001     10462
005     20180208232940.0
024 7 _ |2 DOI
|a 10.1007/s00339-010-5804-z
024 7 _ |2 WOS
|a WOS:000279127700044
024 7 _ |2 ISSN
|a 0947-8396
037 _ _ |a PreJuSER-10462
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Volk, C.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB71976
245 _ _ |a Improved gate-control in InAs nanowire structures by the use of GdScO3 as a gate dielectric
260 _ _ |c 2010
|a Berlin
|b Springer
300 _ _ |a 305 - 308
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Applied Physics A
|x 0947-8396
|0 560
|y 1
|v 100
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We investigated the properties of gadolinium scandate (GdScO3) as a gate dielectric for top-gate electrodes on undoped InAs nanowires. It is demonstrated that due to the high dielectric constant of GdScO3 (k=22), a better control of the conductance of the nanowire is achieved compared to a reference SiO2-isolated back-gate electrode. We analyzed the output and transfer characteristics of top-gate-controlled InAs wires at room temperature and at temperatures down to 4 K. Owing to the good coverage of the InAs nanowire by the 50-nm-thick GdScO3 layer, which was deposited by pulsed-laser deposition, the gate leakage current is sufficiently suppressed.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Schubert, J.
|b 1
|u FZJ
|0 P:(DE-Juel1)128631
700 1 _ |a Weis, K.
|b 2
|u FZJ
|0 P:(DE-Juel1)128645
700 1 _ |a Estévez Hernández, S.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB86485
700 1 _ |a Akabori, M.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB66468
700 1 _ |a Sladek, K.
|b 5
|u FZJ
|0 P:(DE-Juel1)VDB86963
700 1 _ |a Hardtdegen, H.
|b 6
|u FZJ
|0 P:(DE-Juel1)125593
700 1 _ |a Schäpers, T.
|b 7
|u FZJ
|0 P:(DE-Juel1)128634
773 _ _ |0 PERI:(DE-600)1398311-8
|a 10.1007/s00339-010-5804-z
|g Vol. 100, p. 305 - 308
|p 305 - 308
|q 100<305 - 308
|t Applied physics / A
|v 100
|x 0947-8396
|y 2010
856 7 _ |u http://dx.doi.org/10.1007/s00339-010-5804-z
909 C O |o oai:juser.fz-juelich.de:10462
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2010
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |d 31.12.2010
|g IBN
|k IBN-1
|l Halbleiter-Nanoelektronik
|0 I:(DE-Juel1)VDB799
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
970 _ _ |a VDB:(DE-Juel1)120792
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-9-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21