Hauptseite > Publikationsdatenbank > Novel Mn2+-doped NASICON glass-ceramic electrolyte with engineered columnar microstructure for high lithium-ion conductivity > print |
001 | 1046447 | ||
005 | 20251007202033.0 | ||
024 | 7 | _ | |a 10.1016/j.jpowsour.2025.238266 |2 doi |
024 | 7 | _ | |a 0378-7753 |2 ISSN |
024 | 7 | _ | |a 1873-2755 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2025-03804 |2 datacite_doi |
037 | _ | _ | |a FZJ-2025-03804 |
041 | _ | _ | |a English |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Taoussi, S. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Novel Mn2+-doped NASICON glass-ceramic electrolyte with engineered columnar microstructure for high lithium-ion conductivity |
260 | _ | _ | |a New York, NY [u.a.] |c 2025 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1759843694_9312 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Glass-ceramic electrolytes are poised to revolutionize energy storage as breakthrough candidates for next-generation all-solid-state lithium batteries. This study introduces a high-performance and new Mn-doped NASICON-type (Li1.2Mn0.1Ti1.9(PO4)3) phase within a glass-ceramic electrolyte, synthesized via a melt-quenching and crystallization protocol. Crystallization analysis reveals a surface-to-bulk phase transformation via a one-dimensional nucleation process, with a low activation energy of 161.68 kJ.mol-1, enabling a Li-enriched NASICON matrix at reduced temperatures. Structural characterization through Rietveld-refined XRD, and 7Li and 31P MAS NMR spectroscopy, verified Mn2+ substitution within the crystal lattice, causing bottleneck size expansion and weakened Li+-O bonding, enhancing ion mobility. FT-IR and Raman spectra further confirm the successful formation of the Li-rich NASICON phase. SEM/TEM imaging revealed a unique columnar grain morphology that reduces grain boundary areas and porosity, while the residual glass phase (11.2%) enhances interfacial Li⁺ transfer. The optimized LMnTP-0GC composition (30Li2O-20TiO2-20MnO-30P2O5) delivered high-ionic conductivity (2.73×10-4 S.cm-1at RT), low electronic leakage (3.425×10-8 S.cm-1), and near-unity Li⁺ transference number (0.9998) outperforming undoped LiTi2(PO4)3 and Mn-enriched counterparts. The Li|LMnTP-0GC|Li cell achieves 2 mA.cm-2 CCD and stable cycling for 200 h, while the Li|LMnTP-0GC|LFP cell delivers 130.00 mAh.g-1 with 96.40% retention after 50 cycles at 0.1C. |
536 | _ | _ | |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4) |0 G:(DE-HGF)POF4-6G4 |c POF4-6G4 |f POF IV |x 0 |
536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
650 | 2 | 7 | |a Materials Science |0 V:(DE-MLZ)SciArea-180 |2 V:(DE-HGF) |x 0 |
650 | 1 | 7 | |a Energy |0 V:(DE-MLZ)GC-110 |2 V:(DE-HGF) |x 0 |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Ouaha, A. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Naji, M. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Hoummada, K. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Lahmar, A. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Manoun, B. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Campos, A. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Stocker, P. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a frielinghaus, H. |0 P:(DE-Juel1)130646 |b 8 |u fzj |
700 | 1 | _ | |a El bouari, A. |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Zhang, Y. |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Bih, L. |0 P:(DE-HGF)0 |b 11 |
773 | _ | _ | |a 10.1016/j.jpowsour.2025.238266 |g Vol. 658, p. 238266 - |0 PERI:(DE-600)1491915-1 |p 238266 |t Journal of power sources |v 658 |y 2025 |x 0378-7753 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1046447/files/221clean.pdf |y Published on 2025-09-05. Available in OpenAccess from 2027-09-05. |
909 | C | O | |o oai:juser.fz-juelich.de:1046447 |p openaire |p open_access |p driver |p VDB:MLZ |p VDB |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)130646 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G4 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Jülich Centre for Neutron Research (JCNS) (FZJ) |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 1 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-06 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-06 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J POWER SOURCES : 2022 |d 2024-12-06 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-06 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-06 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J POWER SOURCES : 2022 |d 2024-12-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-06 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-FRM-II-20110218 |k JCNS-FRM-II |l JCNS-FRM-II |x 0 |
920 | 1 | _ | |0 I:(DE-588b)4597118-3 |k MLZ |l Heinz Maier-Leibnitz Zentrum |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-4-20201012 |k JCNS-4 |l JCNS-4 |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JCNS-FRM-II-20110218 |
980 | _ | _ | |a I:(DE-588b)4597118-3 |
980 | _ | _ | |a I:(DE-Juel1)JCNS-4-20201012 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|