001046349 001__ 1046349
001046349 005__ 20251006123302.0
001046349 037__ $$aFZJ-2025-03778
001046349 041__ $$aEnglish
001046349 1001_ $$0P:(DE-Juel1)191435$$aJanotta, Benjamin$$b0$$eCorresponding author$$ufzj
001046349 1112_ $$a76th Annual Meeting of the International Society of Electrochemistry$$cMainz$$d2025-09-07 - 2025-09-12$$wGermany
001046349 245__ $$aInconsistencies in the Debye-Hückel theory related to the Statistic Foundation and Permittivity
001046349 260__ $$c2025
001046349 300__ $$a1
001046349 3367_ $$2ORCID$$aCONFERENCE_PAPER
001046349 3367_ $$033$$2EndNote$$aConference Paper
001046349 3367_ $$2BibTeX$$aINPROCEEDINGS
001046349 3367_ $$2DRIVER$$aconferenceObject
001046349 3367_ $$2DataCite$$aOutput Types/Conference Paper
001046349 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1759746747_24433
001046349 520__ $$aThe Debye-Hückel (DH) theory, a cornerstone in modeling ionic activities in electrolytes for over a century, remains widely applied like in equations of state and Onsager’s conductivity theory1. In the DH theory, the distribution of ions around a central ion is calculated assuming electrostatic interactions of point charges that are dispersed in a dielectric continuum2. To date, the parameterization of the DH theory is still being investigated, especially regarding the integration of the concentration-dependence of the relative static permittivity (dielectric constant), to improve the predictive capabilities of models3,4,5. In this presentation, we show that the theoretical foundation of the electrostatic interactions, namely the employed Poisson-Boltzmann framework, violates the statistical independence of states presumed for the Boltzmann theory. Hence, the physicochemical rigorosity of the DH theory is more restricted than often assumed in contemporary literature1. Even the DH limiting law, which is believed to be the most rigorous DH model, is subjected to this inconsistency. Additionally, the relative static permittivity of electrolytic solutions is critically examined, revealing inaccuracies in conventional extraction methods from experimental data obtained by dielectric spectroscopy. Consequently, the static permittivities of electrolytes and their concentration-dependences are subjected to unquantified uncertainties. To assess the impact of the uncertainties discussed, a sensitivity analysis demonstrates how a variation in the permittivity is overshadowed by adjusting the usual fitting parameters, the ionic radii, and arbitrary combinations of model extensions (such as models for the hard sphere contribution, Born term, and association). Ultimately, this presentation emphasizes that the theoretical foundations of the DH theory are fragile, restricting its applicability to fitting experimental data rather than enhancing predictive models. 6References:[1] G. M. Kontogeorgis, B. Maribo-Mogensen and K. Thomsen, Fluid Phase Equilibria, 2018, 462, 130–152.[2] P. Debye and E. Huckel, Phys Z, 1923, 24, 185–206. [3] G. M. Silva, X. Liang and G. M. Kontogeorgis, Fluid Phase, Equilibria, 2023, 566, 113671. [4] Rueben, P. Rehner, J. Gross and A. Bardow, Journal of Chemical & Engineering Data, 2024, 69, 3044–3054. [5] I. Y. Shilov and A. K. Lyashchenko, Journal of Solution Chemistry, 2019, 48, 234–247.[6] B. Janotta, M. Schalenbach, H. Tempel, R.-A. Eichel, Physical Chemistry Chemical Physics, 2025, DOI: 10.1039/D5CP00646E
001046349 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001046349 536__ $$0G:(DE-Juel1)BMBF-03SF0650A$$aPRELUDE - Verbundvorhaben PRELUDE: Prozess- und Meerwasser-Elektrolyse für eine umweltverträgliche Grüne Wasserstoffwirtschaft in Deutschland (BMBF-03SF0650A)$$cBMBF-03SF0650A$$x1
001046349 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
001046349 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
001046349 7001_ $$0P:(DE-Juel1)179453$$aSchalenbach, Maximilian$$b1
001046349 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b2
001046349 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b3$$ufzj
001046349 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191435$$aForschungszentrum Jülich$$b0$$kFZJ
001046349 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)191435$$aRWTH Aachen$$b0$$kRWTH
001046349 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179453$$aForschungszentrum Jülich$$b1$$kFZJ
001046349 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b2$$kFZJ
001046349 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b3$$kFZJ
001046349 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b3$$kRWTH
001046349 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001046349 9141_ $$y2025
001046349 920__ $$lyes
001046349 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001046349 980__ $$acontrib
001046349 980__ $$aVDB
001046349 980__ $$aI:(DE-Juel1)IET-1-20110218
001046349 980__ $$aUNRESTRICTED