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A B S T R A C T

Root rot in hydroponically grown leafy vegetables is difficult to detect via conventional manual and machine 
vision-based approaches as symptoms of infection are not clearly visible on the canopy at earlier stages of 
infection. Hence, the present study investigates the potential of using machine learning for assessing canopy 
information obtained from multiple imaging platforms synergistically to improve root rot detection. Herein, flat- 
leaf parsley seedlings were grown in an experimental hydroponic vertical farm and inoculated with Pythium 
irregulare and Phytophthora nicotianae. Subsequently, the seedlings were imaged via 3D, multispectral, and 
thermal sensors at various stages of growth to obtain twenty-six image-based plant features. Following a pre
liminary screening of redundant features via regression analysis, data for seventeen image features associated 
with morphometric, spectral, and thermal attributes was co-analyzed using supervised machine learning by 
Support Vector Machines (SVM). Models using all eleven spectral features provided 98 % accuracy compared to 
90 % for all five morphometric features and 94 % for canopy temperature alone. Inclusion of temporal data 
improved model performance by ca. 0.5 %, 1.5 %, and 8 % for spectral, thermal, and morphometric datasets, 
respectively. Exhaustive feature selection using different SVM kernels and maximum feature thresholds showed 
that combining features across the three imaging platforms along with temporal information enabled better 
identification of infected samples (>99 %) with as low as three features in comparison to using considerably 
more features from individual imaging systems. Hence, fusion of data from multiple imaging systems and using it 
with temporal information enabled better real-time high-throughput monitoring of root rot.

1. Introduction

Large-scale indoor crop production employing hydroponics has 
grown rapidly in the past decade. Beyond its traditional implementation 
within glasshouses, hydroponic cultivation systems are now being used 
in vertical farms as well. Such indoor farming operations provide greater 
control over plant growth conditions, have high water-use efficiency, 
and have the flexibility of being located closer to the point of 

consumption such as cities, reducing transportation-related carbon 
footprint [1–3]. Further, indoor farms produce high yield per unit area 
and facilitate year-round crop production, thereby reducing storage 
requirements and associated losses [3]. In addition to being highly 
resource-efficient, these operations also provide a high level of bio
security by physically isolating the crops from pests and pathogens, thus 
minimizing the need for biocides.

Despite better biosecurity, complete exclusion of pathogenic 
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microorganisms is practically impossible in large-scale indoor cultiva
tion setups. Contamination due to bacterial and fungal pathogens may 
still occur due to inadequate phytosanitary conditions, limited treat
ment of seeds and substrates, or entry of air-borne spores through the 
ventilation system [4,5]. High humidity, monoculture, and favorable 
ambient temperature within indoor farms create an ideal environment 
for the proliferation of these microorganisms. Moreover, high planting 
density and circulatory irrigation via hydroponics increases the likeli
hood of rapid pathogen spread, thus increasing the risk of extensive crop 
loss [4–6]. The situation is exacerbated due to increased likelihood of 
mycotoxins entering the food-supply chain [7]. Since hydroponics-based 
indoor crop production aims at minimizing biocide use, real-time 
high-throughput monitoring of crops becomes imperative for timely 
detection of infected plants in such cultivation systems.

Crop monitoring and plant disease detection via machine vision has 
grown in popularity over the past decade as it overcomes limitations 
such as subjectiveness, low throughput, and poor reproducibility asso
ciated with the conventional practice of manual plant health assessment 
[8]. Imaging technologies such as 3D, multispectral, hyperspectral, and 
thermal sensors have been successfully applied for assessing plant health 
status and detecting plant stress, with each of these sensors providing 
information about distinct aspects of plant health [9,10]. For instance, 
3D scanners and stereovision approaches can provide information per
taining to plant morphology in terms of height as well as canopy cover 
and structure [11–14], thus enabling reliable assessment of plant 
growth. In contrast, spectral features reflect the physiological status of a 
plant and can be used to monitor foliar symptoms appearing as changes 
in pigmentation patterns [15–18], whereas thermal sensors provide 
more in-depth real-time plant sensing by enabling users to monitor rapid 
variations in plant temperature in response to stress [19–24].

Despite their versatility, each of these sensing technologies has its 
own limitations. For example, inferences from 3D scans specifically rely 
on alterations in physical structure or canopy volume, and hence only 
prolonged or severe stress resulting in distinctive canopy damage would 
be clearly perceptible via this method. Conversely, slow physiological 
responses to stressors and limited sensing capacity for stresses that cause 
minimal changes in plant spectral profile are constraints associated with 
multispectral imaging. In contrast, diurnal variations and high sensi
tivity to environmental conditions are some limitations of thermal im
aging [10,25,26]. However, as each of these imaging techniques focuses 
on distinct plant attributes, improvement in real-time plant stress 
detection in indoor cultivation systems could be achieved by computa
tionally fusing the information coming from such sensors via machine 
learning (ML).

Currently, a large variety of ML methods are being implemented for 
modeling complicated data patterns across diverse agricultural sectors, 
including yield prediction [27,28], forecasting the price of agricultural 
products [29,30], and assessing soil quality [31,32]. In this context, such 
computational resources have also been pivotal in improving sensor 
data analysis for crop health assessment [33]. Unsupervised data pro
cessing tools such as principal component analysis and k-means clus
tering have been used to distinguish between healthy and stressed plants 
based on multiple spectral features [15,34–37], whereas supervised ML 
algorithms such as Support Vector Machines (SVM), k-Nearest Neigh
bors, and Random Forest have been employed for crop monitoring by 
identifying underlying trends in image datasets [34,36,38–40]. Further, 
computationally intensive deep-learning tools such as neural networks 
(NN) have also been implemented for disease detection by recognizing 
patterns on leaves such as lesions and chlorotic patches [41–43]. 
Although the feasibility of plant image analysis via ML for 
high-throughput crop monitoring has been extensively explored for the 
different imaging platforms deployed individually [9,44,45], reports on 
ML-based amalgamation of information from multiple imaging re
sources for plant stress and disease detection, especially in hydroponic 
cultivation systems, are very limited.

Amongst various plant stressors, root rot has emerged as a serious 

concern for hydroponics-based indoor crop production, with zoosporic 
oomycetes belonging to the Pythium and Phytophthora genera frequently 
identified as the causal organisms [4,6,46–48]. Although direct root 
imaging offers high accuracy in detecting root rot [49–51], such an 
approach may not be practical for real-time monitoring owing to prac
tical limitations within large-scale production systems. Since these 
water-borne necrotrophs infiltrate and damage roots, timely detection of 
symptoms via standard machine vision focusing on canopy traits is 
challenging as the damage is hidden underneath the surface. However, 
earlier studies have demonstrated the possibility of monitoring root rot 
by canopy image analysis of plants such as lentils, ginseng, pepper, and 
avocado [50,52–56], with some even exploring data fusion from two 
sensor types for enhanced detection [37,57].

Considering the limited research on multi-sensor data fusion for root 
rot detection using canopy imaging, this study advances the field by 
employing ML to integrate morphometric, spectral, and thermal features 
for high-precision crop monitoring. For this, flat-leaf parsley, a popular 
culinary herb, was grown in a customized hydroponic vertical farming 
unit, and root rot was induced by inoculation with mycelial fragments of 
specimen belonging to the Pythium and Phytophthora genera. Plants were 
imaged at regular intervals via 3D, multispectral, and thermal sensors to 
assess the efficacy of stress detection through integration of canopy 
features from these sensors. To enhance our understanding of how in
dividual plant attributes from different sensors contribute to disease 
detection, we employed exhaustive feature selection (EFS) to filter the 
dataset and subsequently assessed the accuracy of the ML models based 
on this refined data. Hence, our findings highlight the potential of 
integrating three complementary imaging techniques with ML to opti
mize feature selection and develop predictive models for detecting 
“hidden” diseases such as root rot more precisely.

2. Material and methods

2.1. Plant trials

Seedlings of flat-leaf parsley (Petroselinum crispum var. neapolitanum) 
were dark-germinated in coco-peat plugs in a nursery (Aralab-InFarm 
UK Ltd., London, UK) at a density of ~25 seedlings/plug, in line with 
commercial production standards. Once the seedlings were ca. 2 cm in 
height, they were transplanted to an experimental setup with six “deep 
water culture” hydroponic units (Fig. 1) in a growth chamber having 
regulated environment (Newcastle University, Newcastle upon Tyne, 
UK). Each hydroponic unit comprised of a dark-grey polypropylene 
reservoir (inner dimensions: L×W×H 56×36×11 cm) filled with 18 L 
commercial hydroponics solution, an opaque-white tray-lid with a 7×4 
array of circular empty slots for seedling plugs (Fig. 1). Each unit was 
equipped with a submersible water pump for root aeration as well as 
overhead broad-spectrum LED lighting (L28-NS12, Valoya Ltd., Finland; 
300–350 µmol.m− 2s− 1 PPFD), and was connected to a circulating water 
bath to maintain the water temperature (Fig. 1). A total of 26 seedling 
plugs were placed within each hydroponic unit, as depicted. Plants were 
allowed to grow for 20 days under controlled conditions: 22±1 ◦C 
temperature, 75±5 % relative humidity, and 16/8 h day-night cycle. 
Four independent trials were conducted by varying inoculation stages 
and pathogen concentration to obtain a wide range of plant responses 
for ML analysis (Table 1). In each trial, two units each were inoculated 
with Pythium irregulare and Phytophthora nicotianae (described in Section 
2.2) on specific days post transplantation (DPT), while the two 
remaining units acted as the control (Fig. 1).

2.2. Pathogen isolation and inoculation

Py. irregulare and Ph. nicotianae isolates were obtained from diseased 
plants found in a commercial hydroponic vertical farm. Py. irregulare 
was cultured on PARP+B semi-selective medium (corn meal agar 
amended with pimaricin, 5 mg/L; ampicillin, 250 mg/L; rifampicin, 10 
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mg/L; pentachloronitrobenzene, 50 mg/L; and benomyl 10 mg/L) [58], 
whereas Ph. nicotianae was cultured on PARP+H medium (corn meal 
agar amended with pimaricin, 10 mg/L; ampicillin, 100 mg/L; rifam
picin, 10 mg/L; pentachloronitrobenzene, 50 mg/L; hymexazol, 50 
mg/L) [59]. Identity of the isolates was confirmed via PCR amplification 
of specific genes using primers reported earlier [60–62](Supplementary 
Table S1), followed by sequencing and alignment. The pathogens were 
grown in bulk using clarified-V8 broth as described by McGehee et al. 
[63] with minor modifications [37]. Briefly, a 4-mm plug of the inoc
ulated PARP medium was transferred to a sterile Petri dish and 20 mL of 
V8 broth was added, followed by incubation in darkness for 5 days at 25 
◦C. Subsequently, the mycelial mats were liquefied in ddH2O for 2 min. 
The resulting slurry was used for inoculating seedling plugs for the 
designated hydroponic units (Fig. 1) at different growth stages and 
concentrations in each of the four trials (Table 1).

2.3. Plant imaging

Non-invasive data collection was performed via thermal, multi
spectral, and 3D imaging at different stages of plant growth by briefly 
transferring individual sample trays to a customized imaging setup. 
Stage of plant growth at each imaging interval, indicated as DPT for 
imaging (Table 1), served as the temporal marker for the imaging 
dataset.

Thermal images were captured using a T1030sc thermal camera 
(Teledyne FLIR LLC, USA; spectral range 7.5–14 µm; focal plane array 
uncooled microbolometer with HD detector; spatial resolution 
1024×768 pixels) that acquired thermal and Red-Green-Blue (RGB) 
digital images concurrently via adjacent lenses, as described previously 
[24]. Briefly, canopy thermal images were acquired at a room temper
ature of 25±1 ◦C under a neutral-white LED light source. An adjustable 

camera stand was used to position the camera vertically above the 
canopy while maintaining a fixed distance (2 m) between the camera 
objective and the hydroponics tray-lid. Camera parameters such as re
flected, atmospheric, and optics temperatures were fixed [64]. The trays 
were imaged within 3–5 min of being taken out of the experimental 
setup to limit shifts in sample temperature during imaging. RGB images 
captured by the thermal camera were used for extracting thermal data 
(described in Section 2.4) and for plant scoring (described in Section 
2.6), but were excluded during ML-based data analyses to avoid 
redundancy with the spectral information generated from the 3D-multi
spectral scanner.

Subsequently, each tray was scanned using a PlantEye F500 3D-mul
tispectral scanner (Phenospex, The Netherlands, www.phenospex.com) 
to simultaneously record the morphometric and spectral features of the 
samples [65]. Briefly, the scanning setup comprised of a fixed platform 
for placing trays with plant samples, along with an overhead scanning 
unit equipped with both 3D and multispectral sensors [37]. The scanner 
moved horizontally (Y-axis) along a conveyor at a speed of 50 mm/s, at a 
fixed distance of 100 cm (Z-axis) from the tray-lid (X-Y axis). The setup 
provided an approximate resolution of 0.7 mm X-axis, 1 mm Y-axis, and 
0.2 mm Z-axis. Spectral features were recorded in the blue (B; λ =
460–485 nm), green (G; λ = 530–540 nm), red (R; λ = 620–645 nm), and 
near-infrared (NIR; λ = 720–750 nm) ranges by illuminating the samples 
using in-built LED lights with corresponding wavebands, whereas a laser 
scanner (λ = 940 nm) was used for recording morphometric features in 
3D. The scans were processed using HortControl software (Phenospex), 
which superimposed the spectral and 3D information based on internal 
calibrations to create point-cloud (.ply) data files containing the spatial 
(X, Y, Z) and spectral (R, G, B, NIR) values of each pixel. Uniformity in 
lighting provided by the in-built R-G-B-NIR LEDs nullified the need for 
further spectral calibrations.

Fig. 1. Schematic layout of the experimental setup consisting of six hydroponic units. Each unit (represented using dotted lines) comprised of a reservoir for nutrient 
solution, a tray-lid, and overhead LED lighting. As shown in the top view, each tray-lid had 28 circular slots; 26 slots with plant samples, and the two empty slots 
being used for cables and pipes connected to a submersible air pump for root aeration and a circulating water bath to maintain water temperature. The six units were 
grouped into two replicates of three trays each. One unit from each replicate was inoculated with either Pythium irregulare (Py. irregulare) or Phytophthora nicotianae 
(Ph. nicotianae) as indicated, while the remaining unit acted as the control.

Table 1 
Overview of the experimental design for inoculation of parsley with root rot-causing oomycetes and acquisition of thermal, 3D, and multispectral images.

Trial No. Days post transplantation (DPT) Inoculum strength (mycelia/mL) No. of samples*

Inoculation Imaging Control Py. irr. Ph. nic.

1 4 6, 8, 11, 13, 15 1 × 104 52 52 52
2 4 7, 11, 14, 18 1 × 104 52 52 52
3 5 13, 16, 20 1 × 104 52 52 52
4 1 4, 6, 8, 11, 13, 15 2 ×10 4 52 52 52

DPT, no. of days after transferring the seedlings from the nursery to the experimental hydroponics setup; Py. irr., Pythium irregulare; Ph. nic., Phytophthora nicotianae. 
*Values indicate the number of seedling plugs, where each plug contained ~25 seedlings, considered as a single sample.
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2.4. Extracting plant temperature from thermal images

Canopy temperature for individual plants was extracted using a 
customized thermal image processing pipeline (Fig. 2) created using 
Python programming (www.python.org) as reported earlier [24], with 
minor modifications. Briefly, the process involved the following steps: 1) 
correction of parallax error between the thermal and RGB images arising 
due to non-coaxial thermal and RGB sensors; 2) RGB color thresholding 
to create a mask for removing background (tray) pixels in the thermal 
image; 3) isolation of individual plants using a 7×4 grid as per tray 
design to create regions of interest (ROIs, 95×105 pixels) corresponding 
to each sample; 4) excluding a border region of 10 pixels on all four sides 
of each ROI to minimize the effect of overlapping leaves from adjacent 
ROIs; and 5) computation of average canopy temperature for each ROI 
using at least 1000 plant pixels. As an effective environmental correction 
for absolute errors, the difference between observed plant temperature 

(Tobs) and the tray surface temperature (Ttray) was used along with a 
constant (25 ◦C) to obtain the normalized canopy temperature (Tc) as 
follows: 

Tc (
∘C) = Tobs +

(
25 − Ttray

)
(1) 

2.5. Morphometric and spectral feature extraction

The 3D-multispectral scans were processed using HortControl soft
ware (Phenospex). Briefly, the morphometric and spectral data for in
dividual plants was obtained by dividing the scanning area into a 7×4 
array of identical sectors, with each sector containing one sample 
(seedling plug). The 3D point-cloud data was processed using the soft
ware to extract nine morphometric parameters (Table 2): mean plant 
height, maximum plant height (Ht_max), total leaf area (TLA), digital 
biomass (DB), leaf area index (LAI), projected leaf area (PLA), leaf angle, 
leaf inclination (LInc), and light penetration depth (LPD). Similarly, 
multispectral data was processed by the software to calculate five 
spectral indices as follows (Table 2): Green Leaf Index (GLI), Hue angle, 
Normalized Difference Vegetation Index (NDVI), Normalized Pigment 
Chlorophyll ratio Index (NPCI), and Plant Senescence Reflectance Index 
(PSRI). Raw R, G, B, and NIR reflectance data were extracted from the 
3D point-cloud files using a customized pipeline created using Python 
programming. This data was used to calculate other spectral indices, 
viz., R+G+B, R+G-B, R+G, R/G, G/R, G-minus-R (GMR) [15,66,67] and 
Augmented Green-Red Index (AGRI, [GMR]×[G/R]) [37].

2.6. Data pre-processing

Since both pathogens resulted in realistically similar foliar symp
toms, the analysis followed a generalized ML-based disease detection 
approach by collating the samples with both types of inoculations within 
one class of “infected” samples, which was compared against the healthy 
“control” class. The full dataset comprised of twenty-seven features, i.e., 
nine morphometric and sixteen spectral attributes (Table 2), plant 
temperature (Tc), and the temporal data corresponding to each imaging 
interval in terms of DPT (Table 1). Preliminary sample screening was 
carried out manually to minimize erroneous ML trends by excluding 
perfectly healthy samples from the infected dataset and clearly stressed/ 
damaged samples from the control dataset. This was done by visual 
scoring of the RGB image of each sample six times following two rounds 
of blinded labelling by three members of the team (healthy = 3; inter
mediate = 2; stressed = 1). Samples from the control cohort that 
appeared perfectly healthy (average score > 2.5) as well as samples from 
the inoculated trays that showed clear signs of stress such as aberrant 
growth and/or poor pigmentation (average score < 1.5) were used for 
subsequent analyses; the remaining samples were ignored. All twenty- 
seven features for the selected samples were subsequently subjected to 
Pearson’s correlation analysis using the Data Analysis ToolPak within 
Microsoft Excel 365 (Microsoft Corp., USA). Features exhibiting strong 
identical linear trends (r2 > 0.95) were selectively excluded to reduce 
redundancy. The features that were retained, henceforth referred to as 
“shortlisted features”, were used for generating ML models.

2.7. ML for disease detection

Considering the possibility of processing high-dimensional data and 
the scope of testing different kernels using SVM [68], a Python-based ML 
pipeline using the Scikit-learn module (https://scikit-learn.org/stable/) 
for SVM was implemented for sample classification. Briefly, ML tests 
with the shortlisted features were carried out using three kernels, viz., 
linear (lin), polynomial (poly), and radial basis function (rbf). Herein, the 
lin kernel employs linear mathematical expressions to generate classi
fication boundaries or hyperplanes, whereas the poly and rbf kernels 
create polynomial and Gaussian expressions, respectively, which are 
capable of classifying samples based on non-linear spatial distributions 

Fig. 2. Overview of the thermal image processing pipeline for extracting can
opy temperature of each sample. First, the parallax error between each RGB and 
thermal image was corrected to ensure adequate superimposition. Subse
quently, threshold RGB values were used to create a mask for background 
removal, which was applied to the thermal image. This resulted in the removal 
of background (tray) pixels within the thermal image. Next, a border of 10 
pixels was omitted on all four sides from the masked thermal image to minimize 
the interference from overlapping neighboring samples. Finally, the remaining 
pixels occupied by the leaves were used for extracting average canopy tem
perature for each sample using at least 1000 pixels. RGB, color image consisting 
of Red, Green, and Blue channels; Th, thermal image; RGB+Th, superimposed 
RGB and thermal images.
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of data.
In preliminary ML tests (ML-1), efficacy of disease detection using 

data from individual sensors was assessed by analyzing the shortlisted 
features obtained from each type of sensor, viz., spectral, morphometric, 
and thermal, with and without temporal data. All three kernels were 
deployed and optimal values of hyperparameters C and γ were selected 
following a limited grid search with C = [0.001, 0.01, 0.1, 1, 10, 100] 
and γ = [0.0001, 0.001, 0.01, 0.1, 1, 10] to maximize model accuracy. 
Here, C represents penalty weight of deviations, and γ (poly- and rbf- 
specific hyperparameter) defines the range of influence for a single 
training instance. Stratified 80:20 train–test split and five-fold cross- 
validation was implemented for all tests to account for changes in model 
performance with variations in training datasets.

In a series of subsequent ML tests (ML-2), EFS was performed by 
analyzing all shortlisted features simultaneously to evaluate the likeli
hood of each feature being selected automatically by the ML algorithm, 
as well as to understand how model accuracy changed upon increasing 
the total number of features. For this, the mlxtend library (https://rasbt. 
github.io/mlxtend/) was utilized along with the Scikit-learn module. 
The threshold for maximum features (max_feats) was increased stepwise 
from 1 to 10 for all three kernels. Each threshold was tested using ten 
different random states, i.e., arbitrary seed values for data shuffling 
prior to the 80:20 train–test split. This resulted in a total of 300 EFS 
models as follows: 3 kernels × 10 max_feats thresholds × 10 random 
states. In each iteration, the EFS algorithm attempted to identify the 
smallest feature subset that could give the highest accuracy as dictated 
by the unique “kernel + max_feats + random state” criterion by 
exhaustively testing all possible combinations of features within the 
threshold limit following five-fold cross-validation. Frequency of feature 
selection was recorded for each max_feats value, and feature score was 
calculated for each kernel as follows: 

Feature score =
∑n

i=1
Fi (2) 

Here, Fi indicates how frequently each feature was selected across ten 
trials with different random states at the ith max_feats threshold, and n 
indicates the total number of max_feats thresholds, i.e., from 1 to 10, 
creating a score range of 0 to 100 for each feature within each kernel. A 
higher feature score indicated higher feature selection frequency by the 
respective kernel, and vice versa. The scores were used to assign ranks to 
each feature, which indicated its overall performance in ML modelling.

Since the present study focused on evaluating feature significance 
and the role of sensor data fusion in enhancing disease detection rather 
than optimizing model performance through extensive hyperparameter 
tuning, additional validation tests were not undertaken for the sake of 
simplicity. Instead, five-fold cross validation and varying random states 
were employed to account for overfitting and assessing model stability 
across different training datasets.

2.8. Statistical analysis

Datasets for all shortlisted features collated from all intervals and 
trials were subjected to two-sample Kolmogorov–Smirnov (KS) non- 
parametric test using R programming (www.r-project.org) to assess 
the statistical difference of data distribution between control and 
infected samples. Here, KS = 0 implies identical distribution, whereas 
KS = 1 indicates high degree of dissimilarity.

Further, overlap between the numerical ranges of control and 
infected datasets was assessed by calculating the Jaccard index (JI) and 
the Szymkiewicz–Simpson overlap coefficient (SS) using basic mathe
matical functions in Microsoft Excel 365 as follows: 

JI =
|RC ∩ RI|

|RC ∪ RI|
(3) 

SS =
|RC ∩ RI|

min (|RC|, |RI|)
(4) 

Here, RC and RI indicate the range of values for the control and 
infected datasets, respectively. The |R| function finds the size of the 
specified range, min function finds the smallest amongst the specified 
ranges, whereas ꓵ and ꓴ operators find the intersection and union of 
two ranges, respectively. JI represents the proportion of overlapping 
data across the entire data distribution, with JI = 0 indicating no overlap 
and JI = 1 indicating complete overlap between both datasets. In 
contrast, SS represents the proportion of the dataset with the smaller 
range overlapping with the dataset with greater range, where SS =
0 indicates no overlap and SS = 1 indicates that the low-range dataset 
lies entirely within the high-range dataset. Outliers were excluded using 
the interquartile range while calculating JI and SS to improve the 
conciseness of results.

3. Results

3.1. Feature shortlisting, data distribution, and overlap analysis

Following the correlation analysis (r2 < 0.95) of twenty-seven fea
tures using the data for 1804 samples from the healthy (n = 954) and 
infected (n = 850) classes, the following eighteen features were short
listed: morphometric features– DB, Ht_max, LAI, LInc, and LPD; spectral 
features– Hue, GLI, NDVI, NPCI, PSRI, R, G, NIR, G/R, GMR, and AGRI; 
thermal data (Tc); and temporal data for imaging intervals in terms of 
DPT (Supplementary file S1).

Collating data across different intervals from all four trials revealed 
diverse trends in the numerical ranges of the digitally recorded features 
for both control and infected samples (Figs. 3, 4). Values of morpho
metric features such as DB, Ht_max, and LAI were generally lower for 
infected samples (Fig. 3a–c), which indicates suppressed growth. In 

Table 2 
Definitions of morphometric (M) and spectral (S) indices measured by the 3D multispectral scanner.

Type Parameter Definition

M Mean plant height Average height of the top 10 % points within the canopy
Maximum plant height (Ht_max) Height of highest point within the canopy
Total leaf area (TLA) Sum of all triangulated 3D surfaces on the canopy
Leaf area index (LAI) TLA/sector area
Projected leaf area (PLA) Two-dimensional projection of TLA
Digital biomass (DB) Mean plant height × TLA
Leaf angle Weighted average of all angles for every face in the triangulated plant mesh
Leaf inclination (LInc) TLA/PLA
Light penetration depth (LPD) Lowest point in the canopy detectable by the laser

S Green Leaf Index (GLI) [(2× G)-R-B]/[(2× G)+R+B])
Hue angle Numeric representation of a tone on the color wheel within the HSV color space
Normalized Difference Vegetation Index (NDVI) (NIR-R)/(NIR+R)
Normalized Pigment Chlorophyll ratio Index (NPCI) (R-B)/(R+B)
Plant Senescence Reflectance Index (PSRI) (R-G)/NIR

Multispectral channels: B, Blue; G, Green; NIR, Near-infrared; R, Red. Sector area = total scanned area/28, as per the 7× 4 array for each tray (Fig. 1).
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contrast, Tc values exhibited a reversed trend, i.e., the infected plants 
were generally warmer than control samples (Fig. 3f). LPD was rela
tively lower in infected samples, whereas LInc did not exhibit any clear 
trend (Fig. 3d, e). Various spectral features, including GLI, NDVI, G/R, 
GMR, and AGRI, had higher average values for the control as compared 
to the infected samples (Fig. 4b, c, i–k), whereas the average values for R 
and G reflectance as well as PSRI were markedly higher in the infected 
samples (Fig. 4e–g). In contrast, NPCI and NIR exhibited only minor 
differences in mean values between both classes (Fig. 4d, h). Notably, 
while the numerical range of Hue for control samples was very narrow, 
the infected samples showed high variability (Fig. 4a).

While features such as Tc, Hue, GLI, G/R, and AGRI showed a strong 
distinction in data distribution (KS > 0.8) between the control and 
infected samples (Figs. 3f, 4a, b, i, k), relatively higher similarity in data 
distribution (KS ≤ 0.55) was observed for LInc, LPD, NPCI, and NIR 
(Figs. 3d, e, 4d, h). Concomitantly, JI ≥ 0.5 along with SS ≥ 0.7 for LAI, 
LInc, LPD, NPCI, and NIR indicated considerable overlap amongst the 
control and infected samples (Figs. 3c–e, 4d, h). In contrast, SS ≥ 0.7 
with JI < 0.5 for features such as DB, Hue, NDVI, PSRI, R, G, GMR, and 
AGRI suggested that the treatment showing the smaller range of values 
was considerably subsumed within the broader range of values from the 
other treatment, despite minimal overlap across the entire range of the 
latter (Figs. 3a, 4a, c, e–g, j, k).

3.2. ML with individual feature categories (ML-1)

In the ML-1 tests, grouping of features based on sensor type revealed 
that model training with the eleven shortlisted spectral features had the 
highest prediction accuracy of ca. 98 %, whereas models with the five 
shortlisted morphometric features yielded ca. 90 % accuracy (Table 3). 
Interestingly, the model trained with thermal data only, i.e., Tc, had an 
accuracy of ~94 %. Inclusion of temporal data (DPT) improved the 
accuracy of spectral and thermal models by <1 % and ~2 %, respec
tively, whereas accuracy for the morphometric model was increased by 

~8 %.

3.3. ML with exhaustive feature selection (ML-2)

EFS tests (ML-2) revealed a sharp increase in model accuracy from 
93.4–95.7 % to 99.0–99.3 % between max_feats = 1 to 3 (Fig. 5a–c). 
Overall accuracy peaked around max_feats = 5 at 99.4–99.7 %, with no 
realistic improvement upon increasing the number of features further. In 
general, classification accuracy of 93–96 % could be achieved with only 
one feature, whereas an accuracy of >99 % could be achieved for 
max_feats ≥ 3 (Fig. 5a–c), i.e., when selection of three or more features 
was permitted. In contrast to the similar trends in accuracy observed 
across the three kernels, total number of features selected at different 
thresholds varied considerably for max_feats > 5 (Fig. 5d–f). For 
example, amongst the different models at max_feats = 10 the total 
number of selected features ranged between 6–10, 9–10, and 6–9 for the 
lin, poly, and rbf kernels, respectively.

Feature co-occurrence matrices for the three kernels (Supplementary 
file S2) provided an insight into feature selection and pairing prefer
ences at different max_feats thresholds. Herein, AGRI was the only 
feature that was selected for all 30 ML models at max_feats = 1, i.e., for 
creating classification models using just one feature, but was rarely 
selected for higher max_feats values. Subsequently, all 30 models with 
max_feats = 2 selected DPT and paired it with one spectral feature, viz., 
GLI (n = 11), NDVI (n = 10), or G/R (n = 9). Further, 29 out of 30 models 
with max_feats = 3 used DPT along with Tc and one spectral feature, 
whereas one model used DPT along with two spectral features. Herein, 
GLI was selected most frequently (27/30 models), followed by NDVI (3/ 
30 models); Tc was replaced by PSRI in the model where two spectral 
features were paired with DPT. For max_feats = 4, all ten models 
employing the lin kernel had DPT and Tc along with one spectral and one 
morphometric feature, whereas 4/10 rbf-based models had such a 
combination of features. In contrast, use of all four feature categories 
was not observed in any of the models implementing the poly kernel at 

Fig. 3. Morphometric features (a–e) and canopy temperature (f) of healthy and infected flat-leaf parsley (control: n = 954; infected: n = 850) recorded throughout 
the period of observation. Morphometric features: digital biomass (a), maximum plant height (b), leaf area index (c), leaf inclination (d), light penetration depth (e). 
Data represents the summarized range of values observed across all imaging intervals from all four experimental trials (Table 1). Box-and-Whisker plots include the 
mean (×), median (horizontal line), interquartile range (box), whiskers representing 5 and 95 % percentile, and the outliers (o). Data distributions for all parameters 
were significantly different (p < 0.05) as per two-sample Kolmogorov–Smirnov (KS) test. JI, Jaccard Index of similarity; SS, Szymkiewicz–Simpson over
lap coefficient.
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max_feats = 4. Instead, 9/10 poly models selected DPT and Tc along with 
two spectral features, whereas one model selected DPT, one morpho
metric feature, and two spectral features. Upon increasing the max_feats 
threshold to 5, all 20 models based on lin and poly kernels as well as 9/10 
rbf models used DPT and Tc along with at least one spectral and one 
morphometric feature. Every ML model with max_feats ≥ 6 utilized 
features from all categories irrespective of the kernel.

Feature rankings based on the frequency of occurrence during EFS 

indicated that features such as DPT, Tc, GLI, and Ht_max were selected 
most often by the ML algorithm for all kernels (feature score > 55/100; 
Table 4). In general, DPT received the highest rank with a feature score 
of 90/100 for all three kernels, and was selected by all 270 models with 
max_feats ≥ 2. Further, Tc was ranked second, being selected in 238 out 
of 240 models with max_feats ≥ 3 and attaining a score of 79–80/100 for 
each kernel. GLI and Ht_max were ranked third and fourth, respectively, 
for both poly and rbf kernels, although the ranks were reversed for the lin 

Fig. 4. Spectral features of healthy and infected flat-leaf parsley (control: n = 954; infected: n = 850) recorded throughout the period of observation. Spectral 
features: Hue (a), Green Leaf Index (GLI; b), Normalized Difference Vegetation Index (NDVI; c), Normalized Pigment Chlorophyll ratio Index (NPCI; d), Plant 
Senescence Reflectance Index (PSRI; e), Red reflectance (R; f), Green reflectance (G; g), Near-Infrared reflectance (NIR; h), Green-Red reflectance ratio (G/R; i), 
Green-minus-Red reflectance (GMR; j), and Augmented Green-Red Index (AGRI; k). Data represents the summarized range of values observed across all imaging 
intervals from all four experimental trials (Table 1). Box-and-Whisker plots include the mean (×), median (horizontal line), interquartile range (box), whiskers 
representing 5 and 95 % percentile, and the outliers (o). Data distributions for all parameters were significantly different (p < 0.05) as per two-sample Kolmo
gorov–Smirnov (KS) test. JI, Jaccard Index of similarity; SS, Szymkiewicz–Simpson overlap coefficient.
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kernel. NDVI was ranked fifth for the lin and poly kernels, whereas LAI 
received the fifth rank for the rbf kernel. The features having relatively 
lower ranks varied considerably across the three kernels, with features 
such as DB, LPD, G/R, and NIR having the lowest overall ranks (Table 4).

4. Discussion

4.1. Trends in data distribution and preliminary ML analyses

Different inoculation strengths across different growth stages 
(Table 1) were used to mimic real-world pathogen uncertainty, and to 
obtain a more varied trend in data distribution between the healthy and 
infected plants. In practice, factors such as level of pathogen exposure, 
age of plants at infection, and degree of plant damage may result in 
diverse symptomatic changes, complicating the distinction of stressed 
plants from healthy ones using fixed thresholds for individual parame
ters. For instance, parameters such as Tc (Fig. 3f), Ht_max (Fig. 3b), and 
GLI (Fig. 4b) showed very low overlap between the control and infected 
samples. In contrast, parameters such as LAI, LInc, LPD (Fig. 3c–e), 
NPCI, and NIR (Fig. 4d, h) exhibited significant overlap (JI ≥ 0.5 and SS 
≥ 0.7) between the two classes. Hence, using ML-based disease detection 
systems capable of distinguishing between healthy and infected plants 
by assessing simultaneous trends amongst multiple plant attributes at 

early stages of infection may help bypass this issue and enhance the 
precision of disease diagnosis.

In this context, as a preliminary co-assessment of multiple plant at
tributes, ML-1 tests revealed that prediction accuracy was dependent on 
the type of feature rather than the total number of features within each 
model (Table 3). Specifically, models trained using 11 spectral features 
as well as models with only one thermal feature had accuracies of 98.34 
% and 94.18 %, respectively, whereas the model with only morpho
metric data, i.e., 5 features, had an accuracy of 89.92 %. This indicates 
that using a high number of features may not necessarily improve model 
performance. Instead, it may increase computational load leading to 
slowed data processing [69,70]. Conversely, using fewer but more 
reliable or “informative” features would be more beneficial for opti
mizing model performance. In-depth analyses by EFS with different 
kernels and max_feats thresholds in ML-2 tests allowed us to explore 
these trends with more granularity.

4.2. EFS-based minimal feature subsets for multi-sensor data fusion

Feature subset refinement via EFS in ML-2 analyses was helpful in 
reducing “superfluous data”, i.e., data that increases computational load 
without making any significant contribution towards model improve
ment [69]. Herein, models with max_feats = 1 achieved accuracies of 

Table 3 
Accuracy of machine learning-based sample classification using different types of sensor data without feature selection (ML-1).

Feature type Total no. of features Accuracy (%)* Kernel# No. of training samples No. of test samples

Healthy Infected Healthy Infected

S 11 98.34±0.65 rbf 763 680 191 170
S+D 12 98.95±0.6 rbf 763 680 191 170
M 5 89.92±1.1 rbf 763 680 191 170
M+D 6 98.61±0.68 rbf 763 680 191 170
T 1 94.18±1.06 lin 763 680 191 170
T+D 2 95.62±1.71 rbf 763 680 191 170

Feature types: D, temporal data; M, morphometric features; S, spectral features; T, temperature. *Accuracy values indicate mean±SD of five-fold cross-validation. 
#Kernel resulting in the highest accuracy amongst linear (lin), polynomial, and radial basis function (rbf).

Fig. 5. Prediction accuracy (a–c) and the corresponding feature selection frequency (d–f) of machine learning models at different maximum feature thresholds 
(max_feats; abscissa) for linear, polynomial, and radial basis function (rbf) kernels in tests following exhaustive feature selection (ML-2). Lines represent the average 
output for n = 10 model instances generated using different random states and the shaded region indicates the range of output values for prediction accuracy (a–c) 
and number of features selected (d–f) at each max_feats threshold.
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93.4–95.7 % (n = 30) (Fig. 5a–c). Strikingly, all thirty models relied 
exclusively on AGRI (Supplementary file S2), and performed marginally 
better than the models generated using Tc alone in ML-1 (accuracy 
92.8–95.6 % across five cross-validation trials; Table 3). However, AGRI 
was rarely selected for higher max_feats values (Supplementary file S2), 
wherein the algorithm could combine features to capture stronger in
teractions and relative trends amongst the selected features. Thus, while 
AGRI was highly effective as a stand-alone ML attribute without tem
poral data, incorporating additional features provided greater flexibility 
and yielded more accurate models when larger feature sets and temporal 
information were available (Fig. 5, Supplementary file S2). Exploring 
this aspect via gradual increments in EFS max_feats values highlighted 
the role of feature diversity and interactions for ML.

In general, prediction accuracy improved by increasing the max_feats 
threshold from 1 to 5, with a tendency of performance saturation around 
max_feats = 3–5 (Fig. 5a–c). In particular, model accuracy increased 
steadily from max_feats = 1 to max_feats = 3 by ca. 3–6 %, following 
which the accuracy improved only by <0.7 % up to max_feats = 5, with 
negligible further increase (<0.1 %) up to max_feats = 10. Further, all 
three kernels were able to deliver >99 % accuracy at max_feats = 3. This 
suggests that the present method could yield very reliable results with as 
low as three to five input parameters irrespective of the modelling 
approach, i.e., linear or non-linear. Notably, such high-accuracy, low- 
feature-threshold (max_feats = 3–5) models frequently combined fea
tures belonging to multiple categories, i.e., spectral, morphometric, 
thermal, and temporal. This clearly indicates that amalgamation of data 
from different sources created the most efficient plant stress detection 
models due to the complementarity of features with reduced redun
dancy in available information.

Interestingly, use of one feature each from three different data cat
egories (Supplementary file S2) yielded higher prediction accuracy than 
using considerably more features belonging to the same category 
(Table 3). For example, use of DPT, GLI, and Tc, i.e., three features from 
three different categories, gave an average accuracy of 99.3 % for seven 
rbf models (Supplementary file S2) as compared to the accuracy of 98.61 
% or 98.95 % obtained by using DPT with all five morphometric or all 

eleven spectral features, respectively, as observed in ML-1 (Table 3). 
This trend of better model prediction using fewer plant attributes ob
tained from diverse imaging platforms further corroborates our hy
pothesis that amalgamation of information from multiple plant sensors 
may potentially improve plant stress detection via ML.

In the current scenario, where numerous features or variables can be 
obtained from plant images with relative ease, identifying the most 
useful image attributes is crucial for optimizing the modeling pipeline to 
minimize data processing time and overfitting by eliminating redundant 
and/or repetitive information by dimensionality reduction. To achieve 
this, a variety of approaches, ranging from statistical filters such as 
correlation analysis, Lilliefors test for normality, analysis of variance, 
and multiple comparison tests [37,71], as well as advanced techniques 
such as recursive feature elimination, adaptive rain optimization [72], 
adaptive red fox algorithm [73], and black widow optimization [74], 
have been explored. Further, some of these studies have even employed 
multiple feature selection techniques for consensus-based selection or 
stepwise feature elimination.

In the present study, we followed stepwise feature selection, starting 
with regression analysis to identify and eliminate highly repetitive fea
tures. However, unlike many other studies, we implemented EFS, which 
is considered a “brute-force” algorithm as it tests all possible feature 
combinations to identify the best possible subset of features. Although 
EFS is highly computationally expensive and impractical for very large 
number of features [75], it was adopted here considering the relatively 
low number of features being tested. Moreover, while many studies 
focusing on plant disease detection have utilized feature selection for 
identifying texture and color related features using RGB images [76] or 
spectral indices and wavebands for hyperspectral images [8,55], this 
study investigates the selection of features across three types imaging 
platforms simultaneously, which remains hitherto unexplored for plant 
disease detection.

4.3. Impact of kernel on feature selection

Assessment of feature rankings based on EFS scores allowed the 

Table 4 
Scores and ranks calculated using the frequency of occurrence during tests with exhaustive feature selection (ML-2) for image-based canopy attributes of flat-leaf 
parsley samples.

Overall 
rank#*

Features lin poly rbf Total 
score

Name Type Score Rank# Score Rank# Score Rank#

1 DPT D 90 1 90 1 90 1 270
2 Tc T 80 2 79 2 79 2 238
3 GLI S 62 4 73 3 69 3 204
4 Ht_max M 68 3 57 4 56 4 181
5 NDVI S 50 5 50 5 24 7 124
6 PSRI S 46 6 41 6 16 8 103
7 LAI M 0 17 13 11 49 5 62
8 R S 3 15 9 13 28 6 40
9 NPCI S 4 13 20 10 14 10 38
9 G S 32 7 1 16 5 15 38
9 GMR S 14 8 24 7 0 18 38
12 LInc M 4 13 21 9 9 13 34
13 AGRI S 11 11 10 12 10 11 31
14 Hue S 0 17 23 8 3 17 26
15 G/R S 14 8 0 18 10 11 24
15 NIR S 5 12 4 15 15 9 24
17 LPD M 12 10 1 16 9 13 22
18 DB M 2 16 5 14 4 16 11

Maximum Score 100 – 100 – 100 – 300

Features: AGRI, Augmented Green-Red Index; DB, Digital biomass; DPT, days post transplantation; G, Green reflectance; G/R, Green-Red reflectance ratio; GLI, Green 
Leaf Index; GMR, Green-minus-Red reflectance; Ht_max, maximum plant height; Hue, hue angle; LAI, leaf area index; LInc, leaf inclination; LPD, light penetration 
depth; NDVI, Normalized Difference Vegetation Index; NIR, Near-Infrared reflectance; NPCI, Normalized Pigment Chlorophyll ratio Index; PSRI, Plant Senescence 
Reflectance Index; R, Red reflectance; Tc, canopy temperature. Feature types: D, temporal; M, morphometric; S, spectral; T, thermal. Kernels: lin, linear; poly, 
polynomial; rbf, radial basis function. Score, the number of times each feature was selected out of 100 trials for each kernel. Maximum score, maximum possible score for 
10 random states × 10 maximum feature thresholds. #Features with the same score were assigned the same rank. Total score, sum of scores across the three kernels. 
*Overall rank was calculated based on total score. Details of feature co-occurrence are provided in Supplementary file S2.
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identification of attributes that would be more suitable for detecting 
stressed plants via ML with specific kernels. Herein, rankings of sensor- 
derived attributes (Table 4) indicated that Tc, GLI, and Ht_max were 
generally favored by all three kernels, whereas features such as DB, LPD, 
G/R and NIR were selected least frequently. Notably, feature preference 
differed considerably for each kernel. For example, while LAI ranked 
fifth with the rbf kernel (score 49/100), it ranked eleventh for the poly 
kernel (score 13/100), and was never selected by the lin kernel (score 0/ 
100). Similarly, G was ranked seventh (score 32/100) with the lin 
kernel, but was ranked fifteenth (score 5/100) and sixteenth (score 1/ 
100) for the rbf and poly kernels, respectively. This highlights the di
versity in feature preference across the different kernels depending on 
how multiple features are co-interpreted for generating the classification 
model by each kernel.

Despite variations in individual feature preferences by the different 
kernels, simultaneous selection of attributes from multiple feature cat
egories remained consistent. Although this trend could be expected for 
very high max_feats thresholds, it was notable even at lower threshold 
values (Supplementary file S2). For instance, 29/30 models with max_
feats = 3 selected one feature each from three different feature cate
gories. Further, 10/10 lin models and 4/10 rbf models at max_feats = 4 
chose one feature of each type, i.e., temporal, thermal, spectral, and 
morphometric, whereas 10/10 poly models and the remaining 6/10 rbf 
models chose features belonging to three different categories. At max_
feats = 5, selection of features from all four categories was observed in 
29/30 models. Thus, it may be inferred that the modelling algorithms for 
all kernels inherently attempted to select a more diverse dataset in terms 
of feature type to maximize model accuracy while using as few features 
as possible.

4.4. Significance of feature informativeness

Frequent selection of plant attributes such as Ht_max, Tc, and GLI by 
all three kernels (Table 4) may be attributed to the feasibility of dis
tinguishing between healthy and infected samples based on the nu
merical ranges, as also supported by the three statistical metrics for data 
distribution and overlap (Figs. 3b, f, 4b). In contrast, parameters with 
lower feature scores such as LPD and NIR (Table 4) were chosen less 
frequently during EFS, likely because of greater similarity between the 
datasets of control and infected samples (Figs. 3e, 4h). Likewise, high 
overlap between both classes in DB values (SS = 0.79; Fig. 3a) explains 
its infrequent selection as well. Hence, it may be inferred that features 
which allowed better separability between the control and infected 
samples due to limited overlap in numerical ranges were selected more 
frequently by the algorithm as they were deemed more “informative” for 
classification.

Notably, in addition to the overall feature quality in terms of dis
cernibility between control vs. infected samples, non-redundancy of 
data also played a role in determining feature selection by the algorithm. 
For instance, G/R was selected infrequently by the lin and rbf kernels, 
and was never selected by the poly kernel (Table 4) despite having very 
low similarity between the control and infected sample datasets 
(Fig. 4i). Notably, only 15/240 models with max_feats ≥ 3 selected both 
G/R and GLI simultaneously, whereas the lin models with max_feats = 2 
always chose either of the two (Supplementary file S2). A possible 
explanation for this might be the high correlation between GLI and G/R 
datasets (r2 = 0.92; Supplementary file S1), which might have led the 
algorithm to consider the G/R data redundant in the presence of GLI, 
with the latter being selected more frequently due to potentially better 
interaction with other features and stronger compatibility with the 
different kernels. Thus, in addition to feature informativeness, its 
uniqueness also played an important part during EFS. While a stringent 
threshold of r2 > 0.95 for preliminary feature shortlisting addressed this 
issue up to some extent (Supplementary file S1), a more flexible 
threshold of r2 > 0.9 would enable more redundant features to be 
screened via correlation analysis, and could be tested in the future.

4.5. Role of temporal information

Comparing model accuracies with and without DPT in the ML-1 tests 
revealed that model performance improved for all types of sensor 
datasets upon including temporal information (Table 3). Although the 
extent of improvement varied between the morphometric, spectral, and 
thermal datasets, the findings concurrently suggest that temporal in
formation helped generate more robust ML-based disease detection 
models. Interestingly, despite being numerically identical for both 
control and infected datasets, DPT had the highest feature score in ML-2 
tests as it was selected most frequently amongst all features (Table 4), 
and was the only feature that was selected for all models with max_feats 
≥ 2 (Supplementary file S2). It enabled the creation of models capable of 
providing highly reliable outcomes (97.5–99 % accuracy) even with as 
low as one sensor-based attribute, as observed in the ML-2 tests with 
max_feats = 2 (Supplementary file S2). Moreover, additional EFS trials 
for max_feats 1 to 5 excluding DPT (Supplementary Fig. S1) indicated 
that model performance was ca. 1 % less accurate for all kernels as 
compared to the corresponding models which included DPT.

Since multitemporal imaging allows the tracking of disease symptom 
progression, it adds a key dimension to image dataset: time. This creates 
the scope for more accurate predictions by creating a timeline within the 
dataset. While symptoms of plant disease become more obvious with 
time, the advantage of computer vision and ML lies in the potential for 
early detection via even the slightest symptoms based on the time-series 
models. Deep-learning approaches involving NNs have been used 
frequently to generate such temporal data maps for crop monitoring 
[77]. However, since the present study was conducted with a relatively 
low sample size (n < 1000) for each class, an SVM-based model was 
adopted instead of NNs to avoid overfitting. While NN-based models can 
store observations as a function of time, here DPT was included within 
the dataset as an independent attribute parallel to the image-derived 
features for simplifying modeling and analysis. Nonetheless, the posi
tive impact of including this temporal attribute was clearly visible for all 
types of models tested (Tables 3, 4).

As demonstrated in our earlier study [37], morphological and spec
tral differences between healthy and infected plants became more 
prominent over time as the effects of infection intensified. Thus, it would 
be logical to assume that the changes in plant attributes could be 
interpreted by the ML algorithm as temporal functions. However, this 
can only be possible in the presence of temporal indicators such as DPT. 
Hence, it can be inferred that DPT values, despite being identical for 
both classes, provided crucial supporting information during sample 
classification by adding an extra dimension of temporal resolution for 
better mapping of sensor-based traits. This phenomenon further re
iterates the importance of feature interaction, wherein the ML algorithm 
co-evaluates information from multiple features and classifies samples 
based on mutual trends. Furthermore, based on the experimental design 
and high accuracy of predictions (Table 3, Fig. 5), it may be assumed 
that such models could potentially detect strongly affected plants as 
early as 2–3 days after being infected, highlighting the scope for early 
disease detection.

4.6. Limitations, current perspectives, and future scope

Simultaneously utilizing multiple imaging sensors for crop moni
toring is on the rise [78,79], with ML playing a crucial role in stream
lining image processing [45]. Earlier studies focusing on multi-sensor 
data fusion by ML have explored diverse aspects of crop monitoring by 
combining spectral and 3D data, including estimation of leaf nitrogen 
content in rice via SVM [80], wheat biomass prediction by implementing 
three ML approaches, viz., Support Vector Regression, Random Forest, 
and Extreme Learning Machine [81], as well as assessment of biomass 
and nitrogen-fixation in legume-grass mixtures using Random Forest 
[82]. Additionally, a recent study by our group demonstrated the po
tential of improving root-rot detection by combining 3D and spectral 
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data via Principal Component Analysis, an unsupervised ML technique 
[37]. Notably, all these studies adopted different “shallow learning” 
methods, which are generally more resource-efficient than deep 
learning methods in terms of training dataset requirements, computa
tional load, and processing time, while still being able to provide real
istically reliable outcomes. This was also indicated in the study by 
Pérez-Bueno et al. [57], wherein various ML methods were compared 
while co-analyzing thermal and spectral data for detecting root rot in 
avocado trees.

The present study delved deeper into this topic to ascertain the po
tential of synergistically utilizing 3D, multispectral, and thermal data for 
detecting root rot accurately. Although a limited experimental investi
gation was carried out using one hydroponically-grown crop and only 
one type of ML algorithm, our study highlighted that co-analysis of data 
from all three types of sensing platforms along with temporal informa
tion improved plant stress detection remarkably. Future investigations 
with diverse crops and a range of diseases within both indoor and field 
production systems will further expand the knowledge base for moni
toring plant health status via multi-sensor approaches. Additionally, 
while the current study puts equal emphasis on data collected between 2 
to 18 DPT, future experimental trials focusing more on the earlier in
tervals could help develop more robust ML models with early detection 
capabilities. For this, experiments incorporating a range of shallow and 
deep ML algorithms, including Decision Trees and Convolutional NN, 
could further enhance the ML pipeline. Integrating different feature 
selection and dimensionality reduction tools, such as Principal Compo
nent Analysis, Linear Discriminant Analysis, and Autoencoders, would 
further optimize data processing by minimizing data redundancy and 
boosting computational efficiency, hence paving the way for higher 
prediction accuracies during multi-sensor crop monitoring.

5. Conclusion

Considering the ever-growing need for improving machine vision- 
based protocols for crop monitoring, our study highlights the potential 
for identifying diseased plants with high accuracy by fusing data from 
3D, spectral, and thermal sensors via ML. Our findings indicate that 
combining the information from all three sensors provides more accu
rate results than using the sensors independently. Further, pairing 
sensor-based data with temporal information improves model perfor
mance considerably. Assessing data distribution between the control 
and infected samples along with feature scores and co-occurrence trends 
indicated that feature informativeness in terms of its discerning capacity 
for the two classes as well as its uniqueness play an important role 
during automated feature selection for generating the classification 
model. Future investigations with diverse plant–pathogen combina
tions, growth conditions, monitoring intervals, and ML approaches 
implementing NN would help further optimize such sensor fusion-based 
disease detection models and enable us to implement them with higher 
fidelity in large scale cultivation systems.
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Pathogenic and beneficial microorganisms in soilless cultures, in: E. Lichtfouse, 
M. Hamelin, M.D.P. Navarrete (Eds.), Sustainable Agriculture, Sustainable 
Agriculture, 2, Springer, Netherlands, 2011, pp. 711–726, https://doi.org/ 
10.1007/978-94-007-0394-0_31.

[5] J.M. Roberts, T.J.A. Bruce, J.M. Monaghan, T.W. Pope, S.R. Leather, A. 
M. Beacham, Vertical farming systems bring new considerations for pest and 
disease management, Ann. Appl. Biol. 176 (2020) 226–232, https://doi.org/ 
10.1111/aab.12587.

[6] T.C. Paulitz, Biological control of root pathogens in soilless and hydroponic 
systems, HortScience 32 (1997) 193–196, https://doi.org/10.21273/ 
HORTSCI.32.2.193.

[7] G.C.S. Laevens, W.C. Dolson, M.M. Drapeau, S. Telhig, S.E. Ruffell, D.M. Rose, B. 
R. Glick, A.A. Stegelmeier, The good, the bad, and the fungus: insights into the 
relationship between plants, fungi, and oomycetes in hydroponics, Biol. (Basel) 13 
(2024) 1014, https://doi.org/10.3390/biology13121014.

[8] C.H. Bock, G.H. Poole, P.E. Parker, T.R. Gottwald, Plant disease severity estimated 
visually, by digital photography and image analysis, and by hyperspectral imaging, 
CRC. Crit. Rev. Plant Sci. 29 (2010) 59–107, https://doi.org/10.1080/ 
07352681003617285.

[9] J. Zhang, Y. Huang, R. Pu, P. Gonzalez-Moreno, L. Yuan, K. Wu, W. Huang, 
Monitoring plant diseases and pests through remote sensing technology: a review, 
Comput. Electron. Agric. 165 (2019) 104943, https://doi.org/10.1016/j. 
compag.2019.104943.

A. Agarwal et al.                                                                                                                                                                                                                                Smart Agricultural Technology 12 (2025) 101364 

11 

https://doi.org/10.1016/j.atech.2025.101364
https://doi.org/10.1007/s13593-014-0273-y
https://doi.org/10.1007/s13593-014-0273-y
https://doi.org/10.1007/s13593-015-0348-4
https://doi.org/10.1080/15487733.2017.1394054
https://doi.org/10.1007/978-94-007-0394-0_31
https://doi.org/10.1007/978-94-007-0394-0_31
https://doi.org/10.1111/aab.12587
https://doi.org/10.1111/aab.12587
https://doi.org/10.21273/HORTSCI.32.2.193
https://doi.org/10.21273/HORTSCI.32.2.193
https://doi.org/10.3390/biology13121014
https://doi.org/10.1080/07352681003617285
https://doi.org/10.1080/07352681003617285
https://doi.org/10.1016/j.compag.2019.104943
https://doi.org/10.1016/j.compag.2019.104943


[10] P. Waiphara, C. Bourgenot, L.J. Compton, A. Prashar, Optical imaging resources for 
crop phenotyping and stress detection, in: P. Duque, D. Szakonyi (Eds.), Methods in 
Molecular Biology, Methods in Molecular Biology, 2494, Humana, New York, 
2022, pp. 255–265, https://doi.org/10.1007/978-1-0716-2297-1_18.

[11] M. Bietresato, G. Carabin, R. Vidoni, A. Gasparetto, F. Mazzetto, Evaluation of a 
LiDAR-based 3D-stereoscopic vision system for crop-monitoring applications, 
Comput. Electron. Agric. 124 (2016) 1–13, https://doi.org/10.1016/j. 
compag.2016.03.017.

[12] J. Sandhu, F. Zhu, P. Paul, T. Gao, B.K. Dhatt, Y. Ge, P. Staswick, H. Yu, H. Walia, 
PI-plat: a high-resolution image-based 3D reconstruction method to estimate 
growth dynamics of rice inflorescence traits, Plant Methods 15 (2019) 162, https:// 
doi.org/10.1186/s13007-019-0545-2.

[13] L. Xiang, Y. Bao, L. Tang, D. Ortiz, M.G. Salas-Fernandez, Automated 
morphological traits extraction for sorghum plants via 3D point cloud data 
analysis, Comput. Electron. Agric. 162 (2019) 951–961, https://doi.org/10.1016/ 
j.compag.2019.05.043.

[14] Jesus de, F. Colwell, J. Souter, G.J. Bryan, L.J. Compton, N. Boonham, A. Prashar, 
Development and validation of methodology for estimating potato canopy 
structure for field crop phenotyping and improved breeding, Front. Plant Sci. 12 
(2021) 612843, https://doi.org/10.3389/fpls.2021.612843.

[15] A. Agarwal, S. Dutta Gupta, Assessment of spinach seedling health status and 
chlorophyll content by multivariate data analysis and multiple linear regression of 
leaf image features, Comput. Electron. Agric. 152 (2018) 281–289, https://doi. 
org/10.1016/j.compag.2018.06.048.

[16] A. Agarwal, P.K. Dongre, S. Dutta Gupta, Smartphone-assisted real-time estimation 
of chlorophyll and carotenoid concentrations and ratio using the inverse of red and 
green digital color features, Theor. Exp. Plant Physiol. 33 (2021) 293–302, https:// 
doi.org/10.1007/s40626-021-00210-4.

[17] F. Zhu, M. Saluja, J.S. Dharni, P. Paul, S.E. Sattler, P. Staswick, H. Walia, H. Yu, 
PhenoImage: an open-source graphical user interface for plant image analysis, 
Plant Phenome J. 4 (2021) e20015, https://doi.org/10.1002/ppj2.20015.

[18] S. Osuna-Caballero, T. Olivoto, M.A. Jiménez-Vaquero, D. Rubiales, N. Rispail, 
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