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Solving the physics-based pseudo-two-dimensional (P2D) models involves using iterative methods, 
such as the Newton or the shooting method to solve a boundary condition problem. To use these 
iterative methods effectively, it is imperative to transform the boundary condition problem into an 
initial condition problem. This, in turn, necessitates initializing certain parameters, often done by 
providing guess values. The choice of these initial guess values can significantly impact convergence 
speed. This study proposes an analytically derived linear solution for initializing these conditions 
as an approximate guess. The proposed approach is not only computationally efficient, enhancing 
convergence speed and overall performance of the P2D model, but also straightforward to implement, 
making it a practical solution.

Keywords  Li-ion battery, P2D model, Pseudo-two-dimensional, Porous electrode, Model order reduction, 
Shooting method

The global energy transition necessitates a pivotal shift towards innovative and renewable energy technologies, 
leading to an increased demand for storage capacity. This surge in capacity requirement has spurred a prominent 
trend toward adopting batteries, with lithium-ion batteries emerging as a significant player. These batteries find 
applications in stationary energy storage and electric vehicles, underscoring their versatility and importance in 
modern energy ecosystems1.

To maximize the utilization of lithium-ion batteries, advanced modeling techniques are essential. One such 
model, the pseudo-two-dimensional (P2D) battery model, also referred to as Doyle-Fuller-Newman (DFN), 
contains a system of partial differential equations (PDEs), and algebraic equations. This model partitions battery 
dynamics into two key dimensions. One spatial dimension along the length of the battery and another pseudo-
dimension that characterize the radial dimension within the active particles of the electrodes. This framework 
offers a robust foundation for analyzing battery dynamics, facilitating precise evaluation, and optimization of 
lithium-ion battery performance2–9. However, solving the P2D model equations require significant computational 
resources and suffers from poor computation speed. In a prior study by the same authors, Haghverdi et al.10, a 
model order reduction technique was introduced to mitigate the occurrence of infinite values in the electrolyte 
current during model iteration. By eliminating these redundant iterations, they demonstrated significant 
improvements in the computational speed of the P2D model. Building upon this foundation, the current study 
endeavors to refine the method by introducing an analytically derived initial estimation for current and potential. 
This advancement aims to replace the preliminary loop for estimating the initial guess values of potentials in 
solids and electrolytes, employing a linear approximation of the Butler-Volmer equation. Transitioning from an 
iterative loop to a concise mathematical expression for initial value estimation is anticipated to yield significant 
benefits in terms of computational speed.
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Statement of the problem
The P2D model relies on iterative solvers such as the Newton or the shooting method to achieve the solution. For 
a comprehensive understanding of the governing equations of the P2D model, Table A1 is included in Appendix 
A, providing a detailed listing of the equations governing the P2D model. The shooting method addresses 
boundary value problems by transforming them into initial value problems through random guesses for missing 
initial variables, such as the solid and electrolyte potentials (φ1 and φ2). Initially, it conducts a forward run, 
often employing techniques like Euler or Runge-Kutta’s, and then iteratively fine-tunes these initial estimates to 
align the calculated ionic current in the electrolyte phase (denoted as i2) with its specified boundary condition11. 
This iterative refinement typically employs the bisection or similar root-finding methods and continues until 
the desired accuracy in the parameter i2(Lp) is attained. Upon achieving the target boundary value for i2, 
confidence is established in the accuracy of the guess values utilized for potentials φ1 and φ2 in reaching this 
solution.

The effectiveness of iterative algorithms can be compromised when commencing simulations with arbitrary 
guesses for these potential values, resulting in diverging ionic currents within the electrolyte phase. This issue 
is addressed in the research conducted by Haghverdi et al.10. To tackle this challenge, a model order reduction 
technique was implemented to prevent the occurrence of infinite values and divergence during iterations. 
Additionally, the initial guess values were refined by employing a preliminary loop using linear Butler-Volmer 
approximation to estimate the initial value of ψ = φ1 − φ2, which represents the galvanic pseudo-potential 
inside the cell. This study aims to replace the preliminary loop responsible for solving the system of PDEs with 
an analytical solution of the same PDE system. This substitution of the loop with an analytical expression is 
anticipated to accelerate the computation process for the P2D model. The evolution of strategies to solve this 
PDE system is illustrated in Fig. 1.

The battery model employed in this study is rooted in the research conducted by Chayambuka et al.12,13 and 
Chen et al.14–16. However, it is crucial to highlight that our research goes beyond the confines of these particular 
models, presenting a broadly applicable approach for all P2D battery models.

 Model development
To simplify the mathematical presentation, this study focuses on the positive electrode equations. The equations 
for the negative electrode are identical, with the only difference being the adjustment of boundary conditions 
to reflect the negative electrode. Figure 2 provides a schematic representation of a battery cell, which includes 
current collectors on both sides, a negative electrode (typically graphite), a separator, and a positive electrode.

In this study, the origin of the x-axis is placed at the negative electrode/separator interface, with x = 0, to 
simplify the mathematical presentation of the positive electrode for brevity. The solid hexagonal shapes represent 
active electrode particles. The parameter δ denotes the thickness of the separator membrane, while Lp represents 
the position of the positive electrode current collector. The thickness of the positive porous electrode is given 
by Lp − δ.

To numerically solve the P2D model, it is spatially and temporally discretized. Temporal discretization 
involves time-stepping, which transforms the system of partial differential equations into a system of ordinary 
differential equations (ODEs) at each time step. Subsequently, the ODEs need to be solved at each spatial point 
based on the chosen discretization method. For further details on P2D model solving strategies and discretization 

Fig. 1.  Solving the P2D model PDE strategies. (a) Original, (b) Preliminary linear Butler-Volmer loop for fast 
estimation of initial values10, (c) Replacing the preliminary loop with a direct analytical expression for faster 
calculation.
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methods, refer to17–21. In this study, the spatial discretization of the model employs the finite difference method, 
further guided by a forward Euler method to traverse through each point.

Consider the cell at a certain moment during battery operation. Suppose that at that moment in time, current 
density I (A·m−2) is applied (index t is skipped for brevity). The question is how to determine the reaction rate 
distribution inside the porous electrode at the first moment when a current is applied. The system of equations 
for potentials and currents in both phases can then be written as:

	
i1 = −σc

dφ1

dx
,� (1)

with boundary conditions

	 i1(δ) = 0, i1(Lp) = I,

and

	
i2 = −κc

dφ2

dx
+ 2κcRT

F
(1 − t+)d ln c2

dx
,� (2)

with boundary conditions

	 i2(δ) = I, i2(Lp) = 0.

Here, i1 and φ1 represent the electronic current density (A·m−2) and electrical potential (V) within the porous 
electrode, while i2 and φ2 denote the ionic current density (A·m−2) and electrical potential (V) within the 
electrolyte residing inside the porous electrode. It is important to note that subscripts 1 and 2 correspond to 
the electrode (solid phase) and electrolyte (liquid phase), respectively. Furthermore, σc and κc stand for the 
effective electronic conductivity of the electrode and the effective ionic conductivity of the electrolyte (S·m−1

), respectively. These effective conductivities consider the actual pathways through which species move within 
the porous media, with more detailed information available in the literature, particularly in the works of Doyle 
and Fuller et al.8,9.

The transfer of charge between the two phases is governed by Eq. (3), which is commonly referred to as the 
Butler-Volmer Equation.

	

di2

dx
= aF jc = ai0

c

[
e

αF ηct
c

RT − e− (1−α)F ηct
c

RT

]
,� (3)

where, a represents the specific area of the pores (m−1), jc denotes the reaction rate (mol·m−2 · s−1), and 
i0
c  is the exchange current density (A·m−2). It is noteworthy that jc transforms into current density upon 

multiplication by the Faraday constant F (C·mol−1). The equation describing the charge transfer overpotential 
ηct

c  and its correlation with the potentials of the solid and electrolyte phases is presented in Eq. (4):

	 ηct
c = φ1 − φ2 − Uc(cs

1, T ),� (4)

in this equation, Uc represents the equilibrium potential of the electrode (V), while cs
1 denotes the Li 

concentration at the surface of the electrode particle (mol·m−3) with spatial dependence. Additionally, I stands 
for the applied current density (A·m−2), and R and T represent the universal gas constant (J·mol−1 · K−1) and 

Fig. 2.  Schematic layout of the P2D model for a lithium-ion battery cell.
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absolute temperature (K), respectively. Finally, the conservation of charge is expressed by Eq. (5), as depicted 
below:

	 i1 + i2 = I.� (5)

Suppose that the applied current density (I), and consequently the overpotential, is sufficiently small so that the 
Butler-Volmer equation Eq. (3) can be reduced to a linear relationship:

	
di2

dx
= F aηct

c

ρ
= F a

ρ
(φ1 − φ2 − Uc(cs

1, T )),� (6)

where ρ = RT
i0
c

. By eliminating i1 based on Eq. (5) and rearranging the equations, derived the following system 
of ordinary differential equations:

	
dφ1

dx
= i2 − I

σc
, � (7)

	
dφ2

dx
= − i2

κc
+ 2RT

F
(1 − t+)d ln c2

dx
, � (8)

	
di2

dx
= F a

ρ
(φ1 − φ2 − Uc(cs

1, T )). � (9)

Next, by subtracting Eq. (8) from Eq. (7) and introducing the galvanic pseudo-potential ψ = φ1 − φ2, the 
system of Eqs. (7)-(9) comes to the following form:

	

dψ

dx
= i2 − I

σc
+ i2

κc
− 2RT

F
(1 − t+)d ln c2

dx

=κc + σc

κcσc
i2 − I

σc
− 2RT

F
(1 − t+)d ln c2

dx

� (10)

	
di2

dx
=F a

ρ
(ψ − Uc(cs

1, T )). � (11)

Note that Uc(cs
1, T ) = Uc(cs

1(x), T ) = Uc(x, T ) is a function of coordinate x because the concentration in 
solid depends on x. Eqs. (10-11) can be rewritten in a matrix form. Denote state vector Θ, system matrix A, and 
right-hand side vector b as

	
Θ =

[
ψ
i2

]
, A =

[ 0 κc+σc
κcσc

F a
ρ

0

]
, � (12)

and

	
b =

[− I
σc

− 2RT
F

(1 − t+) dlnc2
dx

− F a
ρ

Uc(x)

]
,

accordingly. Then Eqs. (10-11) can be written as

	
dΘ

dx
= AΘ + b(x).� (13)

As a first approximation the dependence of parameters κc and σc on x is ignored, they are treated as constants. The 
same assumption is made about ρ, at least when this parameter appears in matrix A. Eq. 13 is an inhomogeneous 
linear system of the first-order ODE-s. Note that vector b depends on x. To solve an inhomogeneous system of 
ODE-s one first must solve a homogeneous linear system, i.e. system

	
dΘ

dx
= AΘ.� (14)

Consider the characteristic equation

	
det(A) =

∣∣∣∣∣
−λ κc+σc

κcσc

F a
ρ

−λ

∣∣∣∣∣ = λ2 − F a

ρ

( 1
σc

+ 1
κC

)
= 0.� (15)
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It has two simple roots, λ1 =
√

F a
ρ

( 1
σc

+ 1
κc

) and λ2 = −
√

F a
ρ

( 1
σc

+ 1
κc

). Denote g =
√

F a
ρ

( 1
σc

+ 1
κc

) to 

economize notations. The calculation of the eigenvector for λ1 = g leads to a system of linear algebraic equations

	

[−g κc+σc
κcσc

F a
ρ

−g

] [
a1
a2

]
=

[−ga1 + κc+σc
κcσc

a2

F a
ρ

a1 − ga2

]
=

[0
0
]

,� (16)

which has a (non-normalized) solution V1 = [ κc+σc
κcσc

g]′. Finally, the eigenvector λ2 = −g brings 
V2 = [− κc+σc

κcσc
g]′ with similar calculations. Therefore, the general solution of Eq. (14) has a form

	
Θ̃ =

2∑
i=1

Vie
λ1x = Z1exg

[
κc+σc
κcσc

g

]
+ Z2e−xg

[
− κc+σc

κcσc

g

]
,� (17)

where Θ̃ is a general solution to the homogenous Eq. (14), and Zi are constants. To obtain the solution of Eq. 
(13) these constants must be calculated. Consider the fundamental matrix of the solution, defined as

	

Ω(x) =[ω1(x) ω2(x)] = [exgV1 e−xgV2]

=

[ κc+σc
κcσc

exg − κc+σc
κcσc

e−xg

gexg ge−xg

]
.

� (18)

Then solution Eq. (17) can be written as Θ̃ = Ω(x)Z , where Z = (Z1 Z2)′. To extend the solution from 
a homogeneous system of equations to include non-homogeneous solutions, a vector Z that depends on the 
variable x must be considered. The solution of inhomogeneous Eq. (13) will take the form Θ(x) = Ω(x)Z(x). 
Substituting it into Eq. (13) leads to

	
dΘ

dx
= d

dx
Ω(x)Z(x) = dΩ(x)

dx
Z(x) + Ω(x)dZ(x)

dx
� (19)

	
= AΩ(x)Z(x) + Ω(x)dZ(x)

dx
.

This expression matches the right-hand side of Eq. (13), leading to the equation Ω(x) dZ(x)
dx

= b(x). Consequently,

	
dZ(x)

dx
= Ω−1(x)b(x),� (20)

where

	

Ω−1(x) =

[ κc+σc
κcσc

exg − κc+σc
κcσc

e−xg

gexg ge−xg

]−1

=




κcσc
κc+σc

e−xg

2
e−xg

2

κcσc
κc+σc

exg

2
exg

2


 .

� (21)

In expanded form Eq. (20) can be written as

	

dZ(x)
d

=Ω−1(x) b(x)

=




κcσc
κc+σc

e−xg

2
e−xg

2

κcσc
κc+σc

exg

2
exg

2




[− I
σc

− 2RT
F

(1 − t+) d ln c2
dx

− F a
ρ

Uc(x)

]

=




− Iκc
κc+σc

e−xg

2 − 2RT
F

(1 − t+) κcσc
κc+σc

d ln c2
dx

e−xg

2 − e−xg

2g
F a
ρ

Uc(x)

Iκc
κc+σc

e−xg

2 + 2RT
F

(1 − t+) κcσc
κc+σc

d ln c2
dx

exg

2 − exg

2g
F a
ρ

Uc(x)


 .

� (22)

To economize notation introduce functions representing all nonlinear terms in Eq. (22), according to the 
definitions

	
Gc(x) = 2RT

F
(1 − t+) κcσc

κc + σc

d ln c2

dx
,� (23)
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and

	
GU (x) = F a

gρ
Uc(x),� (24)

in these notations

	

[ dZ1(x)
dx

dZ2(x)
dx

]
=


− Iκc

κc+σc

e−xg

2 − e−xg

2 (Gc(x) + GU (x))

Iκc
κc+σc

exg

2 − exg

2 (Gc(x) − GU (x))


 ,� (25)

with an apparent solution

	

[
Z1(x)

Z2(x)

]
=




Z1(δ) + Iκc
κc+σc

e−xg−e−δg

2g
−

x∫
δ

e−xg

2 (Gc(x) + GU (x))dx

Z2(δ) + Iκc
κc+σc

exg−eδg

2g
+

x∫
δ

exg

2 (Gc(x) + GU (x))dx


 .� (26)

It is important to note that the function Uc(x), which represents the electrochemical potential alongside the x-
axis, was inherently a function of concentration and temperature gradient alongside the x-axis Uc(cs

1, T ). Given 
the exclusive focus on an approximation of the solution, to be used as the initial guess for the aforementioned 
equation-solving strategy shown in Fig. 1, the expressions can be simplified by assuming a uniform distribution 
of concentration along the x-axis. Consequently, this assumption leads to the reduction of Gc to zero because c2 
is constant in the d ln c2

dx  expression, while GU  becomes constant due to the constancy of Uc(x) = Uc(cs
1, T ) in 

the absence of concentration gradient along x-axis. Therefore,

	 Gc(x) = 0,� (27)

and

	 GU (x) = GU = const.� (28)

The integral terms in the Eq. (31) become:

	

−
x∫

δ

e−xg

2 (Gc(x) + GU (x))dx = 1
2e−g x (δ − x)GU,� (29)

and

	

x∫

δ

exg

2 (Gc(x) + GU (x))dx = −1
2e−g x (δ − x) GU.� (30)

Denote z1 = Z1(δ) and z2 = Z2(δ). That finally leads to a general solution of Eq. (13) in the form

	

Θ =

[
ψ(x)

i2(x)

]
= Ω(x)Z(x)

=

[ κc+σc
κcσc

exg − κc+σc
κcσc

e−xg

gexg ge−xg

] 


z1 + Iκc
κc+σc

e−xg−e−δg

2g
+ 1

2 e−g x (δ − x) GU

z2 + Iκc
κc+σc

exg−eδg

2g
− 1

2 e−g x (δ − x) GU




=
[

e−g x (κc+σc) β2
κc σc

+ eg x (κc+σc) β1
κc σc

g eg x β1 − g e−g x β2

]
,

� (31)

where

	

β1 =z1 + GU e−g x (δ − x)
2 −

I κc

(
e−δ g − e−g x

)
2 g (κc + σc) ,

β2 =GU eg x (δ − x)
2 − z2 +

I κc

(
eδ g − eg x

)
2 g (κc + σc) .

� (32)

Rewriting this result component-wise to obtain ψ(x) and i2(x) yields
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ψ(x) =
e−g x (κc + σc)

(
GU eg x (δ−x)

2 − z2 + I κc (eδ g−eg x)
γ1

)

κc σc

+
eg x (κc + σc)

(
z1 + GU e−g x (δ−x)

2 − I κc (e−δ g−e−g x)
γ1

)

κc σc
,

� (33)

and

	

i2(x) = g eg x

(
z1 + GU e−g x (δ − x)

2 − I κc (e−δ g − e−g x)
γ1

)

− g e−g x

(
GU eg x (δ − x)

2 − z2 + I κc (eδ g − eg x)
γ1

)
,

� (34)

where γ1 = 2 g (κc + σc)
By utilizing the boundary conditions outlined in Eq. (2), where i2(δ) = I  and i2(Lp) = 0, the values of z1 

and z2 can be calculated.

	

z1 = − I κc e−Lp g + 2 I σc e−Lp g + 2 I κc e−δ g − I κc eLp g e−2 δ g

2 g (eLp g e−δ g − e−Lp g eδ g) (κc + σc)
,

z2 =I κc eLp g + 2 I σc eLp g + 2 I κc eδ g − I κc e−Lp g e2 δ g

2 g (eLp g e−δ g − e−Lp g eδ g) (κc + σc)
.

� (35)

It is straightforward to calculate the units of z1 and z2 based on Eq. (35) which results in (A·m−2). Importing 
back the values of z1 and z2 in the Eq. (33) and Eq. (34) gives the final form of the ψ(x) and i2(x)

	

ψ(x) = GU δg

gκcσc(e2Lpg − e2δg)
(
κce2Lpg + σce2Lpg − gκcxe2Lpg

− κce2δg − gσcxe2Lpg − δgσce2δg

+ gκcxe2δg + gσcxe2δg
)

− I

gκcσc(e2Lpgegx − e2δgegx)
(
κceLpge2δg + σce2Lpgeδg

+ κceLpge2gx + σceδge2gx
)
.

� (36)

	
i2(x) =

I e−g x
(
κc eLp g + σc eδ g

) (
e2 Lp g − e2 g x

)
(κc + σc) (e2 Lp g − e2 δ g)

−
I κc e−g x

(
eLp g − eg x

)
κc + σc

. � (37)

The solutions provided in Eq. (36) and Eq. (37) are derived from the original system of ordinary differential 
equations. Utilizing these solutions, the values of ψ(δ) can serve as optimized initial guesses for the shooting 
method’s initial values.

Results and discussion
The values utilized in the simulations of this study are detailed in Table 1, sourced from the research conducted 
by Chen et al.22.

In Fig. 3 part (a), the evolution of i2 and ψ is depicted along the x-axis. The analytical solution for i2 closely 
approximates the real values obtained numerically. In the lower plot of part (a) of Fig. 3, the focus is on identifying 
the initial point of the analytical ψ, which serves as a suitable starting point for the estimation process. This 
initial point aligns with the starting point of the numerical ψ, indicated by green diamonds.

In Fig. 3 part (b), the behavior of i2 as a function of z1 and z2 is illustrated at positions x = δ and x = Lp

, where the boundary conditions are defined by Eq. (2), respectively. It is apparent that except for the points 
computed in Eq. (35), alternative values for z1 and z2 fail to satisfy the boundary conditions.

In Fig. 4, the Butler-Volmer equation is compared with its Linear and Tafel approximations at 25 ◦C. This 
low-current and low-overpotential region is identified based on this comparison, where the Butler-Volmer 
equation closely aligns with its linear form in an overpotential range of 100 mV. As illustrated in Fig. 1 part 
(c), the analytical expression derived in this study serves as an initial educated guess for the P2D system. When 
the operating conditions fall within or near the low-current and low-overpotential region, the improved model 
achieves the maximum speed improvement, as the analytical expression provides an initial guess very close 
to the actual solution, allowing the P2D model to converge instantly. However, as the operating conditions 
move further from this region, the accuracy of the analytical expression as an educated guess decreases. At 
extremely high currents, its effectiveness deteriorates to the point where it becomes no better than a random 
guess. Consequently, in such extreme conditions, the speed advantage of the method diminishes to zero, making 
it as slow as the traditional P2D model which uses random guess for initialization.

In Fig. 5, the behavior of i2 and ψ as a function of various parameters is depicted. In Fig. 5 part (a), the 
decrease in precision of the analytical solution as the applied current density increases is demonstrated. This 
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outcome was anticipated, considering that the analytical solution was derived from the linear form of the Butler-
Volmer equation, known for its higher accuracy in low current regions.

The sensitivity analysis with respect to i0
c  is given in Fig. 5 part (b). The response of i2 demonstrates 

commendable stability, showing only marginal error amplification with the increase of i0
c . A corresponding 

trend is visible in the analytical solutions for ψ, where a diminishing accuracy is observed in comparison to their 
numerical counterparts as i0

c  increases. Nevertheless, the analytical representation of ψ remains firmly within an 
acceptable range, approximating the numerical solution. Therefore providing an approximation suitable to use 
as the initial value for the shooting method or the newtone method to enhance the computation speed for P2D 
models. More specifically, the values of ψ at the boundary condition x = 25µm are used as the initial guess for 
the P2D model iterative solver. Hence, the precision of the estimated solution around this boundary region is 
more critical than in the rest of the ψ function for this purpose.

In Fig. 5c, the sensitivity analysis regarding ionic conductivity κc unveils a pattern similar to that observed 
with i0

c . As κc increases, there’s a reduction in the accuracy of the analytical solutions for i2 and ψ, albeit they 
remain reliable approximations. This resilience qualifies them for incorporation into the proposed strategy as 
educated guesses for iterative solvers of the P2D model.

Similar logic extends to the sensitivity analysis of electronic conductivity σc, depicted in Fig. 5d. As σc 
increases, a corresponding decrease in accuracy is observed in the behavior of functions i2 and ψ. Despite this, 

Fig. 3.  The evolution of i2 (A·m−2) and ψ (V) along x axis. (a) Top plot shows the analytical approximation 
of i2 compared to numerically calculated i2, Lower plot shows the analytical approximation of ψ compared to 
numerically calculated ψ. Legend “A” and “N” stand for the analytical and the numerical solution. (b) i2 values 
as a function of z1 and z2. The top plot is at boundary condition x = δ, the lower plot is at boundary condition 
x = Lp. The red dot denotes the position of the analytically calculated z1 and z2 as defined in Eq. (35).

 

Parameters Values Units Description

a 2.045 · 105 m−1 Particles specific area

i0
c 6.328 · 10−1 A·m−2 Exchange current density

R 8.314 J·mol−1 · K−1 Universal gas constant

T 298 K Temperature

F 9.650 · 104 C·mol−1 Faraday constant

δ 25 µm Separator thickness

Lp 95 µm Positive current collector position

I −9 A·m−2 Applied current density

σc 10−4 − 10−1 S·m−1 Electronic conductivity

κc 10−4 − 10−1 S·m−1 Ionic conductivity

t+ 0.363    - Transference number

U0(x, T ) 3.386 V Electrode equilibrium potential

Table 1.  Model parameter values and units22.
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Fig. 5.  Sensitivity analysis of analytical and numerical i2 and ψ values with respect to various parameters. (a) 
i2 and ψ as a function of applied current density I (A·m−2). (b) i2 and ψ as a function of exchange current 
density i0

c  (A·m−2). (c) i2 and ψ as a function of ionic conductivity κc (S·m−1). (d) i2 and ψ as a function of 
electronic conductivity σc (S·m−1). Legend “A” and “N” stand for the analytical and the numerical solution.

 

Fig. 4.  Comparison of the Butler-Volmer equation with its Tafel and linear approximations at 25 ◦C.
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the alignment between analytical and numerical representations of i2 and ψ remains robust across all plots, 
reinforcing their viability as dependable approximations even through parameter shifts.

Another question might be raised upon examining Fig. 5, given that the analytical solution for i2 appears 
nearly linear in most cases and since the boundaries of i2 are explicitly known as part of the boundary value 
problem, an alternative approach could involve approximating i2 with a single straight line and calculating the 
ψ values based on this simplified i2 function afterward.

However, the issue with this idea lies in the fact that the governing equations of the system couple the 
potential ψ(x) and the electrolyte current i2(x) intrinsically, meaning their evolution is interdependent across 
the entire domain. Specifically, these equations are of the form:

	
dψ

dx
= f(ψ, i2), di2

dx
= g(ψ, i2),� (38)

with the boundary conditions:

	 ψ(0) = ψ0, i2(δ) = −I, i2(Lp) = 0.� (39)

The shooting method is typically employed in this scenario, where it iteratively guesses the initial value ψ(0)
, then solves the coupled equations for ψ(x) and i2(x). In each iteration, the two variables ψ(x) and i2(x) 
influence each other’s evolution, ensuring that they remain consistent across the entire domain. If the resulting 
i2(x) satisfies the boundary condition at x = Lp, the initial guess ψ(0) is validated, and the solution is 
considered correct. This feedback mechanism between ψ(x) and i2(x) guarantees that both quantities satisfy 
their respective governing equations and boundary conditions simultaneously.

In contrast, when i2(x) is artificially imposed as a linear function:

	
i2(x) = i2(δ) +

(
i2(Lp) − i2(δ)

Lp

)
x,

the coupling between ψ(x) and i2(x) is broken. In this approach, i2(x) is determined independently of ψ(x)
, which means ψ(x) is calculated based on a pre-determined i2(x), without adjusting ψ(0) to satisfy the 
boundary condition at x = δ = 25 µm. While the resulting shape of ψ(x) may appear similar to the solution 
obtained via the coupled system, the absence of the feedback mechanism leads to a mismatch in the initial value 
of ψ(0), which can make the solution unreliable with no way to determine the boundary of ψ at x = δ = 25 µ
m as shown in the Fig. 6.

When the fixed i2(x) is substituted into the governing equation for ψ(x), the solution ψ(x) is forced to 
conform to the imposed i2(x), which may result in a solution that satisfies the differential equation as general 
solution but fails to fully satisfy the original coupled system as particular solution.

The primary objective of this study is to obtain a reliable estimation of the initial potential ψ(0) and current 
i2(x). However, the artificial imposition of an uncoupled linear i2(x) fails to achieve this goal, as it does not 
provide a robust mechanism for accurately determining the ψ(0) initial value. This reinforces the importance of 
preserving the joint dynamics between ψ(x) and i2(x) to ensure accurate and physically meaningful solutions.

Fig. 6.  Comparison of numerical, analytical, and uncoupled linearized i2 methods for I = −15, [A · m−2]
. (a) The uncoupled linearized i2 closely approximates both the analytical and numerical solutions. (b) The ψ 
solutions for the analytical and numerical methods align well, while the uncoupled linearized method results 
in discrepancies, with random initiation points and increased error.
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It is important to emphasize that the strategy presented in this study also involves linearizing the problem 
(see Eq. 6). However, particular care is taken to preserve the coupled dynamics and interdependence between 
ψ and i2. By maintaining this relationship, the approach ensures a consistent and accurate representation of the 
joint behavior of these variables, leading to a reliable solution.

Finally to demonstrate the proposed method performance, Fig. 7 illustrates the results of a model simulation 
under a dynamic current cycle lasting 12,000 seconds. The simulated battery has a capacity of 2.9 Ah, and the root 
mean square error (RMSE) of the voltage output was computed as 0.024 V. All simulations were conducted with 
a time step of one second. As expected, the cell voltage curves for both the base P2D model and the accelerated 
P2D model are identical, as both models solve the same set of equations. However, Fig. 7c highlights a significant 
reduction in iteration convergence time for the accelerated P2D model. On average, the original P2D simulation 
required 15.23 seconds to complete, while the accelerated version finished in just 11.87 seconds, resulting in a 
notable 22.06% improvement in computational efficiency.

In this dynamic current cycle, the C-rate did not exceed 1C, which contributed to the observed efficiency 
gain. It is important to note that in most industrial applications, manufacturers generally recommend charging 
rates lower than 1C.

To further evaluate performance, a computational time comparison was conducted for different constant 
current constant voltage (CCCV) cycles across various C-rates: C/20, C/10, C/5, C/3, C/2, 1C, 2C, 3C, 4C, and 
5C. The simulation times for both the base and accelerated P2D models were recorded and plotted in Fig. 8a. 
Figure 8b shows the computational speedup gain in percentage for each C-rate. The points between the recorded 
data values were interpolated to estimate the acceleration gain for intermediate C-rates. Figure 8c illustrates the 
voltage error across different C-rates. These simulations were conducted on a Dell Latitude laptop with a Core 
i5 processor. It is clear that the accelerated P2D model outperforms the base P2D across all C-rate ranges, with a 
more significant improvement observed at lower C-rates compared to higher ones.

Fig. 7.  Comparison of accuracy and computational performance between the accelerated P2D (Sim 1) and 
base P2D (Sim 2) models for dynamic current. (a) Voltage output. (b) Current input. (c) Computation time per 
iteration.
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Conclusion
This study introduces an analytical approach to enhance the optimization of initial values utilized in solving 
the P2D model equations via iterative solvers such as the shooting method or the Newton method. Analytically 
determining values for the current density in the electrolyte and the potentials in both the solid and electrolyte 
phases provides a reliable estimation of the initial values required to initiate an iterative solver of a P2D battery 
model. As this analytical expression replaces an ODE solving loop, it helps to accelerate the computational 
process necessary for P2D battery models.

Additionally, the obtained analytical solutions underwent a sensitivity analysis of the independent 
parameters, demonstrating their resilience and robustness. This analysis further supports the reliability of these 
approximations in solving both the P2D and accelerated P2D models.

The combined effect of the two strategies, as shown in Fig. 1, resulted in up to around 20% reduction 
in computation time at lower C-rates, with the benefit diminishing as the C-rate increases. Most industrial 
applications recommend charging regimes around 1C, where the model demonstrates an approximately 8% 
faster convergence time. As a complex system, advancements in improving the efficiency of the P2D model are 
often driven by incremental innovations, each addressing specific challenges or bottlenecks. These cumulative 
improvements are crucial in the ongoing effort to enhance computational efficiency.

A key advantage of the approach proposed in this study lies in its practicality and impact. Two direct analytical 
expressions for ψ and i2 through detailed analysis were derived, which can be seamlessly integrated into existing 
P2D models. Implementation is exceptionally straightforward, requiring only the replacement of a single line of 
code to substitute the random initialization of ψ and i2 with these analytical expressions. This approach strikes 
an excellent balance between minimal implementation effort and meaningful performance gains, making it a 
valuable contribution to the optimization of P2D models.

Fig. 8.  Comparison of computational performance between the accelerated P2D and base P2D models across 
different CC-CV cycles and C-rates. (a) Simulation time for each cycle at various C-rates. (b) Computation 
time reduction for each C-rate. (c) Computed voltage Root Mean Square Error (RMSE) for each C-rate.
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Data availability
The datasets used during this study are available from the corresponding author upon reasonable request. Addi-
tionally, formulation details of the P2D model are provided in Appendix A.
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