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Abstract. The efficient movement of cognitive active agents, such as pedestri-
ans, relies on adapting their motion in response to neighboring particles. We
present a generic model for such systems, which consists of intelligent active
Brownian particles (iABPs) in two spatial dimensions, moving at a constant
speed along their heading direction. Essential features of this model are (i)
steering torques that change the direction of motion related to visual perception
for distancing and goal fixation, and (ii) a distinction between on-coming and
co-moving agents. We examine semi-dense systems where excluded-volume
interactions are negligible, and the constant-speed assumption applies. We use
this model to describe two scenarios: motile agents at finite density, aiming to
maintain a large neighbor distance, and agents at a three-way crossing, where
there is no simple way to self-organize. In the first case, we find that the agent
dynamics for medium-to-large vision angles only depend on the ratio Pe3/2/Ω

of their Péclet number Pe and maneuverability Ω, while for narrow vision an-
gles, an avoidance-induced flocking state is observed. In the latter scenario,
where agents aim to reach a goal, their behavior is governed by the competition
of maneuverability, goal-fixation, the vision angle and the inflow rate.

1 Introduction

The collective motion of many particles or agents occurs in many living and engineered
systems, over a wide range of length scales. On microscopic scales, bacteria and eukaryotic
cells form biofilms and confluent monolayers, on macroscopic scales, ants, birds, sheep, and
humans form flocks, trails, swarms, herds, and pedestrian crowds [1–3]. Generic features
leading to collective motion in all these vastly different systems include (i) directional sensing
of the position and orientation of neighboring particles, (ii) cognitive information processing
and decision making about steering action or velocity adaptation, and (iii) collision avoidance
to prevent damage or injury, as well as to avoid mutual blockage. In some systems, such as
pedestrian crowds, each agent may also have a goal or target to achieve.

The observations of many systems mentioned above, such as bird flocks and semi-dense
pedestrian crowds, indicate that self-steering, rather than speed adaptation governs agent be-
haviour [4–6]. Also, in most of these systems, inertia is not an important factor. Thus, it is
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Figure 1. (a) Schematic showing the effect of the vision torque Mvis and goal-following torque Mgoal

on an agent (black). The vector d points towards the goal (green) and only the agents highlighted in
’red’ are detected by the black particle. (b) Schematic showing the effect of the exponential and head-
ing factors in Ti j [Eq.(5)], so that the highlighted (red) agents are avoided with larger weight/priority.
Sample trajectories showing the effect of goal fixation and visual avoidance for (c) agents with opposite
goal directions and (d) agents with the same goal direction. Here ψ = π/2, Ω = 1, and K = 1. In (d) the
red agent does not ’see’ the blue one and therefore does not react.

a good approximation in modelling to assume a constant speed of all particles. Then, there
are four possible types of steering requirements: (i) Short-distance avoidance by turning the
direction of motion away from on-coming particles, (ii) trailing of co-moving particles ahead,
or (iii) adjustment of the direction of motion to that of neighbors, and (iv) aiming for the group
or swarm center for swarm cohesion [7–9]. Another important factor is of course the dimen-
sionality of space, as motion of pedestrians through a quasi-one-dimensional narrow channel
is certainly governed by other factors than the motion of a bird flock in three dimensions.

We focus here on the collective motion of agents in two spatial dimensions, applicable to
pedestrians in a room [9], and at squares or crossings [10]. However, the model described
below is very versatile, and can be easily adapted and generalized to other systems, including
animal herds and bird flocks, as well as different environmental conditions such as navigation
through channels and bottlenecks.

2 Model

We model pedestrians/agents as intelligent active Brownian particles (iABPs) in two spatial
dimensions, moving at a constant speed v0 along their heading direction ei. We employ a
self-steering mechanism in the form of a torque that changes the direction of motion as

ėi =
√

2(d − 1)DrΛi + ΩMvis + KMgoal, (1)

where Dr is the rotational diffusion coefficient, d is the dimensionality, Λi is a Gaussian
random process, Ω and K are the strength of the steering torques related to visual perception
(Mvis) and goal fixation (Mgoal), respectively. Agents steer towards their respective goals via
the torque

Mgoal =
[
ei ×
(
d̂ × ei

)]
, (2)

where the unit vector d̂ is the direction towards the goal, with which particle i attempts to
align, see Fig. 1(a). Agents avoid collisions with each other via ’vision-assisted’ reorientation
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Figure 2. Trajectory (green) of a particle in the (a) overcautious regime (Pe3/2/Ω = 0.0625) and the
(b) squirming regime (Pe3/2/Ω = 0.5) for density Φ = 0.25 and vision angle ψ = π/2. (c) Avoidance
induced flocking of particles at ψ = π/4, Pe3/2/Ω = 0.125, and Φ = 2.5. The red arrow indicates the
propagation direction of the particle. Adapted from Ref [9].

of their propulsion direction, which is described by the torque [10]

Mvis = −
1
Ni

∑
j∈VC

Ti j

[
ei ×
(

ri j

|ri j|
× ei

)]
, (3)

where ri j = r j − ri is the displacement vector between particle i and particle j. The sum is
over all particles j that are in the vision cone VC of the agent i, with

VC =
{

j |
ri j

|ri j|
· ei ≥ cosψ and |ri j| < Rv

}
(4)

where ψ is the vision angle and Rv the vision interaction cutoff. Ti j is a weight factor given
by

Ti j = e(−|ri j |/R0)[3 − ei · e j]/4. (5)

which increases the relative importance of avoiding agents moving ’head-on’ towards each
other (ei · e j = −1), as opposed to co-moving agents (i.e. ei · e j = 1) by a factor 1/2
[11]. The exponential distance dependence in Eq. (5) limits the range of the interaction, such
that for high density of agents the effective vision range is R0 and closer agents contribute
more to the avoidance torque, see Fig. 1(b). Lastly, Ni =

∑
j∈VC Ti j is the normalization

factor, which makes the interactions non-additive. The activity of the agents is described by
the Péclet number Pe = v0/R0Dr and we measure K and Ω in units of Dr. By operating
in the overdamped limit of the Langevin equation, we minimise the effects of inertia and
the self-steering gives a realistic description of pedestrian movement. Figure 1(c,d) shows
trajectories illustrating the combined effect of alignment and collision avoidance for agents
with the same and opposite goal directions, where the former illustrates the non-reciprocity
of the interactions.

3 Agents Maintaining Distances

We start by considering a simpler scenario where agents lack goal orientation, i.e. K = 0 and
Ω > 0, so that agents self-steer to avoid close encounters by moving away from locally sensed
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Figure 3. (a) Average nearest-neighbor distance ⟨d1⟩ for different pedestrian densities Φ as a function
of Pe3/2/Ω. (b) Scaled average exposure time, TmPe for different Péclet numbers Pe and Φ = 0.25,
with β ranging from −1/4 to 2 as indicated. Adapted from Ref [9].

regions of higher density. For simplicity, we also set Ti j = exp (−|ri j|/R0), such that there is no
perceived information on the heading direction of other agents, and only the distance weight
contributes. N agents are placed in a box of size L with periodic boundary conditions, with
the dimensionless particle density Φ = N(R0/L)2. By using periodic boundary conditions,
we isolate the effects of self-steering on agent dynamics and avoid wall-related effects like
accumulation or rotating flows, which are not the focus of our study.

The behaviour of agents is found to depend only on the scaled variable Pe3/2/Ω. Specif-
ically, we identify three distinct dynamic regimes: the overcautious regime, the squirming
regime, and the reckless regime. In the overcautious regime (Pe3/2/Ω ≪ 1), agents strongly
avoid each other, resulting in minimal translational motion and a very low overall diffusion,
see Fig. 2(a). In the squirming regime, vision-based steering enables agents to avoid col-
lisions while maintaining some degree of translational motion [Fig. 2(b)]. Finally, in the
reckless regime (Pe3/2/Ω > 10), agents exhibit high activity and move with little regard for
their neighbors. Note that for all vision angles ψ ≥ π/2, the long-time behavior of agents
remains diffusive, due to the absence of a goal.

3.1 Nearest-Neighbour Distances and Exposure Time for Large Vision Angles

The analysis of the average nearest-neighbor distance ⟨d1⟩ and exposure time Tm provides
insights into how effectively agents maintain a prescribed safety distance. Similar systems
have been studied experimentally, particularly in the context of the COVID-19 pandemic
[12]. We find that for vision angles ψ ≥ π/2, agents come closer together as the density
and/or activity is increased, consistent with experimental observations [12]. Moreover, the
data collapses when expressed as a function of the scaled variable Pe3/2/Ω, see Fig. 3(a).
A similar trend is observed for exposure time, which increases as agents transition from the
overcautious to the reckless regime and is a universal function of the scaled variable Peβ/Ω,
where β depends on the vision angle [Fig. 3(b)].

3.2 Avoidance-Induced Flocking

For narrow vision angles (here ψ = π/4), we see an increase in the exposure time (β < 0,
Fig. 3(b)) and a decrease in the average nearest-neighbor distance for low Pe3/2/Ω. Here, the
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Figure 4. (a) Schematic of the three-way intersection, the three different pedestrian types are repre-
sented by the three colors with their respective goal directions d(ti). The human markers show the
position of influx placed on an interaction circle of radius Rint = 120R0. (b) State diagram of pedestrian
movement states as a function of the relative maneuverability∆ = Ω/K and vision angle ψ. Here the
dimensionless inflow rate Γ = 1. The lines serve as a visual guide to distinguish different dynamical
’states’ and do not represent phase transitions in the statistical sense. Adapted from Ref [10].

combination of strong avoidance and a narrow vision angle leads to an avoidance-induced
flocking state and band formations reminiscent of Viscek bands, as shown in Fig. 2(c). When
the vision angle is small, the high perception asymmetry allows one agent to detect another
while remaining undetected itself. The ’aware’ agent initiates a turning motion to avoid a
collision, however, as the unaware agent repeatedly re-enters its vision cone, the turning
continues until both agents align and move in parallel, forming a co-moving cluster. This
process repeats as additional agents align and integrate into the cluster, thus leading to an
avoidance-induced flocking state.

4 Collective Behaviour of Agents at Intersections

We now consider agents chasing a goal (K > 0), initiating them at three equally spaced
regions of a circle to create a basic realization of a three-stream intersection scenario [see
Fig. 4(a)] [10]. The three-stream intersection scenario explored here is a basic realization of
multi-directional pedestrian flow, as seen in busy intersections of malls, train stations, and
large fairgrounds. Circle antipode experiments, in which participants are positioned on a
circle and instructed to cross diagonally, explore a qualitatively similar setup [13, 14] and
provide insights into navigation strategies at intersections. In our simulation, each agent tries
to cross the interaction zone with the goal-following strength fixed at K = 8. We define the
relative maneuverability ∆ = Ω/K. Additionally, we now retain the heading factor in Ti j

so that it has the form shown in Eq. (5). This has important consequences for the collective
behaviour of the agents, as will be shown.

As the relative maneuverability ∆ and the vision angle ψ are varied, the agents show
different dynamical states, as shown in Fig. 4(b). For small ∆ ≲ 1, agents head directly
toward the goal, as goal alignment dominates over collision avoidance. As ∆ is increased,
pedestrian streams begin to interact and avoid each other, giving rise to complex motion
patterns. Specifically, jammed, scattering, and localized flocking states emerge at vision
angles ψ = π, ψ = π/2 and ψ = π/4 repectively.
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Figure 5. (a) Cluster size distribution of agents with the same goal direction shows the development
of a power-law decay of the cluster size distribution as the system transitions from a free-flow to the
jammed-percolated state for increasing ∆. (b) A snapshot highlighting the three largest clusters of same-
type agents, demonstrating the percolated nature of clusters as they extend from the inflow to the exit.
(c) Representative trajectories at ∆ = 8 for ψ = π (top) and ψ = π/4 (bottom) highlighting features of
fractional Brownian motion and Lévy-like walks, respectively. Adapted from Ref [10].

Percolated State: When the system enters a jammed state for large ∆, ψ, and Γ, the clus-
tering behavior of agents changes significantly. Note that the jamming observed here is not
caused by excluded volume effects but rather by strong steering avoidance and a large vision
angle. By analyzing the cluster size distribution, we observe that the system transitions into
a state where the clusters are percolated, i.e., clusters span the length of the interaction zone
[Fig. 5(a,b)]. By self-organizing into percolated clusters, agents can navigate the crowded in-
tersection and reach the exit. This is achieved by trailing agents with the same goal direction,
thus bearing some similarities to lane formation seen in bi-directional flows. However, unlike
stable lanes in bi-directional flows, these percolated clusters are transient, existing only for a
single stream at a time and continuously breaking due to interactions with opposing streams.

Notably, the MSD of the agents increases in the jammed state compared to the scattering
state, as following other agents results in more directed movement.

The analysis of the agents’ dynamics for large ∆ and ψ indicates that their motion can be
effectively described by a fractional Brownian motion model (fBM) [for details see ref. [10]].
The trajectory for ψ = π in Fig. 5(c) (top) shows that agents experience significant scattering,
however, their overall movement is toward the goal. This can be characterized by positively
correlated noise in the fBM model and leads to super-diffusive motion of the agents.

Localized Flocking: For narrow vision angles ψ and large local avoidance ∆, the agents
in the interaction regime show avoidance-induced flocking, similar to the behavior observed
in agents without goal following [Fig. 2(c)]. However, due to the presence of a goal, the
global flocking state is disrupted, and only localized flocking emerges. Agents remain in
these clusters until a combination of noise and goal-following disrupts this aligned state. In
this regime, the motion of agents can be described as Lévy walks, due to longer flight states
(i.e. flocking) followed by short reorientation events (collision avoidance), see Fig. 5(c).

5 Effect of Varying Inflow

In pedestrian, traffic, and even granular systems, the inflow rate of the constituents determines
its state — whether it remains in free flow, becomes congested, or transitions into a jammed
or clogged state [5]. The fundamental flow diagram measures the flux and average velocity of
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Figure 6. (a) Trajectories showing the self organisation into a rotational-state for Γ = 2, ψ = π/2, and
∆ = 8. (b) The fundamental flow diagram of the flux vρ as a function of ρ for the different vision angles
shows a collapse of the data for the different vision angles. (c) The (single stream) local density ρloc

heat-map shows the development of the jammed state, characterized by the reduced density at the exit
and enhanced density at the inflow. Adapted from Ref [10].

agents/particles as a function of the density, which in-turn depends on the inflow. We focus
on the regime of high avoidance (∆) and vary the inflow rate Γ to investigate the resulting
collective-behaviour of the system and construct the flow diagram. Notably, the data collapses
onto a single master curve for different vision angles, see Fig. 6(b).

Depending on the vision angle and inflow rate, the system remains in different states of
movement. For ψ = π, increasing Γ triggers a free flow to jamming transition, leading to
a sudden rise in the average density and crowding at the entry [Fig. 6(c)]. In contrast, for
ψ = π/4 the system always remains in the free-flow state as agents allow for closer proximity
due to their narrow vision cones. For ψ = π/2, as the inflow increases, agents self-organize
into a rotational state, as shown in Fig. 5(a). This self-organization is consistent with previous
studies, which have demonstrated that pedestrian flows at intersections typically stabilize un-
der rotational flow [15, 16]. The observed collective behaviours and agent dynamics, such as
the percolated state, roundabout motion, and super-diffusive movement, emerge from the in-
terplay between goal-following and the differential treatment of on-coming versus co-moving
agents in collision avoidance.

6 Conclusions

We have shown how pedestrians can be modelled using intelligent active Brownian particles
(iABPs) with self-steering torques for goal following and vision-based collision avoidance. In
contrast to force-based models [17], we employ a local vision-based self-steering mechanism
that adjusts the propulsion direction of agents through torques. Combining these steering-
based interactions with the overdamped limit of the Langevin equation effectively mitigates
artefacts arising from inertia effects seen in force-based models [18].

When only collision avoidance is considered, it is found that the agents display three
movement states — overcautious, squirming, and reckless — depending on the scaled pa-
rameter Pe3/2/Ω. Similarly, the average nearest neighbour and exposure times are found
to depend on the ratio between activity Pe and maneuverability Ω, with agents maintaining
larger distances and minimizing exposure in the squirming and overcautious regimes. No-
tably, for narrow vision angles, avoidance-induced flocking emerges, leading to the formation
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of band-like structures. When goal-following is considered, four classes of motion patterns
are obtained for varying relative maneuverablity ∆ and ψ— weakly interacting, locally flock-
ing, strongly scattering, and jamming. The jammed state is found to show percolation, with
the single agent dynamics well described by a fractional Brownian motion model with posi-
tively correlated noise. The fundamental flow diagram is found to be universal for different
vision angles with agents displaying distinct collective behaviors as inflow increases, such as
roundabout motion at ψ = π/2 and jamming at ψ = π.

Our results offer new insights into the dynamics of pedestrian and traffic systems, demon-
strating how visual perception and goal-following can drive complex collective behaviors in
congested environments. The close similarity of pedestrian motion to other "active matter"
systems, such as cell suspensions, self-propelled colloids, and bird flocks, suggests that iABP
models can serve as a unified framework for describing systems of cognitive active agents.
Moreover, in contrast to the social force model, the iABP model features fewer parameters
and non-additive interactions, making it more adaptable to complex scenarios—such as nav-
igation in heterogeneous environments or modeling collective animal behavior with multiple
interactions like alignment, collision avoidance, and trailing behavior.
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