000010462 001__ 10462
000010462 005__ 20180208232940.0
000010462 0247_ $$2DOI$$a10.1007/s00339-010-5804-z
000010462 0247_ $$2WOS$$aWOS:000279127700044
000010462 0247_ $$2ISSN$$a0947-8396
000010462 037__ $$aPreJuSER-10462
000010462 041__ $$aeng
000010462 082__ $$a530
000010462 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000010462 084__ $$2WoS$$aPhysics, Applied
000010462 1001_ $$0P:(DE-Juel1)VDB71976$$aVolk, C.$$b0$$uFZJ
000010462 245__ $$aImproved gate-control in InAs nanowire structures by the use of GdScO3 as a gate dielectric
000010462 260__ $$aBerlin$$bSpringer$$c2010
000010462 300__ $$a305 - 308
000010462 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000010462 3367_ $$2DataCite$$aOutput Types/Journal article
000010462 3367_ $$00$$2EndNote$$aJournal Article
000010462 3367_ $$2BibTeX$$aARTICLE
000010462 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000010462 3367_ $$2DRIVER$$aarticle
000010462 440_0 $$0560$$aApplied Physics A$$v100$$x0947-8396$$y1
000010462 500__ $$aRecord converted from VDB: 12.11.2012
000010462 520__ $$aWe investigated the properties of gadolinium scandate (GdScO3) as a gate dielectric for top-gate electrodes on undoped InAs nanowires. It is demonstrated that due to the high dielectric constant of GdScO3 (k=22), a better control of the conductance of the nanowire is achieved compared to a reference SiO2-isolated back-gate electrode. We analyzed the output and transfer characteristics of top-gate-controlled InAs wires at room temperature and at temperatures down to 4 K. Owing to the good coverage of the InAs nanowire by the 50-nm-thick GdScO3 layer, which was deposited by pulsed-laser deposition, the gate leakage current is sufficiently suppressed.
000010462 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000010462 588__ $$aDataset connected to Web of Science
000010462 650_7 $$2WoSType$$aJ
000010462 7001_ $$0P:(DE-Juel1)128631$$aSchubert, J.$$b1$$uFZJ
000010462 7001_ $$0P:(DE-Juel1)128645$$aWeis, K.$$b2$$uFZJ
000010462 7001_ $$0P:(DE-Juel1)VDB86485$$aEstévez Hernández, S.$$b3$$uFZJ
000010462 7001_ $$0P:(DE-Juel1)VDB66468$$aAkabori, M.$$b4$$uFZJ
000010462 7001_ $$0P:(DE-Juel1)VDB86963$$aSladek, K.$$b5$$uFZJ
000010462 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, H.$$b6$$uFZJ
000010462 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, T.$$b7$$uFZJ
000010462 773__ $$0PERI:(DE-600)1398311-8$$a10.1007/s00339-010-5804-z$$gVol. 100, p. 305 - 308$$p305 - 308$$q100<305 - 308$$tApplied physics / A$$v100$$x0947-8396$$y2010
000010462 8567_ $$uhttp://dx.doi.org/10.1007/s00339-010-5804-z
000010462 909CO $$ooai:juser.fz-juelich.de:10462$$pVDB
000010462 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000010462 9141_ $$y2010
000010462 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000010462 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000010462 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000010462 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000010462 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000010462 9201_ $$0I:(DE-Juel1)VDB799$$d31.12.2010$$gIBN$$kIBN-1$$lHalbleiter-Nanoelektronik$$x0
000010462 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1
000010462 970__ $$aVDB:(DE-Juel1)120792
000010462 980__ $$aVDB
000010462 980__ $$aConvertedRecord
000010462 980__ $$ajournal
000010462 980__ $$aI:(DE-Juel1)PGI-9-20110106
000010462 980__ $$aI:(DE-82)080009_20140620
000010462 980__ $$aUNRESTRICTED
000010462 981__ $$aI:(DE-Juel1)PGI-9-20110106
000010462 981__ $$aI:(DE-Juel1)VDB881