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A B S T R A C T

This article describes an immersive virtual reality reconstruction tool for root system architectures from 3D scans
of soil columns. In practical scenarios, experimental conditions will be adapted to fit the need of the data analysis
pipeline, including sieving and drying the soil before scanning. Based on previous reports of automatic systems
that do not represent what experts would annotate, we developed a virtual reality system to assist with the
extraction of root systems in cases in which automated approaches fall short of expert knowledge. The aim of the
present study is to evaluate whether our immersive method is superior to classical annotation approaches when
tested on synthetic data sets using untrained participants. Our laboratory user study consists of evaluating the root
extractions of participants, along with their rating on central user experience and usability measures. We show
significant improvement in F1 score across conditions (noisy or clear data) as well as an improved usability. Our
study highlights that using virtual reality in root extraction improves accuracy, and we perform an in-depth
evaluation of biases that occur when users trace roots in soil volumes.
1. Introduction

Understanding root systems is an underappreciated part of the pro-
cess of sustainable agriculture [1,2]. Historically, it was not possible to
access root systems except by using difficult excavation processes.
However, more recent research highlights that an analysis of the spatial
configuration of roots, i.e., the root system architecture (RSA), is a critical
aspect of understanding plant response [3]. Notably, there is a large
variance in root traits [4], which impacts functional aspects of plant
behavior. The root traits of a single plant can be measured from its RSA. A
digitized version of the RSA yields a full description of the functional and
structural traits of the root system. Functional-Structural Plant Models
(FSPMs) are coupled simulations of plant structure and functional traits.
RSAs can be used as boundaries in these functional simulations to pro-
vide insight into plant performance that cannot be measured directly.
FSPMs bridge gaps between measurable indicators that might not
directly correlate unless the plant is viewed as a continuum model [5].

Ideally, non-destructive observations of RSAs are used in experiments
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to allow repeated measurements, such as is possible using rhizotrons for
statistical descriptions of roots [6]. A full RSA reconstruction in the face
of partial root obstruction or destructive measurements is challenging.
Non-invasive 3D imaging methods, like Magnetic Resonance Imaging
(MRI), can assist by giving a more complete insight into the root system
architecture [7]. 3D imaging techniques do not require direct interven-
tion into the plant growth, and they do not require the introduction of
transparent obstructions. While the plant growth in a soil column is more
restrictive than in a field, key insights can be gained from an in-depth
analysis of 3D imaging data, such as the progression of diseases in the
plant [8]. Another key aspect in the dissemination of information from
plant image data is the potential to gain insight through root modeling, as
both in-silico experiments [9] as well as quantification of the continuous
processes between soil, plant and atmosphere can provide valuable in-
sights [5].

The extraction of RSAa is more challenging and depends on the
quality of the image data. Most approaches to extract RSAs from 3D
image data result in tree-like or centerline structures that describe the
GmbH, Jülich, Germany.
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morphology of the root systems. Fully automatic approaches fall into the
categories of topological analysis [10] or optimization-based approaches
[7]. There are also semi-automatic approaches, that require user inter-
action for key aspects, or to correct the automatic propositions. For a fully
automatic approach to function, the globally optimal solution to the
extraction problem must reflect the correct RSA. This is not necessarily
the case, as in some measurements, artifacts due to soil composition and
soil water content can lead to a difference in measured and actual
morphology [11].

Manual approaches are a way of dealing with challenging image data
properties, as expert knowledge can be required to completely extract the
RSA to a degree that it is useable in further analysis. Selzner et al. [12]
show this in an analysis of MRI image segmentation and how it impacts
automated tracings, an analysis which uses a previous version of VRoot
as expert baseline. Past approaches typically aimed at solving this chal-
lenge through guided optimization [11] or semi-automatic correction
[7]. To assist with manual RSA reconstruction, Virtual Reality (VR)
software has been developed, which was used to model RSA functional
properties [13]. However, usability of these systems was limited as they
were less portable than current VR hardware, which have improved in
accessibility and display properties. The use of modern Extended Reality
(XR) or VR hardware and software has the potential to increase the space
of experimental conditions that are useable in combination with 3D RSA
extraction techniques, thus closing the gap between data analysis re-
quirements and realistic experimental conditions. Within VR, RSAs can
be visualized directly in a more intuitive embedding, as the 3D displays
will be able to accommodate and visualize depth as well as spatial
configuration. VR is a promising tool, as it has been shown to improve
extraction quality for similar tasks in other disciplines, such as neural
imaging [14]. To improve our workflows of manual RSA reconstruction,
and to investigate the applicability of VR in these workflows, we have
developed VRoot, a VR application that assists in the reconstruction of
RSAs by visualizing the 3D volume and providing intuitive toolsets for
the reconstruction and adaption of RSAs.

We have built VRoot with the toolsets needed for exact and expedient
RSA reconstruction. There are many tasks for which VR improves the
quality of task completion in comparison to desktop applications. In this
work, we investigate two research questions: Does VRoot improve the
data extraction workflow for users annotating 3D MRIs? Furthermore, is
the RSA reconstruction using VRoot more exact than using classical
methods?

To answer these questions, we have conducted a laboratory user study
with participants on-site. With an in-silico 3D root image, we have tasked
participants with extracting the root system using VRoot and NMRooting,
a state-of-the-art desktop RSA extraction and analysis application [7].
With the resulting RSA reconstructions, we have quantified key traits of
the root system, and more importantly, the accuracy of the extraction in
comparison to the original RSA.

This work makes several key contributions to 3D plant phenomics.
First, we present a new VR-basedmethod to interactively reconstruct root
systems from 3D imaging techniques. We quantify the user-based errors
and reconstruction artifacts in a laboratory user study. Lastly, we eval-
uate the use of VRoot based on user feedback obtained through
controlled questionnaires.

In the remainder of this section, we briefly describe basic terminology
for VR and provide a background for our reference application,
NMRooting. In Sec. 2, we describe VRoot in the context of our day-to-day
extraction workflow as well as the setup of our laboratory user study.
Results of the study and our data analysis results are shown in Sec. 3,
while we discuss the findings and implications as well as future directions
in Sec. 4.

1.1. Immersive Analytics

Visual Analytics is a discipline of supporting data analysis and
reasoning through visualization and graphical interfaces [15]. A subset of
2

this field, and the collection of techniques it encompasses, is Immersive
Analytics (IA), which involves the use of immersive interfaces, such as
VR, which itself is a subcategory of XR. There have been a large variety of
use cases for IA in science [16], and the VR application described in this
work is another example. We focus on use-cases that are comparable to
the use of VRoot, to provide context and an overview of instances in
which IA has provided increased insight for data analysis pipelines. The
neuron tracing application developed by Usher et al. [14] use
Head-Mounted Displays (HMDs) for the sparse annotation of 3D image
data. Usher et al. [14] developed an application to trace neuron con-
nections in 3D space with handheld controllers and consumer-grade VR
hardware. Usher et al. show that there is a significant speedup for experts
to annotate neuron traces in VR in comparison to a classical desktop
application. This result has been further improved by the introduction of
topological features assisting with the extraction of neuron traces as
shown by McDonald et al. [17].

Immersive displays are varied, ranging from room-scale installations
to small portable devices. In comparison to the ImFlip150 system used in
Stingaciu et al. [13] for root annotation, HMDs require less space, are
mobile/movable, and can be comfortably used at any office workplace. A
disadvantage of HMDs in this comparison can be the loss of reference in
the real world [18]. The HTC Vive Pro used in this work is a wearable
low-persistence display [19], similar to other HMDs. It is tracked using
base stations that help the HMD infer user position and orientation. VR
controllers are similarly tracked, in addition to containing buttons that
users can press for interactions. Interaction in VR is commonly done
using interaction metaphors, which are user actions done using control-
lers or gestures that impact the virtual world, as the user cannot directly
interact with it. These include grabbing to virtually pick up items, as is
common in VR applications, but also pointing for movement outside of
the restrictions of the installation or walkable space [16]. Our central
consideration of choosing VR techniques without involving pass-through
or see-through augmented reality devices involves reduced depth
perception of 3D renders in see-through devices [20] and reduced text
readability in pass-through devices [21]. As such, any use-case of
multitasking between the virtual and real world that directly relates to
the RSA data would suffer from these drawbacks. Additionally, perfor-
mance on difficult tasks tends to be reduced when multitasking [22].

Evaluating the use of human-centered techniques, particularly in the
case of immersive systems, is challenging [23]. However, there is a long
history of formal analysis in human-computer interaction that we can
make use of. For example, a commonmethod of evaluation by users is the
System Usability Scale (SUS) [24], which introduces the notions of us-
ability regarding task completion. Questionnaires such as SUS have been
predominantly designed for software system evaluation but can be used
for immersive software, as the inherent effects are similar [25]. Evalua-
tion metrics used in this work are described in Sec. 2.4.

1.2. NMRooting

NMRooting [7,26] is a framework and application for the extraction
of root system architecture by extracting the minimum-weight shortest
paths with additional functionalities, such as gap closing and
semi-manual extraction. We chose this application as a baseline as it is a
well-established application that is also a proxy for similar applications
and approaches, such as those developed by Horn et al. [11] or Zeng et al.
[10]. Furthermore, NMRooting has seen regular use, including recently
by Le Gall et al. [27], who used the non-destructive investigation of the
RSA through NMRooting to analyze whether the root water uptake
profile is an indicator for plant development. NMRooting uses desktop
user interaction metaphors such as clicking and dragging to fulfill 3D
annotation. Clicking in NMRooting traces a selection ray from the
viewing surface to the isosurface data, marking the first surface that it
hits. Dragging is a metaphor that allows users to turn the camera around
the isosurface data, as well as zoom and pan. Within NMRooting, users
can alter the automatic tracing of the data set, which is more in-line with
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the use of applications such as TopoRoot [10] or the application devel-
oped by Horn et al. [11]. However, more fine-granular alteration to the
reconstructions are possible by directly interacting with the data,
yielding higher extraction accuracy in cases such as larger gaps as re-
ported by Horn et al. [11].

2. Methods

Fig. 1 shows the total setup of our workflow, from data extraction to
eventual use. Plant containers are typically plastic containers with a
single plant growing in sieved soil. We are aiming to measure and extract
RSAs from a large variety of soils and water contents. The resulting soil
volume is generally a slice based 3D volume. This volume might require
stitching, depending on the explicit setup of the MRI scanner. The soil
water content together with the soil type (such as either loam or sandy
loam) impacts the overall signal-to-noise ratio [26,28]. Furthermore,
ferromagnetic particles within the soil might impact the measurement
quality and might even disrupt root signal continuity, resulting in gaps in
the root system [11,12].

Segmentation is generally a voxel-based mapping that labels a part of
the image as either foreground or background, thus reducing the
complexity of the data. For our pipeline, we generally use 3D segmen-
tation by deep-neural networks, as implemented by Zhao et al. [29] and
Uzman et al. [30]. Previously, we have shown that this step improves
both automatic as well as manual RSA reconstructions [12]. Fig. 1B
contains an illustration of this step. Generally, network architectures
vary, but the key challenge for segmentation networks is providing a full
view of the root system in the soil, while removing noise from it.

This paper uses a semi-automated method as reference, and most
Fig. 1. Process overview of our MRI analysis pipeline. A: Plant containers are non-ma
in a voxelized soil volume. B: If the data is too noisy, 3D-U-Net segmentation can be e
can be used for FSPM calibration or functional simulation boundary. Below, we pre
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automatization methods rely on sparse extraction from volumetric data.
NMRooting developed in Van Dusschooten et al. [7] uses a voxel signal
cutoff to determine what areas could include root voxels, followed by a
signal-strength-weighted shortest-path algorithm to extract the root
system. A key aspect that drove our implementation of VRoot is a chal-
lenge presented in the automatic tracing implementation by Horn et al.
[11], who included a comparison to manually annotated RSAs. Their
algorithm optimizes signal-based features. They highlight cases in which
extractions that differ from manual annotation are computed, because
the algorithm chooses smaller (more optimal) gaps based on signal
strength, while the expert annotation bridges a comparably much larger
gap in the segmented image data. This kind of expert knowledge is hard
to incorporate into automated algorithms in cases where the information
cannot be gained otherwise, for example through repeated measure-
ments or measurements at a later point in time when the roots have
developed further.

Our output structure relies on the Root System Markup Language
(RSML) [31]. It is based on the XML standard and can be extended to
other use-cases. We use RSML both as data output as well as the primary
source of information when rendering RSA structures in 3D.

Ultimately, the VR application presented in this work provides an
immersive visualization of root systems and can easily be coupled to
automatic tracing algorithms through their standardized output. Our
application furthermore benefits from segmentation approaches that
enhance the spatial visibility of the root morphology [12]. Lastly, using
our approach, one can use previously unusable image data, either
because automated tracing algorithms still fail in certain cases, or
because a level of precision needs to be reached that would be otherwise
unobtainable with desktop software.
gnetic tubes with sieved soil. These are scanned using an MRI scanner, resulting
mployed in addition to the explorative functions of VRoot. C: The resulting RSAs
sent a flowchart of the overall steps in our pipeline.
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2.1. Virtual reality root tracing

We present VRoot, a novel method for manual RSA reconstruction and
correction. To obtain the RSAs with the accuracy that we require, we
developed a tool that allows expedient fine-tuning. Manual annotation in
VRoot is loosely based on methods developed and used by Stingaciu et al.
[13] and Usher et al. [14]. To support a wider usability in terms of target
hardware, and customization options, we developed2 VRoot on top of
Unreal Engine1, primarily to allow for reproduction even if hardware
constraints are altered. A key aspect of the rendering of 3D imaging data
in VR is the ability to look at the data from different perspectives while
retaining the dimensionality of the data regarding their perception. We
implemented VRoot with the key idea that different users might want to
interact on different scales and in different postures, as previously
highlighted by Zielasko and Riecke [32].

VRoot is an application that assists with very accurately tracing RSAs
in 3D volumes, by providing immersive visualization and intuitive
interaction. VRoot uses the Unreal Engine for cross-platform rendering
and porting, while the interface to VR hardware uses the OpenXR
abstraction standard. The data analysis system is a python server,
communicating with the application via a remote connection imple-
mented in ZeroMQ. VRoot almost exlusively uses geometric representa-
tions of data, augmented by custom interaction that allows editing of
graph structures and visualization of soil scans. In the application, the
soil volume is thresholded and visualized as isosurface computed around
a cutoff value that can be chosen dynamically within the application. We
use the Visualization ToolKit (VTK) [33] implementation for isosurfac-
ing. VRoot is used to manually extract and edit RSAs, which are visual-
ized on top of the 3D volume using the geometrization scheme described
in Baker et al. [34]. Our implementation of VRoot consists of a full
analysis pipeline using interaction metaphors, implemented2 using the
Unreal Engine. We implemted an RSML authoring system in VR, along
with the possibility to extract, change, as well as fine-tune RSAs.

Fig. 2 shows sample views from the user's perspective in the appli-
cation. We chose a darker environment to reduce eye strain. Users
interact with two controllers, one for selecting as well as tracing, while
the other controller is used for grabbing metaphors.

Fig. 2A shows the basic user interaction components. Interaction with
the RSA is done via the nodes. All nodes in the RSA are selectable and
while tracing depends on manual user interaction, changing of properties
is selection set-based, meaning that users can mark as many nodes as
desired to change their properties. The widgets (grey) change the se-
lection set's properties, such as diameter and position. Fig. 2B shows a
snapshot of a user drawing a root, indicated by the pink interaction. This
is automatically available once the number of selected nodes is exactly
one, or without any tracing present. The widgets to edit node properties
always work on the selection set, changing the diameter or position of the
selected nodes. The volume itself is displayed as an isosurface, as seen in
Fig. 2C, whose signal cutoff value can be changed from within VR
through the use of a slider widget. The full visualization of the RSA al-
ways uses the RSML topology and assigns colors to root order. We are
using dithered translucency for the isosurface to avoid depth-perception
issues with the surface. More general root functionality that is outside of
node editing is accessible via a point-and-click menu, such as assistance
tools for time series annotation or editing tools for RSA topology. Users
can generally place nodes freely within the 3D environment, though it
needs to be stressed that there is a degree of freedom in VR, the rotation,
that is not captured by common data types, such as RSML or VTK format.
To enable a more expedient workflow, many more complex tasks,
including the visualization algorithms, are offloaded onto a server to
allow the interactive application to run smoothly while still allowing the
2 VRoot implementation: https://github.com/dhelmrich/VRoot.
1 Unreal Engine, developed by Epic Games Inc. https://www.unrealengin

e.com/, accessed 2025-03-27.
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completion of complex tasks. For a selected data set, the system searches
for the most recent tracing and displays it on top of the 3D image.

We designed the application with expert workflows in mind and have
been continuously improving the workflow to assist with observations
such as by Stingaciu et al. [13] and Selzner et al. [12]. However, the
assessment of a system that depends on human interaction is not as
straight forward as assessing the quality of an algorithm, even with a
ground truth data set present. We are evaluating this in a more controlled
fashion by performing a user study that is being guided by synthetic data
and user questionnaires, under the restriction of using a pool of potential
users that all have a similar knowledge level about the applications. We
chose to evaluate untrained user performance for this reason, allowing us
to focus on the relative performance of the applications without needing
to balance the data for previous experience.

2.2. Laboratory user study

To answer our question on whether VR annotation can outperform
state-of-the-art desktop annotation for RSA reconstruction, we performed
a mixed design laboratory study, assessing the applications within-
subjects with the between-subject condition of water noise. We
compare our software against NMRooting described above, since
NMRooting is not only state-of-the-art for 3D annotation, but also is
similar to other applications. The evaluation of the study is aimed to
answer the question on whether the VR software yields a higher recon-
struction accuracy as well as a higher usability. We map performance to
reconstruction accuracy in a virtual MRI scan: Our comparison between
applications and conditions relies on the assumption that how closely a
participant (after a short training phase) follows the ground truth with
their annotation is a direct indicator of the usefulness of the application.
In this instance, the term laboratory study refers to a controlled setting in
which human participants with similar starting conditions could perform
tasks and evaluate the applications. Through the use of a sufficient
number of individual participants, effects that are individual to certain
people should be eliminated, and the overall usability of the software can
be evaluated. To enable this process, the set of possible options within a
single application has to be restricted, so we exclusively use "tip-to-tree"
and node annotation in NMRooting and basic drawing without correction
in VRoot.

The user study was designed to answer our questions and assumptions
on the improvement of software and measurement quality from MRI
scans. We postulate the following hypotheses on the application perfor-
mance on the software level as well as on the data level.

Improved Workflows: We expect that the major indicators for soft-
ware quality will be im-proved when using VR software. These indicators
are an improvement (H1) of System Usability as well as an improvement
in the subjective pragmatic performance (H2) of the software. These
hypotheses will be tested using the participants’ evaluation using the
questionnaire after task completion.

Extraction Accuracy: For the extracted root systems, we postulate
that key relevant measures will be impacted by the use of VR. The total
root length is expected to be different (H3), which also applies to the
branching density (H4). We believe that the VR software will result in a
higher overall accuracy (H5) which is further impacted by the presence
of water noise (H6). Water noise and impact of signal-to-noise ratio have
well-reported impacts on reconstruction accuracy [7,10–12], which is
why we assume that it is a significant factor in the reconstruction accu-
racy of participants. We expect that the total root length is closer to
ground truth when using VR (H7) and that the VR extraction of the
branching density does not differ from the branching density within the
virtual MRI (H8).

2.2.1. Tasks & measures
The main task that participants were asked to perform is extraction of

the RSA from anMRI soil column scan. This includes the extraction of the
pathway of individual roots as exhibited within the MRI scan, loosely

https://github.com/dhelmrich/VRoot
https://www.unrealengine.com/
https://www.unrealengine.com/


Fig. 2. Annotated screenshots of VRoot. A: Two-handed use of the drawing function. New position and connection is indicated in pink. B: Selection is set-based and
changes are done on all selected nodes, drawing is only possible with one. C: Subsequent root orders have high color contrast and MRI is dithered for depth-preserving
translucency.
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based on signal strength. Participants were asked to mitigate noise effects
if present and extract a fairly simple explanation for the signal that they
were shown. Furthermore, participants created a labeled RSA, which in-
cludes the order of the root explicitly. Participants were asked to label
both primary and lateral roots as such. The tracing of the RSA resulted in
each case in a full RSA, including positioning but excluding diameter.
Participants were asked to provide their demographic information as
well as a subjective evaluation of the software they were tasked with
using. In total, participants performed the extraction task two times, with
the evaluation of a questionnaire in between and at the end.

Participants were tasked with extracting a root system from an MRI
scan, once using the VR application and once using NMRooting. The
water noise condition spanned both data sets, meaning that independent
of the order, a participant either completed the task for each application
with water noise, or without. Participants were tasked with tracing a
virtual MRI scan, as described in Sec. 2.3. Extraction of the RSA was done
with both applications, and the resulting structures were compared
against ground truth.

Participants evaluated each application with the System Usability
Scale (SUS) [24], the User Experience Questionnaire (UEQ) [35] as well
as the NASA Task Load Index Short (TLXs) [36]. These are described in
Sec. 2.4.

2.2.2. Procedure
Participants gave their informed consent. Participants were divided

into four groups by ID. The first distinction was made on whether a
participant received data with water-like noise. Furthermore, it is
varied which application a user tested first, resulting in four conditions.
The conditions were order of application and water noise. The study
procedure consisted of five steps. In the first step, participants would
quantify their own previous experience and calibration measurements
were made to setup the HMD. Afterwards, participants would be
introduced to the first application (Desktop or VR) and after this initial
training phase, the study data set would be loaded, and the participant
performed the task without help. Participants then evaluated the
application using questionnaires. Lastly, these two steps would be
repeated with the other application. For the full description of all steps
involved in the individual phases, see App. B.

2.2.3. Apparatus
In our experiment, we ran VRoot on an HTC Vive Pro HMD. In our
5

tests, the application framerate was typically within 80–90 frames per
second. The entire study was conducted in the "Virtual Reality Labora-
tory" in the Institute of Bio- and Geosciences 3 of the Forschungszentrum
Jülich GmbH. The study was conducted sitting at the laboratory desk,
facing the monitor. The VR software was used sitting by all participants.
For considerations on whether to support or design a system for standing
or seated setups, we refer to current literature [37].

The questionnaires as well as the NMRooting application were used
on a desktop PC with a desktop resolution of 1920 � 1080 with mouse
and keyboard. Our tests were performed on a PC with an Intel i7-8700K
CPU, 32 GB of RAM and an NVIDIA 2060 RTX SUPER GPU.

2.2.4. Participants
The user study data set was acquired from over 20 participants

working on-site at Forschungszentrum Jülich. We have contacted po-
tential participants, pre-emptively excluding anyone with either previous
VRoot experience or knowledge of the goal of the study. Furthermore, we
required normal or corrected-to-normal vision.

Total participation in the user study was n¼ 20. These include in total
15 male, 4 female, 1 non-binary and 0 other. Age distribution was almost
uniform from 20 to 43 years, with a median age of 33. Self-reported
experience using 3D applications was 4 participants with no experi-
ence, 8 users who reported using 3D applications at least once, 6 sporadic
users and 2 experts. Self-reported experience using VR applications was
5: None, 5: Once, 7: Sporadic and 3: Expert. None of the participants had
previous experience in the specific application NMRooting or the specific
application VRoot.
2.3. Evaluation using FSPM simulated root data

We are evaluating user-based extractions of root systems in the
context of a virtual MRI scan. These virtual MRI scans were designed
specifically for this study and the RSAs were simulated using the FSPM
CPlantBox [5]. We calibrated the simulation for the task and slightly
increased the inter-lateral distance for the first-order lateral roots. This
RSA serves as a ground truth measurement. With noise that we typically
see on a larger scale, such as Fig. 3A, we modeled a smaller bean root
system seen in Fig. 3B and imposed a noise model on it.

We computed the signal strength of the resulting MRI scan by using a
simple heuristic based on the total volume of a root segment in a certain
voxel. To avoid non-uniform task performance in the extraction task, the



Fig. 3. Side-by-side comparison of the study image data sets, scaled to image
height as opposed to real height. A: We typically observe, depending on soil type
as well as soil water content, highly ununiform noise. Locally, this might be
expressed as smudges around the roots. B: Our simulation of a faba bean is being
rendered with respect to the relative root length/diameter through a voxel. This
image data set is the use-case for the noise-free participants. C: We added and
subtracted noise features using a Weierstrass transformation. This results in
slightly more complex, but uniformly complex, image data.
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between-subject condition of water noise was chosen such that either the
whole data set had noise effects or no part of the data. Within a soil
cylinder of 1.5 cm diameter, a soil volume with water noise was seeded.
The noise was locally scaled with the signal-to-noise ratio of 4.3. Noise
addition/substraction was followed by applying a weierstrass
transformation.

Since the original root system has been created by an FSPM, we can
directly compare it with the manual extractions. This allows for an exact
quantification of errors, which helps in assessing the factors in the
decision-making process on what application to use for the pipeline.
CPlantBox has been well-researched in terms of its stochastic properties
[38], and is fit to be used as baseline for a user-based evaluation of
extraction software. Additionally, any effects we would see in terms of
the impact of the synthetic nature of the plant we would see in both
applications equally.

As described in Horn et al. [11], to be able to confidently match be-
tween user-annotated RSAs and those generated by software or simula-
tions, the correspondence between the architectures needs to be
calculated. In this evaluation, we have used the distance-matching
threshold of d ¼ 15 in voxel units that was used by Horn et al. [11].
Since any length of simulated root could correspond to one or more
manually annotated segments, and likewise one manually annotated
segment might correspond to more than one simulated root, we compute
the full segment distance matrix as

ðDÞi;j ¼min
x;y

��Pi þ x �ðPi � Pi�1Þ � Pj þ y ��Pj � Pj�1

���
2
where x; y2 ð0; 1Þ⊂R

(1)

where Pi is the point coordinate of the ith segment, x and y are optimi-
zation parameters and the resulting distance matrix D only captures the
minimal euclidean distance between two lines. This will result in a base
distance metric that we use to match segments of different lengths. The
matching process first assigns 1-to-n correspondences to simulated seg-
ments before it tries to match any unmatched manual segments to those
simulated segments that were previously matched to exactly one
segment. Organ-level label continuity is provided through matching
roots. Two roots are considered matched if their cumulative distance D �
ðen �emÞ 7! dðm;nÞ 2 R is the lowest among all other possible assignments
with respect to the sets e of the segment indices.

We computed the accuracy based on root matching to ensure that the
correct identification of roots is rewarded and to measure extraction
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differences that contribute to differences in root length. This
topologically-aware accuracy is computed using a ground truth root set
of IGT and a set of traced roots IT , with a set of

Ic :¼ fn2 IGT
���argminm2jRjdðm;nÞ \dðm;nÞ � dg, signifying the correctly

matched roots.
To compute the measures for the correctness of the extracted RSAs,

we first match the root systems to the ground truth. This ensures that
there is topological information in the resulting scores. Root Lengths Ln
generally refer to the total length of all segments corresponding to the
root, namely Ln :¼

P
lni of the i 2 In segments of organ index n. We use

the ground truth LGT as the reference for the scores, where LGC is the total
length of correctly matched roots computed from IGC � IGT . The root(s)
that are matched to a root in the ground truth are a subset of the root set
of the tracing, ITC � IT . It follows that the total length of false negative
roots that were not traced is LFN ¼P

lni IGT \ IGC. We especially highlight
that the total length of correctly, which means matched, ground truth
roots is not necessarily the same length as the sum of matched roots in the
tracing, meaning that LGC 6¼ LTC because IGC � IGT whereas ITC � IT . LLP
is the total length of false positive roots, i.e., computed from segments
that were not present in the ground truth but present in the tracing. The
recall value R is a measure that encapsulates how much (in length) of the
root system was traced, defined as

R¼ LGC

LGC þ LFN þminð0;LGC � LTCÞ 2 ½0; 1� (2)

where we further penalize the tracing in cases where the extracted root
length is smaller than the length of the ground truth. On the other hand,
the precision value P encapsulates whether the manual extraction con-
tains only as much length as the ground truth root system:

P¼ LGC

LGC þ LFP þminð0;LTC � LGCÞ 2 ½0; 1� (3)

For the precision, we further penalize roots that were extracted
correctly but are too long in comparison to the ground truth. The pre-
cision and recall values are asymmetrical, decreasing with different
metrics, but can be summarized by the symmetrical F1 score, which de-
creases with both false positives and false negatives:

F1 ¼ 2 � P �R
Pþ R

2 ½0; 1� (4)

The F1 score is a comparison score that yields relatively similar values
for different deviations from the ground truth. This score allows the
comparison of applications that exhibit different characteristics, but due
to its symmetrical nature, allows the comparison between them.
2.4. Measures for application comparison

The measures on usability of the software as well as user experience
are difficult to measure objectively, and thus, questionnaires are typically
utilized. These questionnaires include the System Usability Scale Ques-
tionnaire (SUS) [24], the User Experience Scale (UEQ) [35], and the
NASA Task Load Index Short (TLXs) [36]. Due to the human interaction
component of the system, we chose to use standard methods of evalua-
tion with the added component of knowing the ground truth of a virtually
generated MRI scan. Thus, we obtain a combination of subjective and
objective measurements for assessing the software. We attached the full
participant survey in the supplemental material.

The SUS is primarily aimed at quantifying the subjective user
assessment of whether the given system is fit to help the user solve the
problem. The resulting score is scaled within ½0;100�⊂N. Commonly, the
software is considered to rate well on this scale if it is above 85 [39].

UEQ scores are a way of evaluating the quality of the subjective user
experience regarding basic descriptions of the software. The UEQ is a mix
of adjectives that are presented in a contrasting manner. The adjective
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sometimes has overlapping meanings, and the general assessment of the
software regarding these properties is very subjective. The NASA Task
Load Index Short is a questionnaire to assess the subjective difficulty and
strain on the user when completing the tasks. Users evaluated the ap-
plications in an online questionnaire, which we have attached to the
supplemental material. We measured the extracted RSA, as well as
camera data from participants, in addition to participants completing the
questionnaire.

2.5. Data analysis

We aggregated the data into two groups, based on the water noise
condition. We computed the subjective scores per participant according
to the respective guidelines. This applied to SUS [24], UEQ [35], and the
TLXs [36]. We performed the data analysis entirely in Python. In tables or
figures, we will refer to VRoot simply as VR, and to NMRooting as
Water/NoWater Conditions are referred to asþW or -W respectively. As
such, VR þ W refers to all data points of the VR software that have the
water noise condition. In the following, total (T) refers to all data points.
For hypotheses testing, our confidence cutoff is p ¼ .05.

We tested all measures for normal distribution using the Shapiro-Wilk
test, to ensure subsequent tests are informative and valid. For the sake of
uniformity and comparability, we are using non-parametric tests in cases
where not every condition is normally distributed. We chose the Mann-
Whitney (Summed Rank) test for differences in median in cases where we
do not find a normal distribution.

Statistical reporting includes the test statistic tðDoFÞ, the critical value
p, the effect size value (Cohen's d [40], defined as for differences in
statistics Ti), as well as degrees of freedom (DoF). In cases where ground
truth is available, we test for a specific means using t-tests. The test values
for normal distribution can be found in App. A. We use t-tests for SUS,
UEQ, and TLXs. Mann-Whitney tests will be used for total and average
root length, F1 score, and inter-lateral distance.
Fig. 4. Boxplot with conditions on x axis and score on y axis, orange line is the me
order conditions (within-subject) was summed. B: Overview of Task Load Index Shor
inverted. C: Overview of UEQ participant scoring for the pragmatic quality of the da
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3. Results

We omitted one subject (female,þW) from the study after the subject
succeeded the task trace the taproot within the training phase but did not
succeed with that task in the study phase. This means that we have 10
data points for the condition -W and 9 for the conditionþW. The tracing
and details on reasons of omission can be found in App. C.

3.1. Descriptive data

We include box-plot descriptions of the relevant measures. Fig. 4
shows the SUS scores over all conditions as well as the TLXs scoring and
UEQ pragmatic quality. The SUS scores are scaled within [0, 100],
though must not be understood as percentages. We have computed the
median in instances of data points that have no normal distribution,
which is indicated by the orange line in the boxplots. Data sets that
contain a ground truth (simulation) value indicate this value with a red
line. Data points outside of the inter-quartile range (1:5 �ðQ3 � Q1Þ) have
been included and marked as x-symbol.

The within-subject condition of the order of the application was
combined it served as balancing of the applications against learning ef-
fects. The subjective scores that are relevant to the applications can be
seen in Fig. 4. Herein, we present the SUS, the Task Load as well as the
pragmatic quality. Fig. 5 shows the accuracy scores of the data sets. For a
more in-depth understanding of the individual effects, we further present
relevant RSA measures in Fig. 6. Herein, we have a ground truth mea-
surement for all conditions. Ground truth measures were extracted from
the virtual MRI algorithmically, meaning that we extracted measures
with the MRI mapping and voxelization in mind. For the comparison, we
show as a red line the ground truth value from the actual simulated data
set as opposed to the parameterization. For the number of lateral roots,
we filtered roots of a length li < 3 [cm] to allow for the evaluation of the
extraction without unnecessarily including tracing artifacts in NMRoot-
ing (seen in Fig. 7). The inter-lateral distance was calculated on the
taproot only.
dian. A: Overview of System Usability Scoring across conditions. Scoring across
t Questionnaire score, sum of all questions except perceived success, which was
ta.



Fig. 5. Boxplots showing the median (orange) and distribution of the data with outliers marked as x. A: F1 scores of the extracted root systems. B: Recall value of the
matched root systems. C: Precision score of the matched root system.
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3.2. Results regarding user study hypotheses

We summarized the statistics and hypothesis data in Table 1, which
includes the most important data points. This section will give a brief
overview of what results we measured on the hypotheses we had
described in Sec. 2.2, and further indicators regarding ground truth
comparison.

SUS: We observe an average usability of 82 for VR and 67 for
NMRooting. VRoot has scores significantly better than NMRooting as
measured using a one-sided t-test (H1). Notably, VR þ W has a average
usability of 86 and NMR þ W of 62, with tests showing significant
improvement by using VR, which is not the case for the comparison VR-
W > NMR-W.

UEQ: Pragmatic experience that can be extracted from the UEQ is the
average of the three statistics Perspicuity, Efficiency, Dependability. VR
scored 1:841 on average and NMRooting scored 0.912, resulting in a
significant difference (H2).

Root Length: The length measures of the root system are average and
total root length, seen in Fig. 6A and B respectively. We computed the
differences in extraction quality regarding these two measures, allowing
for an assessment of overall extracted biomass and the correct identifi-
cation of individual roots. The average and total root length contain
useful information about what challenges participants encountered
during the annotation. We observe a difference between NMRooting and
VR in terms of extracted root lengths (H3). Deviation from ground truth
was tested as well as the difference between the methods. The extraction
of the average root length was, on average, correctly done in NMR-W, by
a single-sample t-test (tð9Þ ¼ � 0:979; p ¼ :353). The total root length
extraction in VR-W yielded no significant difference to ground truth,
yielding tð9Þ ¼ � 0:426; p ¼ :680. Other conditions, including aggre-
gates, yield significant differences. Differences between the applications
exist in the case of the individual conditions (þW/-W) as well as the
aggregate. We furthermore observe that the extraction of the total root
length yields larger differences in the þW condition.

Root Topology: Computing the extracted number of laterals that
have a minimum length of 3 cm, we find that only NMR-W found the
correct number of lateral roots. For the branching density (H4), we
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observe a difference between the extracted number of lateral roots in the
þW case, but not in the -W case nor in the aggregate case.

F1: We find that the F1 score of the extracted root systems is signifi-
cantly higher for VR in both þ W and -W conditions (H5). Additionally,
we find an increase in the difference between the applications once water
noise is present (H6).

Influence of Water Noise: We observe a significant increase in the
difference between the applications when water noise is present. This is
the case for the average root length, the total root length, and the F1
score. The computation for the F1 score test required random pairing
between individual scores.

Inter-Lateral Distance: This measure is defined as the average dis-
tance between two consecutive lateral organs Oi; Oj. VRoot users
correctly extracted the inter-lateral distance, tested using a two-sided
Mann-Whitney-U Test. NMRooting yielded a significant difference to
ground truth in the þW condition, by single-sample t-test with tð8Þ ¼
1:619; p ¼ :002 and an effect size of d ¼ 1:575. There were no significant
differences in both VR cases as well as the NMR-W case.

4. Discussion

We postulated that the VR software would yield a different usability,
which has been confirmed in H1 for Wþ and overall use of the software.
The effect was much smaller for W-, resulting in a very small effect size
and no significant difference. However, while no significant difference
was measured, there is furthermore no indication that classical applica-
tions perform better in any of the study conditions. The overall measured
variance for the measurement of pragmatic quality (H2) was fairly high,
see Fig. 4B, resulting in no significant difference between the applications
in the Wþ condition.

Objective measurements were more uniformly successful, with the
notable exception being the detection of the correct number of lateral
roots. In that metric, all median extractions were below ground truth,
with the exception of NMR-W, which was slightly higher. Interestingly,
NMRþWextractions consist of less roots overall, which might be a result
of the noisy data inhibiting the participant's ability to extract roots. We
confirm other findings, such as by Selzner et al. [12] and Horn et al. [11]



Fig. 6. Box-plot graphs show ground truth in red, median in orange, and outliers as x. A: Boxplots of average root length B: Boxplots of total root length
P

li C:
Number of lateral roots (li � 4 cm) D: Inter-lateral distance di.
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Fig. 7. Artifacts of RSA reconstruction in each application that occurred with participants.
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about the impact of noise on the RSA reconstruction.

4.1. Task execution

Generally, task execution posed no problems for users. Users needed a
few minutes to get accustomed to using the HMDs. Though pre-emptive
measurement and calibration were done for the interpupillary distance,
some users reported issues with depth perception, or depth-perception
issues became apparent during the training phase. Though explicit
introduction and prompting to repeat a certain interaction were done
during the training phase, some users did not make use of all available
options, particularly navigation, during task completion. This occurred in
equal parts with NMRooting and VRoot.

4.2. Interpretation of results

The simulated root contained certain artifacts that would have made
it fairly hard to trace for new users. Particularly, we note that the
matching-based F1 score is remarkably good for the VR software, which is
in part due to users matching the correct root length for the individual
organs successfully. The spatial distribution of the root system is more
obvious in VR, which reflects in the root systems that were drawn, even
under the condition that users do not edit root nodes that were already
placed. The restricted set of functionalities was mitigated by the intro-
duction of a training session, during which the procedure was explained,
leading to most participants already pre-planning the taproot in a way
that made it possible to achieve a high accuracy.

One aspect of the results we would like to highlight is the fact that
with no water noise, the VR application still yielded better results in
terms of matched length-based F1 scoring, see Fig. 5A. Furthermore, the
differences between the individuals were not very high, resulting in a
standard deviation for the VR conditions of 0:02 (Wþ), 0:04 (W-), and
0:03 (T) respectively. However, this is partially due to the fairly
’destructive’ nature of the F1 score, leading to different user-based
tracing errors to result in a similar score. The recall value R, as seen in
Fig. 5, is fairly uniform across applications, with slightly more "under-
tracing" done in the VR application. The F1 score and particularly the
precision P was low (but not extremely so) for NMRooting in the þW
condition. The primary reason for this was the fact that each time a user
clicked into the data and did not continue a root from the tip but rather
from the closest segment regarding the signal strength, this induced a
small lateral root at that point that users might have missed. For the
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actual comparison of the number of lateral roots, we discarded shorter
roots to avoid comparing against this technicality. We note that the F1
scores closely follow the power law distribution, tested by means of
Cressie-Read test for goodness-of-fit at χ ¼ 0:021 and p ¼ 1:0.

There is a significantly higher spread in the perceived system us-
ability measured from NMRooting in theþW condition as well as overall.
Tested variances were significantly higher according to the F-test for the
overall condition (Fð18Þ ¼ 4:330; p ¼ :002) as well as þ W (Fð8Þ ¼
11:493;p ¼ :001) but not for the conditions -W (Fð9Þ ¼ 2:571;p ¼ :087),
even though this condition does fail the test for equal variance (Fð9Þ ¼
2:571;p ¼ :175). Between the VR þ W and VR-W conditions, there is an
increase in variance that is, while not significant, at least notable.
Moreover, the inter-lateral distance has a large variance in the NMR þW
condition due to several artifacts. We will note that, for the estimation of
the inter-lateral distance, while there were no significant differences in
VR þ W, VR-W, and NMR-W, that most users (68% for VR and 84% for
NMRooting) over-estimated the inter-lateral distance compared to the
ground truth. We cannot make assumptions on the applicability of this
regarding a real MRI scan, but our findings provide some insight into user
bias when extracting parameters, particularly for FSPM simulation, from
3D imaging data. The average relative error for inter-lateral distance for
VR users was 0:234 and for NMRooting it was 0:617.

The average and total root length is, in part, influenced by the pres-
ence of water noise, in both applications. NMR þ W exhibited a larger
total root length while still yielding a lower than ground truth number of
laterals. However, the increased inter-lateral distance partially relates to
misidentification later in the data. In VR, the presence of water noise
caused under-identification of roots. We will note, that in the simulation
data, there was one very thin root that would have been very hard to
identify. There was a systematic issue with users not being able to
identify that root and thus, the VR-W case was lower in median regarding
the number of lateral roots users were able to identify.

4.3. Artifacts of the RSA reconstruction

Our general results show an improvement in the extraction quality
using VR. More specific phenomena can often be explained taking into
account observations from the study or by closer inspection of the data.
There are a few instances of false positives within the NMRooting
annotation that can be attributed to users clicking on surfaces they did
not intend to. It is important to note that during the eventual study task,
no further assistance was provided unless prompted, as opposed to the



Table 1
Hypotheses tests, reported with statistic T=U, critical value p, effect size d and degree of freedom (dof). We indicated what statistical tests were used by their
abbreviation, namely U for Mann-Whitney U-Statistical Test and T for T-Test.

H1 SUS (T)

W- W+

t p d dof t p d dof
0.716 .491 0.245 9 2.526 .017 1.249 8

T

t p d dof
5.112 < .001 0.812 18

H2 UEQ (T)

W- W+

t p d dof t p d dof
2.442 .017 1.019 10 1.808 .054 0.987 8

T

t p d dof
0 < .001 -2.859 9

H3 ∑ L (U)

W- W+

t p d dof t p d dof
0 < .001 -2.859 9 4 < .001 -2.537 8

T

t p d dof
4 < .001 -1.654 18

H4 jOˆ1j (U)

W- W+

t p d dof t p d dof
44 .789 0 8 22 .034 -1.223 9

T

t p d dof
148.5 .355 -0.386 18

H5 F1 (U)

W- W+

t p d dof t p d dof
84 .011 1.179 9 81 < .001 4.426 8

T

t p d dof
336 < .001 1.749 18

H6 F1 (U)

W+ and W-

U P d dof
89.821 < .001 2.494 9

H7 ∑L (U)

W- W+

t p d dof t p d dof
-7.898 < .001 -2.859 18 -5.239 < .001 -2.537 16

T

t p d dof
-5.021 < .001 1.749 36

H8 d_ij (U)

W+ and W-

U P d dof
13 .7 0.346 18
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training task, which included guidance and repetition until no mistake
was made.

This effect was exasperated by the presence of water noise. Some
users corrected their annotation to a certain degree, resulting in fewer
false positives but still suboptimal pathing, as seen in Fig. 7A. In contrast,
a case of supoptimal pathing in VR, which directly results from a coarser
user interaction, is seen in Fig. 7E. A total of 5 users attempted to separate
the proximal roots, which yielded a few perfect annotations, but also
artifacts such as Fig. 7B, which includes a few small roots that are due to
participants progressing the lateral by clicking in smaller steps, such that
the algorithm does not use the connecting signal between the roots to
path to the point indicated by the user. If water noise was present, a few
users misclicked into the water volume during the study task but failed to
remove such a tracing at a later point, as seen in Fig. 7C.
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While the VR application had better F1 scores on average, ultimately
more training is required for users to produce high-quality RSA re-
constructions. Some participants struggled with depth perception in VR,
which occurred in approximately equal parts in people with corrected
vision and normal vision. This is likely an experience effect that would
only be resolved by further use of the VR system - participants with
previous VR experience did not encounter this. Targeting objects in the
virtual scene as well as the correct placement of segments was chal-
lenging for new users.

The generally low variance of individual scores might be an indicator
of a systematic effect that is uniform among individuals. In the case of VR,
the inability to edit nodes was likely a large contributor to the overall
score of participants. This caused issues in cases where there was a node
missing in the taproot, as exemplified in Fig. 7D. In the case of



Fig. 8. A: Box-plots of length differences between ground truth and correctly annotated roots. Ground truth is red, median is orange, raw data is indicated blue,
outliers are marked as x. B: Comparison of self-assessment of extraction quality in VR to actual extraction quality.
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NMRooting, participants were told to manually trace the nodes and were
able to delete nodes that were mistakenly inserted. The low score in
NMRooting is mostly due to smaller effects accumulating to a lower score
in total, including suboptimal pathing, misidentification of roots, as well
as the presence of proximal roots and water noise in certain conditions.

4.4. Explanations for length differences

VR users tended to estimate the ground truth total root length
correctly when dealing with noise-free data. However, there is a slight
indication of overestimation of the individual root length within noisy
data, as found in Fig. 6. VR users might not have drawn the taproot
correctly, resulting in a slight overestimation of average root lengths, but
still an underestimation of the total. It has to be noted that the task was
performed sitting, which meant that users were forced to use the navi-
gation in VRoot as an alternative to bending down. Some users chose to
trace the root system less effectively as parts of it were out of reach,
resulting in a higher variance of the total length measurements. A few
users requested to be able to stand, but for the sake of uniformity, we did
not allow this.

On the other hand, the large overestimation in average root length in
NMRooting was in part due to supoptimal pathing, while the over-
estimation in total root length was caused by false-positive lateral roots,
which is indicated by the shift in distribution in the inter-lateral distance,
as seen in Fig. 6. We further investigate this by filtering the roots for only
true positive identifications and subsequently compute their length dif-
ference, as shown in Fig. 8. While we do observe a higher-than- zero
length extraction, by means of double-sided t-test with t(198) ¼ 2.379, p
¼ .018, d ¼ 0.169, we observe a significantly higher variance in the þW
condition of the desktop software (F (192) ¼ 0.651 and p ¼ .001). We
believe that a combination of issues, most notably inability to effectively
navigate in a desktop setting, caused the differences in theþW condition.

4.5. Subjective measures

The quantification of responses to the questionnaires yielded mixed
results. Particularly, we want to highlight the increased usability through
the use of VRoot. While there was no significant increase in the no-water
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condition, as seen in Fig. 4, there was a larger spread of responses for the
NMRooting software, resulting in a higher average usability score of
using VR in comparison. NMRooting generally had a larger spread in
responses in contrast to the more unified responses for VR both in total
(F ð18Þ ¼ 4:330 and p ¼ :002) and in the þW condition (F ð8Þ ¼ 11:493
and p ¼ :002). The TLXs yielded no significant difference between
NMRooting and VRoot, but it did showcase a higher variance in the -W
cases.

The user experience is challenging to compare, as certain measures
(such as novelty) are not appropriate in the assessment of the desktop
software. This is especially true since participants will already have the
expectation of using VR software even if using the desktop software first,
leading to influences measurements of those metrics.

The task, while the root was generally simple with only a taproot and
25 laterals, there were particularities about the data that caused issues for
certain participants, especially when using NM- Rooting. However, ar-
tifacts like proximal roots, or smaller roots further down the taproot,
have gone unnoticed to some participants. We will note that there was no
difference in the individual ratings depending on the order of applica-
tions tested. Generally, it is quite natural that the tasks would appear
equally demanding between the individual conditions. Interestingly, the
VR þ W condition has the smallest variance, indicating a more universal
agreement even between the within-subject conditions.

One aspect of the TLXs questionnaire is the question on the self-
assessment on whether the task was completed. This assessment is
shown in Fig. 8B. The F1 score shows that users performed similarly
whether there was water noise present, or not. However, self-assessment
of the accuracy was much lower than the actual accuracy with no water
noise present. This is likely less a self-assessment andmore a comparative
assessment depending on how easy the problem appears to be solvable
with automatic means. We highlight this to underline the issue that the
subjective assessment of data extraction done by users is seldomly
representative of the actual data quality. While our users estimated their
own performance as worse than it actually was, this is a more general
issue, as manually annotated public data sets also contain label errors,
which generally are assumed to be perfectly labeled [41]. However,
manual annotation work is incredibly valuable, especially in plant sci-
ence. The human self-assessment of data quality measured through
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manual means, especially if used as training basis, is seldomly accurate.

4.6. Usability of VR for annotation

Even if a virtual reality workflow improves the quality of extraction,
manual tasks remain more tedious and time-consuming than automatic
extraction. Our workflow is ultimately aimed at correcting rather than
tracing. VRoot functions best with a mixture of high throughput pre-
tracing and features that assist with the analysis of root architectures
as the basis. In the future, we would like to combine automated, semi-
automated, and manual tracing methods. In the case of NMRooting,
this would require the introduction of additional interaction metaphors
suitable for tasks that are voxel-based. There are other methods, such as
TopoRoot [10], that could improve the manual extraction pipeline. This
would be in line with published literature on similar topics, namely by
Zeng et al. [17], who improved the VR application developed in Usher
et al. [14] through the use of topological features.

Furthermore, there are technical aspects to consider. Geometry
visualization is ultimately constrained by the physical device memory,
which primarily includes GPU memory. While geometry reduction in
terms of triangle merging can help, the complexity of the data through
number of roots or noise will impact rendering performance. Resolution
is also a factor, which is a device attribute of the MRI scanner. While we
did not observe resolution-based effects that had clear origin, Selzner
et al. [12] had already studied the effects of higher resolution (through
upscaling) for manual annotation. Furthermore, using commonly avail-
able software such as Unreal Engine, it is possible to target a wider range
of consumer-grade hardware, and the application is portable to different
HMDs in principle.

5. Conclusion

In this work, we presented a pipeline to extract RSAs fromMRI images
using VR. We established the need for a more immersive manual analysis
tool for complex data sets and showed the advantages of using VR to
enable new users to achieve high-quality reconstructions faster. We
evaluated the use of our VR software in comparison to contemporary
desktop applications, and semi-automated analysis. Furthermore, we
quantified how well participants with a uniform knowledge base per-
formed in these tasks, both on the desktop as well as in VR. Our results
show an increased usability and accuracy through the use of VR for
manual root workflows, especially in instances where automatic tools
need more assistance. This enables the analysis of root systems in more
diverse soil conditions. Here, immersive annotation is a very valuable
method in 3D root image analysis and helps to increase the variety of
analyzed data to more soil types and soil water contents. In the future the
goal is to combine the tools offered by our VR application with the
benefits of an automatic extraction to provide a user-friendly and fast
workflow to correct automatic tracing results. A repetition experiment
specifically designed to estimate the actual errors made when manually
extracting data would be needed to provide a robust quantification
beyond relative comparison.
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A Normal Distribution Tests

The shapiro-wilk test for normal distribution tests whether the data is drawn from a normal distri- bution. This is a test where the alternative
hypothesis is exhibiting a normal distribution, meaning that the H0 hypothesis is that X ~ N for some normal distribution N, referring to a significant
difference to data produced by a normal distribution. For comparative measures, the residual of the two statistics, R: ¼ T1 � T2, needs to be normally
distributed, meaning that the difference between applications is tested as opposed to the statistics T of each application itself.

As seen in Tab. 4, there are some instances of data where a normal distribution is not present, which are the þW conditions for the root lengths,

http://dhelmrich/VRoot
https://doi.org/10.1016/j.plaphe.2025.100013
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resulting in a difference from a normal distribution for the total data. The inter-lateral distance di does not exhibit normal distribution for the -W
condition.

These effects were likely caused by a non-uniform error that is present within the data, as opposed to the subjective measurements that are mostly
centered around an average value, the objective distributions are non-symmetric regarding the differences between the applications.
Tab. 2

Goodness-of-fit tests for normal distribution on different measures, including combined measures. The pairing of residuals is always within subject.

Tab. 3
Goodness-of-fit tests for individual statistics for the testing against ground truth measure-ments, for each VR condition.

Tab. 4
Goodness-of-fit tests for individual statistics for the testing against ground truth measure-ments, for each NMRooting condition.

B Study Procedure

In the questionnaire for the study, participants were informed about what data would be stored and how. Participants gave informed consent for the
participation in the study. Participants were assigned an ID at the start of the study, and we measured their inter-pupillar distance for the purposes of
calibrating the HMD to their respective measurements. Depending on the ID, participants then used either the application VRoot or NMRooting to
extract a root system. For both applications, participants were verbally explained the functionality of the applications and what features they were to use
to extract the root system. Each participant was tasked with performing all actions on a training data set that were required later on, which included
navigation, tracing, and deletion in the case of NMRooting. After task completion with the study task, during which no intervention took place, par-
ticipants filled out the questionnaires attached in the supplemental material. Participants will then repeat the process with the other application.

The study aimed to assess the direct interaction with the system in cases in which manual annotation was necessary. As such, participants were told
to only use these tools to ensure comparability, as otherwise the task would be more complex, and user interaction would require more functionality and
a deeper understanding of the application. In the VR application, participants were taught the draw root functionality as well as data set navigation
techniques to ensure that all of the data set is reachable. Successful completion of the VR training task required the following steps.

1. Move head position in VR
2. Rotate the root system
14
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3. Move the root system up/down
4. Select a node
5. Deselect a node
6. Draw a node
7. Deselect a node and draw a lateral

In NMRooting, we restricted the functionality to the tip-to-tree option, with the correct starting point already being set pre-emptively. Users did label
the root topology manually. Successful completion of the NMRooting training phase required the following steps.

Fig. 9. Removed outlier data set after subject failed to trace the taproot. While the cause of this issue is unknown, the participant did trace a fully functional root
system in the training stage of the task, which included being prompted to place nodes on the taproot of the root system.

1. Turn the view
2. Zoom in/out
3. Pan the view (lateral movement respective to the screen view)
4. Click into the data to add a root
5. Click into the data to delete a root
6. Open the root order menu
7. Label roots by their root order (here just taproot and first order lateral)

Our previous tests yielded an average completion time for the tasks of 45 min. From a previous test with the application with mixed, i.e., expert and
non-expert, participants (n¼ 16), we concluded that 1 h would be sufficient for untrained participants. While we did not provide a timing nor a time for
task completion in the individual conditions, we did allocate time slots for participants which were an hour long.

C Outlier

The outlier data set, exemplified by the VR performance of the participant. While the participant was able to annotate both the taproot as well as
annotate lateral roots in the training task, the participant has not retained the knowledge of the annotation steps and produced an annotation (red) as
shown in Fig. 9. It is unclear whether this was caused by the presence of water noise.
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