001046447 001__ 1046447
001046447 005__ 20251007202033.0
001046447 0247_ $$2doi$$a10.1016/j.jpowsour.2025.238266
001046447 0247_ $$2ISSN$$a0378-7753
001046447 0247_ $$2ISSN$$a1873-2755
001046447 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03804
001046447 037__ $$aFZJ-2025-03804
001046447 041__ $$aEnglish
001046447 082__ $$a620
001046447 1001_ $$0P:(DE-HGF)0$$aTaoussi, S.$$b0$$eCorresponding author
001046447 245__ $$aNovel Mn2+-doped NASICON glass-ceramic electrolyte with engineered columnar microstructure for high lithium-ion conductivity
001046447 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2025
001046447 3367_ $$2DRIVER$$aarticle
001046447 3367_ $$2DataCite$$aOutput Types/Journal article
001046447 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1759843694_9312
001046447 3367_ $$2BibTeX$$aARTICLE
001046447 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001046447 3367_ $$00$$2EndNote$$aJournal Article
001046447 520__ $$aGlass-ceramic electrolytes are poised to revolutionize energy storage as breakthrough candidates for next-generation all-solid-state lithium batteries. This study introduces a high-performance and new Mn-doped NASICON-type (Li1.2Mn0.1Ti1.9(PO4)3) phase within a glass-ceramic electrolyte, synthesized via a melt-quenching and crystallization protocol. Crystallization analysis reveals a surface-to-bulk phase transformation via a one-dimensional nucleation process, with a low activation energy of 161.68 kJ.mol-1, enabling a Li-enriched NASICON matrix at reduced temperatures. Structural characterization through Rietveld-refined XRD, and 7Li and 31P MAS NMR spectroscopy, verified Mn2+ substitution within the crystal lattice, causing bottleneck size expansion and weakened Li+-O bonding, enhancing ion mobility. FT-IR and Raman spectra further confirm the successful formation of the Li-rich NASICON phase. SEM/TEM imaging revealed a unique columnar grain morphology that reduces grain boundary areas and porosity, while the residual glass phase (11.2%) enhances interfacial Li⁺ transfer. The optimized LMnTP-0GC composition (30Li2O-20TiO2-20MnO-30P2O5) delivered high-ionic conductivity (2.73×10-4 S.cm-1at RT), low electronic leakage (3.425×10-8 S.cm-1), and near-unity Li⁺ transference number (0.9998) outperforming undoped LiTi2(PO4)3 and Mn-enriched counterparts. The Li|LMnTP-0GC|Li cell achieves 2 mA.cm-2 CCD and stable cycling for 200 h, while the Li|LMnTP-0GC|LFP cell delivers 130.00 mAh.g-1 with 96.40% retention after 50 cycles at 0.1C.
001046447 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
001046447 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
001046447 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001046447 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
001046447 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
001046447 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
001046447 7001_ $$0P:(DE-HGF)0$$aOuaha, A.$$b1
001046447 7001_ $$0P:(DE-HGF)0$$aNaji, M.$$b2
001046447 7001_ $$0P:(DE-HGF)0$$aHoummada, K.$$b3
001046447 7001_ $$0P:(DE-HGF)0$$aLahmar, A.$$b4
001046447 7001_ $$0P:(DE-HGF)0$$aManoun, B.$$b5
001046447 7001_ $$0P:(DE-HGF)0$$aCampos, A.$$b6
001046447 7001_ $$0P:(DE-HGF)0$$aStocker, P.$$b7
001046447 7001_ $$0P:(DE-Juel1)130646$$afrielinghaus, H.$$b8$$ufzj
001046447 7001_ $$0P:(DE-HGF)0$$aEl bouari, A.$$b9
001046447 7001_ $$0P:(DE-HGF)0$$aZhang, Y.$$b10
001046447 7001_ $$0P:(DE-HGF)0$$aBih, L.$$b11
001046447 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2025.238266$$gVol. 658, p. 238266 -$$p238266$$tJournal of power sources$$v658$$x0378-7753$$y2025
001046447 8564_ $$uhttps://juser.fz-juelich.de/record/1046447/files/221clean.pdf$$yPublished on 2025-09-05. Available in OpenAccess from 2027-09-05.
001046447 909CO $$ooai:juser.fz-juelich.de:1046447$$popenaire$$popen_access$$pdriver$$pVDB:MLZ$$pVDB$$pdnbdelivery
001046447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130646$$aForschungszentrum Jülich$$b8$$kFZJ
001046447 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
001046447 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x1
001046447 9141_ $$y2025
001046447 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-06
001046447 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-06
001046447 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-06
001046447 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-06
001046447 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001046447 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001046447 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-06
001046447 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2022$$d2024-12-06
001046447 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-06
001046447 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-06
001046447 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2022$$d2024-12-06
001046447 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-06
001046447 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-06
001046447 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-06
001046447 920__ $$lyes
001046447 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
001046447 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
001046447 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x2
001046447 980__ $$ajournal
001046447 980__ $$aVDB
001046447 980__ $$aUNRESTRICTED
001046447 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
001046447 980__ $$aI:(DE-588b)4597118-3
001046447 980__ $$aI:(DE-Juel1)JCNS-4-20201012
001046447 9801_ $$aFullTexts