001     1046210
005     20260106202633.0
024 7 _ |a 10.1039/D5TA05090A
|2 doi
024 7 _ |a 2050-7488
|2 ISSN
024 7 _ |a 2050-7496
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-03746
|2 datacite_doi
037 _ _ |a FZJ-2025-03746
082 _ _ |a 530
100 1 _ |a Harper, Angela F
|0 P:(DE-HGF)0
|b 0
|e First author
245 _ _ |a Performance metrics for tensorial learning: prediction of Li4Ti5O12 nuclear magnetic resonance observables at experimental accuracy
260 _ _ |a London ˜[u.a.]œ
|c 2025
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1767698819_16804
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Predicting observable quantities from first principles calculations is the next frontier within the field of machine learning (ML) for materials modelling. While ML models have shown success for the prediction of scalar properties such as energetics or band gaps, models and performance metrics for the learning of higher order tensor-based observables have not yet been formalized. ML models for experimental observables, including tensorial quantities, are essential for exploiting the full potential of the paradigm shift enabled by machine learned interatomic potentials by mapping the structure–property relationship in an equally efficient way. In this work, we establish performance metrics for accurately predicting the electric field gradient tensor (EFG) underlying nuclear magnetic resonance (NMR) spectroscopy. We further demonstrate the superiority of a tensorial learning approach that fully encodes the corresponding symmetries over a separate scalar learning of individual tensor-derived observables. To this end we establish an extensive EFG dataset representative of real experimental applications and develop performance metrics for model evaluation which directly focus on the targeted NMR observables. Finally, by leveraging the computational efficiency of the ML method employed, we predict quadrupolar observables for 1512 atom models of Li4Ti5O12, a high performance Li-ion battery anode material, which is capable of accurately distinguishing local atomic environments via their NMR observables. This workflow and dataset sets the standard for the next generation of tensorial based learning for spectroscopic observables.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Köcher, Simone Swantje
|0 P:(DE-Juel1)192562
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Reuter, Karsten
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Scheurer, Christoph
|0 P:(DE-Juel1)184961
|b 3
|u fzj
773 _ _ |a 10.1039/D5TA05090A
|g p. 10.1039.D5TA05090A
|0 PERI:(DE-600)2702232-8
|p 35389–35399
|t Journal of materials chemistry / A
|v 13
|y 2025
|x 2050-7488
856 4 _ |u https://juser.fz-juelich.de/record/1046210/files/d5ta05090a.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1046210
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)192562
910 1 _ |a Fritz Haber Institut der Max Planck Gesellschaft Berlin
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)192562
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)184961
910 1 _ |a Fritz Haber Institut der Max Planck Gesellschaft Berlin
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-Juel1)184961
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a TIB: Royal Society of Chemistry 2021
|0 PC:(DE-HGF)0110
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-05
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J MATER CHEM A : 2022
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER CHEM A : 2022
|d 2024-12-05
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-05
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21