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Solving the physics-based pseudo-two-dimensional (P2D) models involves using iterative methods,
such as the Newton or the shooting method to solve a boundary condition problem. To use these
iterative methods effectively, it is imperative to transform the boundary condition problem into an
initial condition problem. This, in turn, necessitates initializing certain parameters, often done by
providing guess values. The choice of these initial guess values can significantly impact convergence
speed. This study proposes an analytically derived linear solution for initializing these conditions

as an approximate guess. The proposed approach is not only computationally efficient, enhancing
convergence speed and overall performance of the P2D model, but also straightforward to implement,
making it a practical solution.
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The global energy transition necessitates a pivotal shift towards innovative and renewable energy technologies,
leading to an increased demand for storage capacity. This surge in capacity requirement has spurred a prominent
trend toward adopting batteries, with lithium-ion batteries emerging as a significant player. These batteries find
applications in stationary energy storage and electric vehicles, underscoring their versatility and importance in
modern energy ecosystems'.

To maximize the utilization of lithium-ion batteries, advanced modeling techniques are essential. One such
model, the pseudo-two-dimensional (P2D) battery model, also referred to as Doyle-Fuller-Newman (DFN),
contains a system of partial differential equations (PDEs), and algebraic equations. This model partitions battery
dynamics into two key dimensions. One spatial dimension along the length of the battery and another pseudo-
dimension that characterize the radial dimension within the active particles of the electrodes. This framework
offers a robust foundation for analyzing battery dynamics, facilitating precise evaluation, and optimization of
lithium-ion battery performance?*=°. However, solving the P2D model equations require significant computational
resources and suffers from poor computation speed. In a prior study by the same authors, Haghverdi et al.!’, a
model order reduction technique was introduced to mitigate the occurrence of infinite values in the electrolyte
current during model iteration. By eliminating these redundant iterations, they demonstrated significant
improvements in the computational speed of the P2D model. Building upon this foundation, the current study
endeavors to refine the method by introducing an analytically derived initial estimation for current and potential.
This advancement aims to replace the preliminary loop for estimating the initial guess values of potentials in
solids and electrolytes, employing a linear approximation of the Butler-Volmer equation. Transitioning from an
iterative loop to a concise mathematical expression for initial value estimation is anticipated to yield significant
benefits in terms of computational speed.
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Statement of the problem

The P2D model relies on iterative solvers such as the Newton or the shooting method to achieve the solution. For
a comprehensive understanding of the governing equations of the P2D model, Table A1 is included in Appendix
A, providing a detailed listing of the equations governing the P2D model. The shooting method addresses
boundary value problems by transforming them into initial value problems through random guesses for missing
initial variables, such as the solid and electrolyte potentials (¢1 and ¢2). Initially, it conducts a forward run,
often employing techniques like Euler or Runge-Kutta’s, and then iteratively fine-tunes these initial estimates to
align the calculated ionic current in the electrolyte phase (denoted as i2) with its specified boundary condition'!.
This iterative refinement typically employs the bisection or similar root-finding methods and continues until
the desired accuracy in the parameter i2(L,) is attained. Upon achieving the target boundary value for 42,
confidence is established in the accuracy of the guess values utilized for potentials ¢1 and ¢2 in reaching this
solution.

The effectiveness of iterative algorithms can be compromised when commencing simulations with arbitrary
guesses for these potential values, resulting in diverging ionic currents within the electrolyte phase. This issue
is addressed in the research conducted by Haghverdi et al.!’. To tackle this challenge, a model order reduction
technique was implemented to prevent the occurrence of infinite values and divergence during iterations.
Additionally, the initial guess values were refined by employing a preliminary loop using linear Butler-Volmer
approximation to estimate the initial value of ¢ = ¢1 — (2, which represents the galvanic pseudo-potential
inside the cell. This study aims to replace the preliminary loop responsible for solving the system of PDEs with
an analytical solution of the same PDE system. This substitution of the loop with an analytical expression is
anticipated to accelerate the computation process for the P2D model. The evolution of strategies to solve this
PDE system is illustrated in Fig. 1.

The battery model employed in this study is rooted in the research conducted by Chayambuka et a and
Chen et al.1*-16, However, it is crucial to highlight that our research goes beyond the confines of these particular
models, presenting a broadly applicable approach for all P2D battery models.

1 12,13

Model development

To simplify the mathematical presentation, this study focuses on the positive electrode equations. The equations
for the negative electrode are identical, with the only difference being the adjustment of boundary conditions
to reflect the negative electrode. Figure 2 provides a schematic representation of a battery cell, which includes
current collectors on both sides, a negative electrode (typically graphite), a separator, and a positive electrode.

In this study, the origin of the x-axis is placed at the negative electrode/separator interface, with z = 0, to
simplify the mathematical presentation of the positive electrode for brevity. The solid hexagonal shapes represent
active electrode particles. The parameter § denotes the thickness of the separator membrane, while L, represents
the position of the positive electrode current collector. The thickness of the positive porous electrode is given
by L, — 6.

To numerically solve the P2D model, it is spatially and temporally discretized. Temporal discretization
involves time-stepping, which transforms the system of partial differential equations into a system of ordinary
differential equations (ODEs) at each time step. Subsequently, the ODEs need to be solved at each spatial point
based on the chosen discretization method. For further details on P2D model solving strategies and discretization
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Fig. 1. Solving the P2D model PDE strategies. (a) Original, (b) Preliminary linear Butler-Volmer loop for fast
estimation of initial values!?, (c) Replacing the preliminary loop with a direct analytical expression for faster
calculation.
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Fig. 2. Schematic layout of the P2D model for a lithium-ion battery cell.

methods, refer to!”~2!. In this study, the spatial discretization of the model employs the finite difference method,
further guided by a forward Euler method to traverse through each point.

Consider the cell at a certain moment during battery operation. Suppose that at that moment in time, current
density I (A-m™?) is applied (index ¢ is skipped for brevity). The question is how to determine the reaction rate
distribution inside the porous electrode at the first moment when a current is applied. The system of equations
for potentials and currents in both phases can then be written as:

dox M)

i1 = —ge L

dx

with boundary conditions

and

with boundary conditions

Here, i1 and 1 represent the electronic current density (A-m~2) and electrical potential (V) within the porous
electrode, while 2 and 2 denote the ionic current density (A-m~?) and electrical potential (V) within the
electrolyte residing inside the porous electrode. It is important to note that subscripts 1 and 2 correspond to
the electrode (solid phase) and electrolyte (liquid phase), respectively. Furthermore, . and x. stand for the
effective electronic conductivity of the electrode and the effective ionic conductivity of the electrolyte (S-m™"
), respectively. These effective conductivities consider the actual pathways through which species move within
the porous media, with more detailed information available in the literature, particularly in the works of Doyle
and Fuller et al.%®.

The transfer of charge between the two phases is governed by Eq. (3), which is commonly referred to as the
Butler-Volmer Equation.

dig . 0 aF,,gt B (1—a)F7]gt
Pl aFj.=ai; e FT —e RT , (3)

where, a represents the specific area of the pores (m™1), j. denotes the reaction rate (mol-m =2 -s~1), and
i9 is the exchange current density (A-m™2). It is noteworthy that j. transforms into current density upon
multiplication by the Faraday constant F (C-mol™'). The equation describing the charge transfer overpotential
n<* and its correlation with the potentials of the solid and electrolyte phases is presented in Eq. (4):

net =1 — 2 — Ue(cf, T), (4)

in this equation, U. represents the equilibrium potential of the electrode (V), while ¢i denotes the Li
concentration at the surface of the electrode particle (mol-m ™) with spatial dependence. Additionally, I stands
for the applied current density (A-m~2), and R and T represent the universal gas constant (J-mol ™" - K~!) and
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absolute temperature (K), respectively. Finally, the conservation of charge is expressed by Eq. (5), as depicted
below:

i1+i2=1. (5)

Suppose that the applied current density (I), and consequently the overpotential, is sufficiently small so that the
Butler-Volmer equation Eq. (3) can be reduced to a linear relationship:

di Fanc Fa s
= = e e - UL T)), ©)

dr p

where p = }f—g. By eliminating 71 based on Eq. (5) and rearranging the equations, derived the following system

of ordinary differential equations:

dor iz =1

dr oe @)
dy2 is  2RT dIn co
dp2 2 AW
dx Ke + F ( t+) dr ’ ()
di Fa s
2 = (p1 — 2 — Ue(c3, 7). )

dr — p

Next, by subtracting Eq. (8) from Eq. (7) and introducing the galvanic pseudo-potential ¢ = 1 — @2, the
system of Egs. (7)-(9) comes to the following form:

@ :ZQ—I_’_E _ 2RT(1—t+)dln62
dx Oec Ke F dx (10)
Ke + 0c —i—QRT(l—t )dln@
T KeOe " F ' de
diQ Fa s
— =— () —Uc(c],T)).
T = (0~ Uelel, 7)) (an

Note that Uc(ci,T) = Uc(ci(x),T) = Uc(z,T) is a function of coordinate x because the concentration in
solid depends on x. Egs. (10-11) can be rewritten in a matrix form. Denote state vector @, system matrix A, and
right-hand side vector b as

0 Ketoe
@:V17 A= CC], (12)
2 Fa 0
P
and
—L (1 gy dine
b= ,
— 2 Ue(x)
accordingly. Then Egs. (10-11) can be written as
do
— = . 13
I AO + b(x) (13)

Asafirstapproximation the dependence of parameters k. and o on x is ignored, they are treated as constants. The
same assumption is made about p, at least when this parameter appears in matrix A. Eq. 13 is an inhomogeneous
linear system of the first-order ODE-s. Note that vector b depends on x. To solve an inhomogeneous system of
ODE-s one first must solve a homogeneous linear system, i.e. system

d
e _ A6. (14)
dz
Consider the characteristic equation
-\ Ketoe
Kede F 1 1
det(A) = -2 (— + —) =0. (15)
Fa A P Oc KC
P
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It has two simple roots, A1 = ,/%(U% + N%) and Ao = —/ %(U% + N%) Denote g = ,/%(0% + ﬂ%) to

economize notations. The calculation of the eigenvector for A1 = g leads to a system of linear algebraic equations

-9 T —ga + £=Zeaz
coe a coe 0
F LL?} - F - {O} ’ (16)
B oo = g
which has a (non-normalized) solution Vi = [% g}'. Finally, the eigenvector A2 = —g brings
Vo =[— % g]’ with similar calculations. Therefore, the general solution of Eq. (14) has a form
2 Ketoe _ Ecetoe
6= Vieht" = 75" | " 1 + Zse™ "0 [ ., 1 ’ (17)
i=1 g g

where © is a general solution to the homogenous Eq. (14), and Z; are constants. To obtain the solution of Eq.
(13) these constants must be calculated. Consider the fundamental matrix of the solution, defined as

2(z) =lwi(z) wa(z)] =[NV e "9V;]

Ketoe xg _ Ketoe ,—xg
l e e ] (18)

ge™ ge 79

Then solution Eq. (17) can be written as o= Q2(z)Z, where Z = (Z1 Z2)'. To extend the solution from
a homogeneous system of equations to include non-homogeneous solutions, a vector Z that depends on the
variable x must be considered. The solution of inhomogeneous Eq. (13) will take the form ©(z) = 2(z)Z(z).
Substituting it into Eq. (13) leads to

e d df2(z)

—(x)Z(x) = Z(x)+ 2(x)

= _ 19
dx dx (19)

= AN(x)Z(x) + 2(x)

This expression matches the right-hand side of Eq. (13), leading to the equation £2(x) %ﬁf) = b(z).Consequently,

dZ(x) —1
=1 b 20
- (2)b(a), 20)
where
n’s-!;ac exg _ n’s-!;ac efxg -1
2 N z) = o o
ge®? ge ™9
Keoe e *9 e” "9 1)
Ke+oe 2 2
N Kkeoe e®9 e”9
Ketoe 2 2
In expanded form Eq. (20) can be written as
az -
# — 0 () b(a)
[ keoe e @9 —T9 I 2RT dln
Ketoe 2 € 2 _70 - T(l - t+) dxC2
| meoe e 29 _Fa
e R p Ue(z) (22)

Ik. e %9 2RT (1 _ t+) Keoe dlncog e”*9 e "9 &U (17)
c

Ketoe 2 F Ketoe dzx 2 2g P

Ik, e "9 2RT _ Kkeoe dlnecy e®9  e®9 Fa
L Fete. 2 T °F (1 t+)nc+0c dz 2 39 pUc(x)

To economize notation introduce functions representing all nonlinear terms in Eq. (22), according to the
definitions

cYc 1
:2RT(1—t+) KeOe dlnes

Ge(@) F Ke + 0. dx

) (23)
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and
Fa
Gu(x) = —U.(x), (24)
u(z) ” (z)
in these notations
[dzi,ﬁ”)] | S5 (Ge@) + Gula) -
) re el — £ (Gelz) - Gu(a))
with an apparent solution
Z1(8) + Lre e =eT [T (G (1) + Gu(x))da
Zl(x) 1( ) Ketoe 29 L(Sf 2 ( ( ) U( )) o
Za () z '

Ketoe 2g

22(6)+ Ike eTd _ed9 +f e;"'g (GC(I)+GU(CC))d$
8

It is important to note that the function U, (), which represents the electrochemical potential alongside the x-
axis, was inherently a function of concentration and temperature gradient alongside the x-axis Uc(c7, T'). Given
the exclusive focus on an approximation of the solution, to be used as the initial guess for the aforementioned
equation-solving strategy shown in Fig. 1, the expressions can be simplified by assuming a uniform distribution
of concentration along the x-axis. Consequently, this assumption leads to the reduction of G to zero because c2
is constant in the 22 expression, while Gy becomes constant due to the constancy of Ue(z) = Ue.(ci, T) in

dx
the absence of concentration gradient along x-axis. Therefore,

Ge(z) =0, (27)
and
Gu(x) = Gy = const. (28)
The integral terms in the Eq. (31) become:
e " 1 4o
- 3 (Ge(z) + Gu(z))dx = 7¢ (6 — x)Gu, (29)
s
and
e®d 1 _4a
7(Gc(x) + Gy (z))dx = —5¢ (6 — z) Gu. (30)

Denote z; = Z1(8) and z2 = Z2(6). That finally leads to a general solution of Eq. (13) in the form

[(z)
o= = 2(x)Z(x)
_’iz(x)
_ K e~ %90 —gz
et —] At R T T (-0 Gy G
= . C o oTI_ g6 _
ge®? ge~ "9 22+nf+;c%_%e 77 (0 —=z)Gu
[ e 9% (ketoe) B 9% (ketoe)B
= . Ke Oc 2 + : Kc Oc : ’
gegacﬁl —96_9”52
where
Gue % (0—x) Ihe(e"?—e7?7)
b1 =z1+ - ’
2 29 (ke + o) (32)
Gue?® (0 —x) Ire (79 —e")
Po=——p— —2 C2g(ke+oe)

Rewriting this result component-wise to obtain ¢ (x) and i2(z) yields
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e 9% (ch + Uc) (GU eg; 0-2) _ z2 + Lre (eé g—egi))

Rz
o) = — o
x Gue 9% (6—x) IThe(e %9—e=9%)
e (ke + 0c) (Z1 + == - = )
+ Ke Oc ’
and
-9z (§ _ I . -89 _ ,—gz
is(z) = ge?® | 21 + Gue ( ) _ Ik (e e )
’ s (34)
x 8 x
—ge T Gy €f (57x)_z2+1116(egfe9) ,
2 Y1

where 1 = 2 ¢ (ke + 0c)
By utilizing the boundary conditions outlined in Eq. (2), where i2(6) = I and i2(L,) = 0, the values of z1
and 22 can be calculated.

Tkee 29 4 2706 r9 4+ 2Tk, e %9 — [k elP9e 209
2g(etr9de=99 —e Lr9eds) (k. + oc)

71mCeLP9+2]UCeLP9+2]/<;Ce59—lf<acele’ge”g
2g(etr9e=99 —e Lr9eds) (k. + oc)

21 = — )

(35)

22

It is straightforward to calculate the units of 21 and 22 based on Eq. (35) which results in (A-m™2). Importing
back the values of z; and 22 in the Eq. (33) and Eq. (34) gives the final form of the ¢(z) and iz(x)

GU 5g
gK/cO'c(EQL’Jg _ 6269)
2Lpg

2Lpg 2Lpg 2Lpg

Y(x) = (Kee* 79 + oce®79 — grexe

26
eg g9

— Ke - (590'5626
+ grewe®? + gcrcase%g) (36)
I

gReOe (€2Lpgega: — 20997

Log 2 Sg 2
+ kee P9 4 g.e’le gx).

— gocxe

Lpg 26 20,9 &
)(Kce P92 L g.e“PIe%

ITe 97 (nceL”g -‘rO’ce&g) (e2LP9 —ezgx) Ikce 97 (eL”g —eg”)

(ke + 0c) (e2Lr9 —e299) Ke + 0c

(37)

ig (I) =

The solutions provided in Eq. (36) and Eq. (37) are derived from the original system of ordinary differential
equations. Utilizing these solutions, the values of ¥(J) can serve as optimized initial guesses for the shooting
method’s initial values.

Results and discussion
The values utilized in the simulations of this study are detailed in Table 1, sourced from the research conducted
by Chen et al.?2.

In Fig. 3 part (a), the evolution of 42 and 1) is depicted along the x-axis. The analytical solution for ¢z closely
approximates the real values obtained numerically. In the lower plot of part (a) of Fig. 3, the focus is on identifying
the initial point of the analytical v, which serves as a suitable starting point for the estimation process. This
initial point aligns with the starting point of the numerical v, indicated by green diamonds.

In Fig. 3 part (b), the behavior of 42 as a function of z; and z2 is illustrated at positions z = § and x = L,
, where the boundary conditions are defined by Eq. (2), respectively. It is apparent that except for the points
computed in Eq. (35), alternative values for z1 and z; fail to satisfy the boundary conditions.

In Fig. 4, the Butler-Volmer equation is compared with its Linear and Tafel approximations at 25 °C. This
low-current and low-overpotential region is identified based on this comparison, where the Butler-Volmer
equation closely aligns with its linear form in an overpotential range of 100 mV. As illustrated in Fig. 1 part
(), the analytical expression derived in this study serves as an initial educated guess for the P2D system. When
the operating conditions fall within or near the low-current and low-overpotential region, the improved model
achieves the maximum speed improvement, as the analytical expression provides an initial guess very close
to the actual solution, allowing the P2D model to converge instantly. However, as the operating conditions
move further from this region, the accuracy of the analytical expression as an educated guess decreases. At
extremely high currents, its effectiveness deteriorates to the point where it becomes no better than a random
guess. Consequently, in such extreme conditions, the speed advantage of the method diminishes to zero, making
it as slow as the traditional P2D model which uses random guess for initialization.

In Fig. 5, the behavior of 42 and 1 as a function of various parameters is depicted. In Fig. 5 part (a), the
decrease in precision of the analytical solution as the applied current density increases is demonstrated. This
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Parameters | Values Units Description

a 2.045 - 10° m~?! Particles specific area

i 6.328 101 |A-m~? Exchange current density

R 8.314 Jrmol~! - K—! | Universal gas constant

T 298 K Temperature

F 9.650 - 10* C-mol™* Faraday constant

F) 25 pm Separator thickness

L, 95 pm Positive current collector position
I -9 A-m™? Applied current density

o 1074 - 107" |S$m~?t Electronic conductivity

Ke 1074 —-107' [Sm™*t Tonic conductivity

t 0.363 - Transference number
Uo(xz,T) |3.386 v Electrode equilibrium potential

Table 1. Model parameter values and units?2.

T [/1,111] 22 mAm™] - 7?4\*"// o [mA-m™)

z [pm]

~ 2
1 2N 4
! 142

2 [mA-m 21 [mAm!)

Fig. 3. The evolution of i> (A-m™2) and 1 (V) along x axis. (a) Top plot shows the analytical approximation
of i3 compared to numerically calculated i2, Lower plot shows the analytical approximation of ¢ compared to
numerically calculated . Legend “A” and “N” stand for the analytical and the numerical solution. (b) iz values
as a function of z1 and z2. The top plot is at boundary condition = = 4, the lower plot is at boundary condition
2 = L. The red dot denotes the position of the analytically calculated z; and 22 as defined in Eq. (35).

outcome was anticipated, considering that the analytical solution was derived from the linear form of the Butler-
Volmer equation, known for its higher accuracy in low current regions.

The sensitivity analysis with respect to % is given in Fig. 5 part (b). The response of 7> demonstrates
commendable stability, showing only marginal error amplification with the increase of i0. A corresponding
trend is visible in the analytical solutions for v, where a diminishing accuracy is observed in comparison to their
numerical counterparts as 5 increases. Nevertheless, the analytical representation of 1) remains firmly within an
acceptable range, approximating the numerical solution. Therefore providing an approximation suitable to use
as the initial value for the shooting method or the newtone method to enhance the computation speed for P2D
models. More specifically, the values of ¢ at the boundary condition z = 25um are used as the initial guess for
the P2D model iterative solver. Hence, the precision of the estimated solution around this boundary region is
more critical than in the rest of the % function for this purpose.

In Fig. 5¢, the sensitivity analysis regarding ionic conductivity . unveils a pattern similar to that observed
with ig. As K. increases, there’s a reduction in the accuracy of the analytical solutions for 32 and v, albeit they
remain reliable approximations. This resilience qualifies them for incorporation into the proposed strategy as
educated guesses for iterative solvers of the P2D model.

Similar logic extends to the sensitivity analysis of electronic conductivity o., depicted in Fig. 5d. As 0.
increases, a corresponding decrease in accuracy is observed in the behavior of functions 72 and . Despite this,

Scientific Reports |

(2025) 15:26477 | https://doi.org/10.1038/s41598-025-99733-y natureportfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

J[ Alem?]

Butler-Volmer

6 Linear approximation| 7
: Tafel approximation

8 i

-100 0

n [mv]

Fig. 4. Comparison of the Butler-Volmer equation with its Tafel and linear approximations at 25 °C.
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Fig. 5. Sensitivity analysis of analytical and numerical 2 and v values with respect to various parameters. (a)
i2 and 9 as a function of applied current density I (A-m~2). (b) 2 and % as a function of exchange current
density 12 (A‘m™2). (c) i2 and ¢ as a function of ionic conductivity K¢ (S'm™1). (d) 32 and 2 as a function of
electronic conductivity o, (S-m ™). Legend “A” and “N” stand for the analytical and the numerical solution.
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the alignment between analytical and numerical representations of ¢ and v remains robust across all plots,
reinforcing their viability as dependable approximations even through parameter shifts.

Another question might be raised upon examining Fig. 5, given that the analytical solution for i> appears
nearly linear in most cases and since the boundaries of 42 are explicitly known as part of the boundary value
problem, an alternative approach could involve approximating 2 with a single straight line and calculating the
1) values based on this simplified 75 function afterward.

However, the issue with this idea lies in the fact that the governing equations of the system couple the
potential ¥(z) and the electrolyte current i2(z) intrinsically, meaning their evolution is interdependent across
the entire domain. Specifically, these equations are of the form:

d ) di .
L= fwin), D2 =gwi), 38)
with the boundary conditions:
$(0) = o, i2(0) = =1, iz(Lp) = 0. (39)

The shooting method is typically employed in this scenario, where it iteratively guesses the initial value 1(0)
, then solves the coupled equations for 1(x) and i2(x). In each iteration, the two variables 1(z) and i2(x)
influence each other’s evolution, ensuring that they remain consistent across the entire domain. If the resulting
i2(x) satisfies the boundary condition at = Ly, the initial guess 1 (0) is validated, and the solution is
considered correct. This feedback mechanism between 1(x) and i2(x) guarantees that both quantities satisfy
their respective governing equations and boundary conditions simultaneously.

In contrast, when i3 () is artificially imposed as a linear function:

ia(e) = 2(0) + <<L>L—@> .

the coupling between 1 (x) and 42 () is broken. In this approach, i2(x) is determined independently of ¥ ()
, which means ¥(x) is calculated based on a pre-determined i2(z), without adjusting v(0) to satisfy the
boundary condition at z = § = 25 pm. While the resulting shape of ¢(x) may appear similar to the solution
obtained via the coupled system, the absence of the feedback mechanism leads to a mismatch in the initial value
of 1(0), which can make the solution unreliable with no way to determine the boundary of ¢ atx = 6 = 25
m as shown in the Fig. 6.

When the fixed 2 () is substituted into the governing equation for (z), the solution t(x) is forced to
conform to the imposed i2(x), which may result in a solution that satisfies the differential equation as general
solution but fails to fully satisfy the original coupled system as particular solution.

The primary objective of this study is to obtain a reliable estimation of the initial potential 1)(0) and current
i2(x). However, the artificial imposition of an uncoupled linear iz(x) fails to achieve this goal, as it does not
provide a robust mechanism for accurately determining the t/(0) initial value. This reinforces the importance of
preserving the joint dynamics between () and i2(x) to ensure accurate and physically meaningful solutions.
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Fig. 6. Comparison of numerical, analytical, and uncoupled linearized i> methods for I = —15, [A - m™?]

. (a) The uncoupled linearized 2 closely approximates both the analytical and numerical solutions. (b) The v
solutions for the analytical and numerical methods align well, while the uncoupled linearized method results
in discrepancies, with random initiation points and increased error.
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Current [A] Voltage [V]

Iteration Time [s]

It is important to emphasize that the strategy presented in this study also involves linearizing the problem
(see Eq. 6). However, particular care is taken to preserve the coupled dynamics and interdependence between
1) and 42. By maintaining this relationship, the approach ensures a consistent and accurate representation of the
joint behavior of these variables, leading to a reliable solution.

Finally to demonstrate the proposed method performance, Fig. 7 illustrates the results of a model simulation
under a dynamic current cycle lasting 12,000 seconds. The simulated battery has a capacity of 2.9 Ah, and the root
mean square error (RMSE) of the voltage output was computed as 0.024 V. All simulations were conducted with
a time step of one second. As expected, the cell voltage curves for both the base P2D model and the accelerated
P2D model are identical, as both models solve the same set of equations. However, Fig. 7c highlights a significant
reduction in iteration convergence time for the accelerated P2D model. On average, the original P2D simulation
required 15.23 seconds to complete, while the accelerated version finished in just 11.87 seconds, resulting in a
notable 22.06% improvement in computational efficiency.

In this dynamic current cycle, the C-rate did not exceed 1C, which contributed to the observed efficiency
gain. It is important to note that in most industrial applications, manufacturers generally recommend charging
rates lower than 1C.

To further evaluate performance, a computational time comparison was conducted for different constant
current constant voltage (CCCV) cycles across various C-rates: C/20, C/10, C/5, C/3, C/2, 1C, 2C, 3C, 4C, and
5C. The simulation times for both the base and accelerated P2D models were recorded and plotted in Fig. 8a.
Figure 8b shows the computational speedup gain in percentage for each C-rate. The points between the recorded
data values were interpolated to estimate the acceleration gain for intermediate C-rates. Figure 8c illustrates the
voltage error across different C-rates. These simulations were conducted on a Dell Latitude laptop with a Core
i5 processor. It is clear that the accelerated P2D model outperforms the base P2D across all C-rate ranges, with a
more significant improvement observed at lower C-rates compared to higher ones.
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Fig. 7. Comparison of accuracy and computational performance between the accelerated P2D (Sim 1) and
base P2D (Sim 2) models for dynamic current. (a) Voltage output. (b) Current input. (c) Computation time per
iteration.
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Fig. 8. Comparison of computational performance between the accelerated P2D and base P2D models across
different CC-CV cycles and C-rates. (a) Simulation time for each cycle at various C-rates. (b) Computation
time reduction for each C-rate. (c) Computed voltage Root Mean Square Error (RMSE) for each C-rate.

Conclusion

This study introduces an analytical approach to enhance the optimization of initial values utilized in solving
the P2D model equations via iterative solvers such as the shooting method or the Newton method. Analytically
determining values for the current density in the electrolyte and the potentials in both the solid and electrolyte
phases provides a reliable estimation of the initial values required to initiate an iterative solver of a P2D battery
model. As this analytical expression replaces an ODE solving loop, it helps to accelerate the computational
process necessary for P2D battery models.

Additionally, the obtained analytical solutions underwent a sensitivity analysis of the independent
parameters, demonstrating their resilience and robustness. This analysis further supports the reliability of these
approximations in solving both the P2D and accelerated P2D models.

The combined effect of the two strategies, as shown in Fig. 1, resulted in up to around 20% reduction
in computation time at lower C-rates, with the benefit diminishing as the C-rate increases. Most industrial
applications recommend charging regimes around 1C, where the model demonstrates an approximately 8%
faster convergence time. As a complex system, advancements in improving the efficiency of the P2D model are
often driven by incremental innovations, each addressing specific challenges or bottlenecks. These cumulative
improvements are crucial in the ongoing effort to enhance computational efficiency.

A key advantage of the approach proposed in this study lies in its practicality and impact. Two direct analytical
expressions for ¢ and 42 through detailed analysis were derived, which can be seamlessly integrated into existing
P2D models. Implementation is exceptionally straightforward, requiring only the replacement of a single line of
code to substitute the random initialization of ¢ and 42 with these analytical expressions. This approach strikes
an excellent balance between minimal implementation effort and meaningful performance gains, making it a
valuable contribution to the optimization of P2D models.

Scientific Reports |

(2025) 15:16477

| https://doi.org/10.1038/s41598-025-99733-y nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Data availability
The datasets used during this study are available from the corresponding author upon reasonable request. Addi-
tionally, formulation details of the P2D model are provided in Appendix A.
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