| Hauptseite > Publikationsdatenbank > Performance metrics for tensorial learning: prediction of Li4Ti5O12 nuclear magnetic resonance observables at experimental accuracy > print |
| 001 | 1046210 | ||
| 005 | 20260106202633.0 | ||
| 024 | 7 | _ | |a 10.1039/D5TA05090A |2 doi |
| 024 | 7 | _ | |a 2050-7488 |2 ISSN |
| 024 | 7 | _ | |a 2050-7496 |2 ISSN |
| 024 | 7 | _ | |a 10.34734/FZJ-2025-03746 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2025-03746 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Harper, Angela F |0 P:(DE-HGF)0 |b 0 |e First author |
| 245 | _ | _ | |a Performance metrics for tensorial learning: prediction of Li4Ti5O12 nuclear magnetic resonance observables at experimental accuracy |
| 260 | _ | _ | |a London [u.a.] |c 2025 |b RSC |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1767698819_16804 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Predicting observable quantities from first principles calculations is the next frontier within the field of machine learning (ML) for materials modelling. While ML models have shown success for the prediction of scalar properties such as energetics or band gaps, models and performance metrics for the learning of higher order tensor-based observables have not yet been formalized. ML models for experimental observables, including tensorial quantities, are essential for exploiting the full potential of the paradigm shift enabled by machine learned interatomic potentials by mapping the structure–property relationship in an equally efficient way. In this work, we establish performance metrics for accurately predicting the electric field gradient tensor (EFG) underlying nuclear magnetic resonance (NMR) spectroscopy. We further demonstrate the superiority of a tensorial learning approach that fully encodes the corresponding symmetries over a separate scalar learning of individual tensor-derived observables. To this end we establish an extensive EFG dataset representative of real experimental applications and develop performance metrics for model evaluation which directly focus on the targeted NMR observables. Finally, by leveraging the computational efficiency of the ML method employed, we predict quadrupolar observables for 1512 atom models of Li4Ti5O12, a high performance Li-ion battery anode material, which is capable of accurately distinguishing local atomic environments via their NMR observables. This workflow and dataset sets the standard for the next generation of tensorial based learning for spectroscopic observables. |
| 536 | _ | _ | |a 1223 - Batteries in Application (POF4-122) |0 G:(DE-HGF)POF4-1223 |c POF4-122 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Köcher, Simone Swantje |0 P:(DE-Juel1)192562 |b 1 |e Corresponding author |u fzj |
| 700 | 1 | _ | |a Reuter, Karsten |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Scheurer, Christoph |0 P:(DE-Juel1)184961 |b 3 |u fzj |
| 773 | _ | _ | |a 10.1039/D5TA05090A |g p. 10.1039.D5TA05090A |0 PERI:(DE-600)2702232-8 |p 35389–35399 |t Journal of materials chemistry / A |v 13 |y 2025 |x 2050-7488 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1046210/files/d5ta05090a.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1046210 |p openaire |p open_access |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)192562 |
| 910 | 1 | _ | |a Fritz Haber Institut der Max Planck Gesellschaft Berlin |0 I:(DE-HGF)0 |b 1 |6 P:(DE-Juel1)192562 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)184961 |
| 910 | 1 | _ | |a Fritz Haber Institut der Max Planck Gesellschaft Berlin |0 I:(DE-HGF)0 |b 3 |6 P:(DE-Juel1)184961 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1223 |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
| 915 | p | c | |a Local Funding |0 PC:(DE-HGF)0001 |2 APC |
| 915 | p | c | |a DFG OA Publikationskosten |0 PC:(DE-HGF)0002 |2 APC |
| 915 | p | c | |a TIB: Royal Society of Chemistry 2021 |0 PC:(DE-HGF)0110 |2 APC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-05 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-05 |
| 915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b J MATER CHEM A : 2022 |d 2024-12-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-05 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J MATER CHEM A : 2022 |d 2024-12-05 |
| 915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2024-12-05 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-05 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IET-1-20110218 |k IET-1 |l Grundlagen der Elektrochemie |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IET-1-20110218 |
| 980 | _ | _ | |a APC |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|