the magnitude of 𝜌 that triggers the nucleation mechanism. We have chosen the 
value of 𝑐3 = 1.7 in these examples by considering the saturation value of 𝜌 according to Kocks-Mecking-Teodosiu law in Eq. (28), 
which corresponds to 2.5 × 1015 m−2 for the parameters in Table  1.

So far, we have only considered a constant distribution of dislocation density 𝜌 = 2.5×1015 m−2 throughout the domain. In Fig.  6, 
we explore cases, where 𝜌 takes different values in different grains (Fig.  6b). We investigate cases ranging from 𝜌1 = 2.5× 1015 m−2; 
𝜌2 = 2.5 × 1015 m−2, i.e., the constant distribution, to 𝜌1 = 0; 𝜌2 = 2.5 × 1015 m−2, i.e., one grain is dislocation-free and the other 
has maximum value. In the latter case, nucleation is not possible since the GB is under a driving force to only one side, hence it 
represents a pure SSD driven GB migration. For the cases in-between nucleation is possible, and we have an interesting result. If 
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Fig. 5. Order parameter 𝜂 (a), orientation 𝜃 (b) and SSD density 𝜌 (c) with 𝐶D = 100 plotted at different times for varying misorientations. 
Parameters of 𝜙(𝜂) are 𝑐1 = 100, 𝑐2 = 0.95 and 𝑐3 = 1.7.

the nucleation is triggered, the orientation of the nucleus is determined by the ratio of the values of the dislocation density on both 
sides of the grain boundary (Fig.  6c); it is not always the average orientation of the neighboring grains. Let us define the smaller 
dislocation density as 𝜌s and the larger one as 𝜌l. The corresponding orientations of the grains are 𝜃s and 𝜃l, respectively, and that 
of the nucleus is 𝜃nuc. Then, we observe that 𝜃nuc is determined by 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜃nuc =
𝜃s + 𝜃l

2
if 𝜌s = 𝜌l,

𝜃s < 𝜃nuc <
𝜃s + 𝜃l

2
if 𝜌s < 𝜌l,

𝜃s < 𝜃nuc ≪
𝜃s + 𝜃l

2
if 𝜌s ≪ 𝜌l.

(43)

The extreme case is 𝜃nuc = 𝜃s for 𝜌s = 0, which is effectively migration of the GB into the grain with the larger dislocation density. 
Otherwise, the nucleus prefers an orientation that is closer to the orientation of the grain with lower stored energy. This is illustrated 
when we compare the cases 𝜌1 = 2×1015 m−2; 𝜌2 = 2.5×1015 m−2 and 𝜌1 = 2.5×1015 m−2; 𝜌2 = 2×1015 m−2 in Fig.  6c, where 𝜃nuc is 
mirrored about the average value. Another interesting case is 𝜌1 = 1× 1015 m−2; 𝜌2 = 2.5 × 1015 m−2, where the new grain nucleates 
with a very small misorientation compared to 𝜃s. At 𝑡 = 10 × 103 s, the nucleated grains fully expand into their neighbors (Fig.  6c), 
and the dislocation density is mostly recovered. The amount of recovery can be controlled by adjusting the value of 𝐶D = 100.

While these observations physically make sense, it is not intuitive, why a single grain boundary would split into two, since it is 
energetically unfavorable, if only the grain boundary energy is considered. Indeed, as shown in Fig.  7b, when we split a GB with 
15◦ misorientation into two GBs with 𝛥𝜃1, 𝛥𝜃2 and 𝛥𝜃1 + 𝛥𝜃2 = 15◦, the total grain boundary energy increases (cf. Fig.  2). In order 
to understand, why new grains are formed under these circumstances, it is helpful to consider the effect of different values of the 
parameter 𝑐2 [cf. Eq. (38)] as shown in Fig.  7. In Figs.  1 and 4 we showed that 𝑐2 controls the width of the distribution of the driving 
force 𝑓𝜂4  due to dislocations. As a consequence, the higher the value of 𝑐2, the higher the GB velocity due to stored dislocations 
(see Fig.  7a/c). Fig.  7d shows that, in addition to velocity, the profile of 𝜂 is significantly affected by the value of 𝑐2. In Fig.  7a with 
𝜌1∕𝜌2 = 1 at 𝑡 = 1 × 103 s, we see that in all of these cases nuclei with the same average 𝜃nuc are formed. Later the orientation of 
the new grain 𝜃new may stabilize at a value between 𝜃s = 0 and 𝜃nuc, with the final value depending on 𝑐2. If 𝑐2 is not sufficiently 
large, the nuclei rotate towards 𝜃s and disappear as in the case with 𝑐2 = 0.85. Fig.  7c shows similar behavior for 𝜌1 = 2.3×1015 m−2; 
𝜌2 = 2.5 × 1015 m−2, where the nucleus initially has an orientation 𝜃nuc closer to 𝜃s. Based on these observations, we expand the set 
of rules (43):
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Fig. 6. Order parameter 𝜂 (a), SSD density 𝜌 (b) and orientation 𝜃 (c) with 𝐶D = 100 plotted at different times for varying SSD distributions 
around grain boundary. Parameters of 𝜙(𝜂) are 𝑐1 = 100, 𝑐2 = 0.95 and 𝑐3 = 1.7.

Fig. 7. Orientation 𝜃 for 𝜌1∕𝜌2 = 1 distribution (a) and energy distribution when a 15◦ grain boundary divides into two grain boundaries (b). 
Orientation 𝜃 for 𝜌1∕𝜌2 = 2.3∕2.5 distribution (c) and order parameter 𝜂 (d). Parameters of 𝜙(𝜂) are 𝑐1 = 100 and 𝑐3 = 1.7.
12 
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1. Nucleation is triggered due to stored dislocation energy at a GB, that splits into two GBs. While this increases the GB energy, 
the total energy is decreased since dislocation density is recovered at the nucleation site. The grain is nucleated with 𝜃nuc
according to (43), and subsequently expands to reduce 𝜌 and the associated stored energy.

2. If the nucleus grows sufficiently fast, 𝜃new stabilizes at 𝜃nuc, since the order parameter 𝜂 reaches 1 in the newly formed grain, 
and lattice rotation is prevented by the singular function 𝑔(𝜂). The lack of long range interactions between GBs in the HMP 
model helps to quickly stabilize the new grain.

3. If the GBs do not move fast enough, then the nucleus starts to rotate in order to minimize the energy 𝛾gb following Fig.  7b. 
Depending on the velocity, it may stabilize at a value 𝜃s < 𝜃new < 𝜃nuc, or fully rotate towards 𝜃s, causing the nucleus to 
disappear before expanding.

3.3. Plastic deformation and microstructure evolution

The above rules summarize the observed grain nucleation mechanism in our model. In the next examples we explore the full 
potential of the HMP-CCP coupling model by plastically deforming periodic bicrystal and polycrystal specimens in order to predict 
deformation driven grain boundary migration and grain nucleation. We define four possible slip systems rotated by 0◦, 90◦, 45◦
and 135◦ with respect to the crystal frame. Corresponding slip (𝒍𝛼) and normal (𝒏𝛼) directions are given by

𝒍1 = (1, 0), 𝒍2 = (0, 1), 𝒍3 = (1∕
√

2, 1∕
√

2), 𝒍4 = (−1∕
√

2, 1∕
√

2),

𝒏1 = (0, 1), 𝒏2 = (−1, 0), 𝒏3 = (−1∕
√

2, 1∕
√

2), 𝒏4 = (−1∕
√

2,−1∕
√

2).

3.3.1. Bi-crystal
For the bicrystal example in Fig.  3, we assume that only slip system 1 is active, and it is initialized with 𝜌 = 1011m−2. Orientations 

of the grains are 𝜃1 = 15◦ and 𝜃2 = 0◦ initially. After the initialization of the phase field, the bicrystal is loaded with 𝐵12 = 0.05, 
𝐵12 = 0.10 or 𝐵12 = 0.15 [cf. Eq. (40)] with a rate of 0.01 per second. The last case is technically out of the scope of a small 
deformation setting, but it converges without issues for this simple example, and we use it for the sake of demonstration. During 
the loading phase, the dislocation recovery and grain nucleation mechanisms are disabled by setting 𝐶D = 0 and 𝑐2 = 0, and a 
dimensionless inverse mobility of 𝜏𝜂 = 102 is used, which allows 𝜂 to conform to the reorientation due to deformation. After the 
loading phase, a heat treatment phase is applied for 15 × 103 s with 𝜏𝜂 = 104, where the microstructure evolves by migration of the 
grain boundary and nucleation of grains. During the heat treatment phase the displacements 𝒖 are held constant. The recovery and 
migration mechanisms are activated by setting 𝐶D = 100 and 𝑐2 = 0.9.

The coupled orientation phase field Cosserat crystal plasticity model has the potential to simulate the coupled physics of 
mechanical deformation and GB structure evolution at the same time. In this work, we are making some simplifications in order 
to distinguish and focus on distinct mechanisms. For example, it is possible to simulate dynamic recrystallization if the nucleation 
and migration mechanisms are kept active during the loading phase; however, we are focusing on the bulk and localized evolution 
of the lattice orientation 𝜃 caused by the applied deformation, which is possible due to the strong coupling. Similarly, during the 
heat treatment phase, the migration of the GBs and the corresponding changes in the lattice orientation can induce mechanical 
deformation in the domain. However, this is omitted by holding displacements 𝒖 constant in order to clearly show the nucleation 
and the growth mechanisms. A demonstration comparing the evolution during heat treatment when the structure is free to deform 
is included for the 32 grain polycrystal in Section 3.3.2. However, the detailed investigation of the complex interaction between 
mechanisms is left to future work.

Fig.  8b at 𝑡 = 0 s shows the reorientation of the grains due to plastic deformation at different strain levels, resulting in the decrease 
of the initial 15◦-misorientation. This is straightforward to simulate with the coupled model, since 𝜃 is a degree of freedom in the 
Cosserat continuum. Similarly, Fig.  8a at 𝑡 = 0 s shows the decrease in the depth of the well in the order parameter 𝜂 profile due 
to the decrease in the misorientation. Due to the orientation of the grains relative to the loading direction, the outer grain deforms 
less, as seen in Fig.  8c and d. In the heat treatment phase, we have two distinct behaviors: For the 5% and 10% pre-strain, the 
outer grain expands towards the inner grain (Fig.  8a/b) since the inner grain has a larger energy-density due to stored dislocations. 
Recovery takes place in the wake of the moving grain boundaries (Fig.  8c), and in the end the inner grain is fully absorbed (Fig. 
8b at 15 × 103 s). In the case of 10% pre-strain, the GB has slightly higher velocity since 𝜌 is higher compared to the 5% case. For 
15% pre-strain, the deformation generates enough dislocations to nucleate a new grain (Fig.  8a/b), which fully expands into the 
neighboring grains. When the GBs move, the change in 𝜃 creates a skew-symmetric stress interpreted as a result of the reshuffling 
of atoms, which slightly evolves the viscoplastic slip 𝛾 as seen in Fig.  8d.

3.3.2. Polycrystalline examples
In this section, the model is tested with periodic polycrystal specimens containing 6 and 32 grains. In addition to grain 

nucleation, we can observe other interesting phenomena during deformation, such as subgrain and kink band formation. We use 
the microstructures presented in Ask et al. (2020) that were generated using Voronoi tessellation, where orientations of the grains 
are between 0◦ and 35◦. The specimen with 6 grains has a domain size of 20 × 20 μm, while the size of 32 grain specimen is 
50 × 50 μm. Both are discretized using second order triangular elements with reduced integration. The former has 48496 nodes, 
while the latter has 195128 nodes with 4 degrees of freedom per node. Periodic boundary conditions are applied on the opposing 
points of the surface. The periodic fluctuations 𝒗 are additionally fixed at the corners. Shear deformation is applied with mean 
deformation gradient 𝐵12 while 𝐵21 = 0 in Eq. (40). Dislocation densities are initialized with 𝜌𝛼 = 2 × 1011 m−2; during deformation 
𝐶 = 0 and 𝑐 = 0.
D 2
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Fig. 8. Order parameter 𝜂 (a), orientation 𝜃 (b) SSD density 𝜌 (c) and viscoplastic slip 𝛾 (d). Specimen is deformed by different amounts before 
applying heat treatment. Parameters of 𝜙(𝜂) are 𝑐1 = 100, 𝑐2 = 0.9 and 𝑐3 = 1.7.

Fig. 9. Periodic polycrystal structure with 6 grains and their orientations, where arrows show slip direction of slip system 1 and 2 (a). Fields 
after the phase field is initialized: orientation 𝜃 (b) and order parameter 𝜂 (c).

Mechanical loading - 6 grains
Fig.  9a shows the lattice orientations 𝜃 of the granular microstructure, where the black and white arrows indicate the slip 

directions 1 and 2, respectively. Fig.  9b/c shows the state of 𝜃 and order parameter 𝜂, after the phase field is relaxed. We obtain 
diffuse grain boundaries and smoothed corners due to curvature driven GB migration. Fig.  10 shows the deformed state with 
5.5% pre-strain where either slip system 1 [10a] or 2 [10b], or all four slip systems [10c] are activated. The Cosserat continuum 
formulation allows the formation of kink bands, when only a single slip system is active. Inside these bands of localized deformation, 
the material reorients significantly. We can clearly observe this in the orientation 𝜃 fields when slip system 2 is active (Fig.  10(b)) 
in the lower portion of the domain marked by white arrows. When slip system 1 is active, it is not as significant, but still noticeable 
in 10(a). In the 3rd row of Fig.  10, the norm of the orientation gradient |∇𝜃| is shown, which indicates the formation of new grain 
boundaries and regions of localized reorientation. Comparing the results for slip system 1 and 2, the localized reorientation regions 
are perpendicular to the slip direction. Moreover, in both single slip cases, we can see that subgrains form due to heterogeneous 
deformation inside the grains. For example, grains A and B in Fig.  9b are divided into two subgrains A  and B  in Fig.  10(b) 
1∕2 1∕2
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Fig. 10. Granular microstructure is loaded in shear with 𝐵12 = 0.055 in 5.5 s, for the cases where slip system 1 (a), slip system 2 (b) or 4 slip 
systems (c) are activated. From top to bottom orientation 𝜃, order parameter 𝜂 and norm of the curvature |∇𝜃| are shown at the deformed state. 
The arrows show localized kink bands.

with a small misorientation. When all four slips are active, we observe a bulk clockwise rotation of grains instead of localized 
deformation. Fig.  11 shows the dislocation density and viscoplastic slip when slip system 2 is active. Compared to Fig.  10(b), the 
regions of localized deformation and reorientation coincide. This confirms that the formation of kink band and subgrains is indeed 
caused by the plastic deformation. In addition, bands with localized strain in the slip direction are observed.

Relaxation phase - 6 grains
After the loading phase, displacements are held constant, and the heat treatment phase is simulated by activating GB migration 

with 𝑐2 = 0.7 or 0.9 and dislocation recovery with 𝐶D = 100. The grain boundaries can migrate due to both curvature and stored 
dislocations. We first look at the single slip case, where slip system 𝛼 = 2 was active. Fig.  12 shows the evolution of the microstructure 
at 2×103 s and 6×103 s when 𝑐2 is set to 0.7. Since 𝑐2 is small, we expect SSD driven GB migration, but no grain nucleation. Indeed, a 
mixture of curvature and SSD driven migration with dislocation recovery at the wake is observed, where the middle grain C expands 
due to stored dislocations on its left and right boundaries. The small grain D next to it shrinks due to curvature driven migration. 
The two subgrains A1 and A2 at the left, which formed due to the localized deformation, have stabilized, i.e., the order parameter 
𝜂 inside is 1, and subgrain A1 shrinks while subgrain A2 expands due to curvature and stored energy, showing subgrain growth. 
The kink band that formed during deformation in Fig.  10(b) is quickly restored during the initial phase of the heat treatment. This 
is expected considering the model’s formulation, which allows grain rotation if 𝜂 < 1. Since the kink band has not expanded wide 
15 
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Fig. 11. Granular microstructure is loaded in shear with 𝐵12 = 0.055 in 5.5 s, where slip system 2 is active. Statically stored dislocation density 
𝜌(2) (left) and viscoplastic slip 𝛾 (2) (right) are shown at the deformed state.

Fig. 12. The deformed structure in Figs.  10(b) and 11 is allowed to recrystallize with 𝑐2 = 0.7. From left to right orientation 𝜃, order parameter 
𝜂 and statically stored dislocation density 𝜌(2) are shown at different times.

enough to form a bulk region inside, it rotates back towards the surrounding grains. We note that the convergence of the model 
deteriorates when the band starts to expand during deformation. Similarly, the subgrains B1 and B2 that formed during deformation 
(see Fig.  10(b)) are recovered quickly, because the subgrain B2 had not stabilized (𝜂 < 1) in the bulk due to deformation and it 
rotated back during heat treatment, which resembles a subgrain coalescence mechanism.

Next, Fig.  13 shows the case when 𝑐2 is set to 0.9, which increases the GB velocity significantly and also activates the grain 
nucleation mechanism. Hence, at 𝑡 = 1 × 103 s nucleation is triggered at the left and right boundaries of grain B. The nucleation 
locations can be identified in the order parameter 𝜂 field (marked by arrows in Fig.  13), as the regions of light red strips surfacing 
inside green areas. At the same locations, blue strips are observed in the dislocation density 𝜌 field, indicating full recovery at 
nucleation sites. At 𝑡 = 2× 103 s, the nuclei on the left formed a dislocation-free new grain G, which then expands into the neighboring 
grains as seen at 𝑡 = 6 × 103 s (Fig.  13). We can also observe that compared to the case of 𝑐 = 0.7, the driving force due to stored 
2

16 



I.T. Tandogan et al. Journal of the Mechanics and Physics of Solids 206 (2026) 106325 
Fig. 13. The deformed structure in Figs.  10(b) and 11 is allowed to recrystallize with 𝑐2 = 0.9 which activates grain nucleation. From left to 
right orientation 𝜃, order parameter 𝜂 and statically stored dislocation density 𝜌(2) are shown at different times. The arrows at 𝑡 = 1 × 103 s show 
nucleation sites.

dislocations is much more dominant compared to curvature effects. This causes grain E in Fig.  13 to evolve into a concave shape. 
Such shapes can be observed during abnormal grain growth (Bozzolo et al., 2013; Jin et al., 2021). If the specimen is allowed to 
evolve further after the dislocations are recovered, the migration direction is reversed due to curvature taking over. It should also be 
possible to adjust the relative strength of both forces with the model parameter 𝑐2, but this requires further investigation. Another 
complexity in the polycrystal example compared to the simpler bicrystal example is that the deformation can generate gradients of 𝜃
inside the bulk of grains, which causes 𝜂 to deviate from 1. It can be further decreased if dislocations are present in that region since 
𝑓𝜂4  is activated. Such a region is not treated by the model as the bulk of a grain, and it is allowed to rotate. This is not exactly the 
same as the nucleation of a grain which expands only by migration of its new GBs, but rather a mixture of expansion and rotation. 
However, it is still driven by deformation and stored dislocations, which represent a more complex nucleation mechanism that is 
not limited to the grain boundaries.

Fig.  14 compares the effect of the amount of pre-strain on nucleation, where loading is 5%, 5.5% and 6% before heat treatment. 
The orientations after heat treatment at 𝑡 = 10×103 s are shown. Clearly, the nucleation behavior differs significantly depending on 
the deformation. In the 5% case the nucleated grain G was absorbed by the neighboring grain E before expanding, while in the 6% 
case it expanded but has a different final orientation compared to the 5.5% case.
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Fig. 14. The structure is deformed by 5%, 5.5% or 6%, then heat treated for 10 × 103 s with 𝑐2 = 0.9. The resulting orientation fields are shown 
for different amounts of applied deformation.

Fig. 15. Granular microstructure is loaded in shear with 𝐵12 = 0.055 in 5.5 s, where 4 slips systems (a) or only slip system 2 (b) is active. The 
contours show the total dislocation density. Corresponding dislocation densities are shown across the specimen (c), where dashed line is the 
single slip case.

The localized deformation is pronounced, when only a single slip system is active. When all four systems are activated the 
deformation becomes much more homogeneous inside the grains, as seen in Fig.  15a, where the total dislocation density of all 
4 slip systems is plotted. Fig.  15c compares the individual dislocation densities along the center line shown in Fig.  15a/b. The 
deformation is evenly distributed in the bulk, but varies from grain to grain. While the individual values of 𝜌𝛼 are lower compared 
to the case of single slip, the total value of dislocation density is higher, and it is the total value that enters into the driving force 
for 𝜂 in Eq. (32). Fig.  16 shows the evolution during heat treatment for the case of 4 active slip systems. In this case, nucleation is 
triggered at almost all of the grain boundaries, since the total 𝜌 is high and more evenly distributed. Most of the nuclei expand and 
a new microstructure with new orientations is formed. However, the new orientations are bounded by those of the adjacent parent 
grains. Dislocations are almost completely recovered within the new grains.

Mechanical loading and relaxation - 32 grains
Next, a larger polycrystal with 32 grains is considered (Fig.  17), where only slip system 2 is active. The structure is first sheared 

to 5% pre-strain, then heat treated for 20 × 103 s. The top row in Fig.  17 shows the deformed state, where several sites of subgrain 
(marked as A1∕2, B1∕2 and C1∕2) and slip/kink band formation are observed. At the beginning of the heat treatment phase, nucleation 
is triggered at several locations, and the more obvious ones are marked with white arrows in the 𝑡 = 2 × 103 s contours. These 
locations can be distinguished as regions of grain bulk (i.e. 𝜂 ≈ 1) forming inside existing GBs (i.e. 𝜂 < 1), at which 𝜌 is recovered 
fully. At 𝑡 = 5 × 103 s, we can see that the nucleated grains expand and stabilize. At 20 × 103 s, the dislocation density is mostly 
recovered, and we have a recrystallized microstructure. We can also see a clear example of subgrain nucleation and growth, where 
in the deformed state, the initial grain is fragmented into two subgrains A1 and A2. Then, the subgrain A2 with low energy density 
grows into the subgrain A1 with higher stored dislocation density. As discussed before, some of the grains can evolve into concave 
shapes due to the dominant driving force of stored dislocations. However, this is reversed when curvature starts to take over. For 
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Fig. 16. The deformed structure in Figs.  10(c) and 15(a) is allowed to recrystallize with 𝑐2 = 0.9 which activates grain nucleation. From left to 
right orientation 𝜃, order parameter 𝜂 and total statically stored dislocation density ∑ 𝜌𝛼 are shown at different times.

example, observe the nucleated grain number 2, which first grows into a concave shape at 5 × 103 s, then shrinks into a convex 
shape at 20 × 103 s.

Fig.  18 shows the same case as in the previous example, however here the displacement DOFs are not constrained during the heat 
treatment phase. Compared to Fig.  17, at 𝑡 = 2×103 s the morphology is very similar, with the exception of some grains fragmenting 
into several subgrains with very small misorientations (i.e. ≈ 0.5◦). At 𝑡 = 5 × 103 s, differences become more clear, mainly in the 
dislocation density 𝜌, which is recovered at the wake of moving GBs and at nucleation sites, but also generated throughout the 
domain due the deformation caused by coupled GB motion. The increased dislocation content triggers additional nucleation. At 
𝑡 = 20 × 103 s a significant amount of 𝜌 remains, which finally starts to recover after 𝑡 = 40 × 103 s. The excessive generation 
of dislocation density during heat treatment stems from Eq. (28), whose recovery term, i.e. (−2𝑑𝜌𝛼∕𝑏) |𝛾̇𝛼|, depends strongly on 
the temperature and should be adjusted, which would result in reduced maximum value of 𝜌 at higher temperatures (Kocks and 
Mecking, 2003). The generation of stress and dislocations during grain growth in polycrystals have been also observed in MD 
simulations (Thomas et al., 2017). At 𝑡 = 40 × 103 s, it seems that the GB migration is accompanied with further fragmentation into 
subgrains with 𝛥𝜃 < 1◦.
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Fig. 17. A granular structure with 32 grains are deformed in shear by 𝐵12 = 0.05 with only slip system 2 active. Then, it is allowed to recrystallize 
with 𝑐2 = 0.9 which activates grain nucleation, while holding displacements constant. From left to right orientation 𝜃, order parameter 𝜂 and 
statically stored dislocation density 𝜌(2) are shown at different times. The arrows at 𝑡 = 2 × 103 s show some of nucleation locations.
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Fig. 18. A granular structure with 32 grains are deformed in shear by 𝐵12 = 0.05 with only slip system 2 active. Then, it is allowed to recrystallize 
with 𝑐2 = 0.9 which activates grain nucleation. During the heat treatment phase, only the mean deformation gradient 𝐵12 = 0.05 is held constant, 
which results in further local deformation. From left to right orientation 𝜃, order parameter 𝜂 and statically stored dislocation density 𝜌(2) are 
shown at different times.
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Finally, we would like to note that the circular shapes of the grains that form during recrystallization, especially at 𝑡 = 20 × 103

in Figs.  17 and 18, do not fully represent the experimentally observed microstructure, though such smooth and concave shapes can 
occur during abnormal grain growth (Gruich et al., 2023). This is a consequence of the isotropic GB energy used in the simulations, 
which minimizes the GB energy for a circular shape. When anisotropic GB energy is introduced to the HMP model, the evolved 
microstructure retains polygonal shapes closer to experimental observations, as shown in Staublin et al. (2022). However, the focus 
of this paper is not to create perfect agreement with the experiments, but to investigate the new nucleation mechanism and its 
capabilities. Therefore, this issue is left for future work.

4. Conclusion

A thermodynamically consistent multi-physics model is presented that can simulate dislocation-induced spontaneous grain 
nucleation. It is an extension of our previous work (Tandogan et al., 2025), which couples Cosserat crystal plasticity with HMP 
type orientation phase field. The coupled framework allows to model changes in the lattice orientation due to both mechanical 
deformation and grain boundary migration. The accumulated dislocation density at the grain boundaries spontaneously triggers 
nucleation. The proposed nucleation mechanism was investigated and the main results are:

• Nucleation mechanisms such as SIBM, subgrain coarsening and coalescence are reproduced.
• Nucleation is more likely to happen above a threshold misorientation 𝛥𝜃T, which can be controlled with the model parameters.
• The orientation of the nuclei is bounded by the orientation of the surrounding lattice. The exact value is determined by the 
distribution of dislocation density in the vicinity of GBs.

• The GB velocity determines whether a nucleus grows and stabilizes into a new grain or not. The nucleation intensity can be 
controlled by adjusting GB velocity with model parameters.

In addition the physically motivated treatment of nucleation, the coupled Cosserat-Phase field framework has following 
capabilities:

• The non-local Cosserat framework allows formation of slip and kink bands during deformation.
• Grains can fragment into subgrains due to heterogeneous deformation.
• Localized orientation gradients that form during deformation are seamlessly recognized as new GBs.
• GB migration is driven by curvature as well as stored dislocation density.
• Dislocations can be recovered partially or fully in the nucleation sites and in the wake of migrating GBs.

The main capabilities of the model were shown in a 2D, small deformation setting with isotropic grain boundary energy. We 
believe the comprehensive coverage of the physical mechanisms, especially the natural treatment of nucleation, is an evidence of the 
potential of the proposed unified framework for grain microstructure evolution. In the future work, inclination dependent GB energy, 
finite deformation and efficient extension to 3D will be explored. A process dependent mobility parameter that is able to cover the 
different time scales of loading and recrystallization should be implemented. Finally, more complex interaction mechanisms such 
as nucleation during loading and mechanical deformation during heat treatment could be investigated in detail.
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