001046456 001__ 1046456 001046456 005__ 20250930202057.0 001046456 037__ $$aFZJ-2025-03809 001046456 041__ $$aEnglish 001046456 1001_ $$0P:(DE-Juel1)201442$$aBarysch, Vera$$b0$$ufzj 001046456 1112_ $$a46. Jahrestagung der Fachgruppe Magnetische Resonanz (FGMR) 2025$$cBonn$$d2025-09-15 - 2025-09-18$$gFGMR$$wGermany 001046456 245__ $$aDNP at 0.34 T for the Investigation of Batteries 001046456 260__ $$c2025 001046456 3367_ $$033$$2EndNote$$aConference Paper 001046456 3367_ $$2BibTeX$$aINPROCEEDINGS 001046456 3367_ $$2DRIVER$$aconferenceObject 001046456 3367_ $$2ORCID$$aCONFERENCE_POSTER 001046456 3367_ $$2DataCite$$aOutput Types/Conference Poster 001046456 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1759217793_22113$$xOther 001046456 520__ $$aThe performance and lifespan of rechargeable lithium batteries are largely determined by intricate interfacial phenomena occurring at the electrode-electrolyte interface. A key element in this process is the solid electrolyte interphase (SEI), a passivating layer that develops on the electrode surface during battery cycling. Despite its importance, the SEI structure and composition remain difficult to characterize.[1] To achieve higher energy densities, battery designs are increasingly exploring anode-free configurations, where lithium is deposited directly onto a current collector like copper, rather than relying on a conventional lithium-based anode. While this approach holds significant promise, it also presents new challenges — most notably, the formation of lithium dendrites. These needle-like structures can pierce the separator, potentially leading to short circuits or battery failure.[2] Despite extensive research on lithium plating and dendrite formation, the molecular formation processes are not yet fully understood.Dynamic nuclear polarization (DNP) provides a powerful means to gain deeper insight into this phenomenon. By transferring polarization from electron spins to nuclear spins, DNP significantly enhances the sensitivity of NMR, particularly under low magnetic field conditions. We present combined EPR and DNP-enhanced 7Li NMR measurements of lithium on copper, performed using a custom-built setup operating at 0.34 T.[3] The resulting enhanced 7Li NMR signal allows for the observation of electrochemically deposited lithium on copper, harvested from a Cu vs. Li cell, with an enhancement larger than 400. Additionally, upon saturation of the lithium electron resonance, the 1H signal from the nearby electrolyte exhibited approximately a twofold enhancement, suggesting the capability to probe the SEI. These measurements utilized a battery cell housing specifically designed for EPR,[4] highlighting its suitability for future in operando studies.Literature:[1] M. A. Hope et al., Nat. Commun. 2020, 11, 2224.[2] K.N. Wood et al., ACS Energy Lett. 2, 2017, 3, 664.[3] Barysch et al., Sci. Rep. 2025, 15, 18436.[4] A. Niemöller et al., J. Chem. Phys. 2018, 148, 014705. 001046456 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0 001046456 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1 001046456 7001_ $$0P:(DE-Juel1)180213$$aWolff, Beatrice$$b1$$ufzj 001046456 7001_ $$0P:(DE-Juel1)168465$$aSchleker, Peter Philipp Maria$$b2$$ufzj 001046456 7001_ $$0P:(DE-Juel1)156296$$aJakes, Peter$$b3$$ufzj 001046456 7001_ $$0P:(DE-Juel1)133944$$aStreun, Matthias$$b4$$ufzj 001046456 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b5$$ufzj 001046456 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b6$$ufzj 001046456 909CO $$ooai:juser.fz-juelich.de:1046456$$pVDB 001046456 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201442$$aForschungszentrum Jülich$$b0$$kFZJ 001046456 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)201442$$aRWTH Aachen$$b0$$kRWTH 001046456 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180213$$aForschungszentrum Jülich$$b1$$kFZJ 001046456 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168465$$aForschungszentrum Jülich$$b2$$kFZJ 001046456 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156296$$aForschungszentrum Jülich$$b3$$kFZJ 001046456 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133944$$aForschungszentrum Jülich$$b4$$kFZJ 001046456 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b5$$kFZJ 001046456 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162401$$aRWTH Aachen$$b5$$kRWTH 001046456 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b6$$kFZJ 001046456 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b6$$kRWTH 001046456 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0 001046456 9141_ $$y2025 001046456 920__ $$lyes 001046456 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0 001046456 980__ $$aposter 001046456 980__ $$aVDB 001046456 980__ $$aI:(DE-Juel1)IET-1-20110218 001046456 980__ $$aUNRESTRICTED