001046456 001__ 1046456
001046456 005__ 20250930202057.0
001046456 037__ $$aFZJ-2025-03809
001046456 041__ $$aEnglish
001046456 1001_ $$0P:(DE-Juel1)201442$$aBarysch, Vera$$b0$$ufzj
001046456 1112_ $$a46. Jahrestagung der Fachgruppe Magnetische Resonanz (FGMR) 2025$$cBonn$$d2025-09-15 - 2025-09-18$$gFGMR$$wGermany
001046456 245__ $$aDNP at 0.34 T for the Investigation of Batteries
001046456 260__ $$c2025
001046456 3367_ $$033$$2EndNote$$aConference Paper
001046456 3367_ $$2BibTeX$$aINPROCEEDINGS
001046456 3367_ $$2DRIVER$$aconferenceObject
001046456 3367_ $$2ORCID$$aCONFERENCE_POSTER
001046456 3367_ $$2DataCite$$aOutput Types/Conference Poster
001046456 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1759217793_22113$$xOther
001046456 520__ $$aThe performance and lifespan of rechargeable lithium batteries are largely determined by intricate interfacial phenomena occurring at the electrode-electrolyte interface. A key element in this process is the solid electrolyte interphase (SEI), a passivating layer that develops on the electrode surface during battery cycling. Despite its importance, the SEI structure and composition remain difficult to characterize.[1] To achieve higher energy densities, battery designs are increasingly exploring anode-free configurations, where lithium is deposited directly onto a current collector like copper, rather than relying on a conventional lithium-based anode. While this approach holds significant promise, it also presents new challenges — most notably, the formation of lithium dendrites. These needle-like structures can pierce the separator, potentially leading to short circuits or battery failure.[2] Despite extensive research on lithium plating and dendrite formation, the molecular formation processes are not yet fully understood.Dynamic nuclear polarization (DNP) provides a powerful means to gain deeper insight into this phenomenon. By transferring polarization from electron spins to nuclear spins, DNP significantly enhances the sensitivity of NMR, particularly under low magnetic field conditions. We present combined EPR and DNP-enhanced 7Li NMR measurements of lithium on copper, performed using a custom-built setup operating at 0.34 T.[3] The resulting enhanced 7Li NMR signal allows for the observation of electrochemically deposited lithium on copper, harvested from a Cu vs. Li cell, with an enhancement larger than 400. Additionally, upon saturation of the lithium electron resonance, the 1H signal from the nearby electrolyte exhibited approximately a twofold enhancement, suggesting the capability to probe the SEI. These measurements utilized a battery cell housing specifically designed for EPR,[4] highlighting its suitability for future in operando studies.Literature:[1] M. A. Hope et al., Nat. Commun. 2020, 11, 2224.[2] K.N. Wood et al., ACS Energy Lett. 2, 2017, 3, 664.[3] Barysch et al., Sci. Rep. 2025, 15, 18436.[4] A. Niemöller et al., J. Chem. Phys. 2018, 148, 014705.
001046456 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001046456 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
001046456 7001_ $$0P:(DE-Juel1)180213$$aWolff, Beatrice$$b1$$ufzj
001046456 7001_ $$0P:(DE-Juel1)168465$$aSchleker, Peter Philipp Maria$$b2$$ufzj
001046456 7001_ $$0P:(DE-Juel1)156296$$aJakes, Peter$$b3$$ufzj
001046456 7001_ $$0P:(DE-Juel1)133944$$aStreun, Matthias$$b4$$ufzj
001046456 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b5$$ufzj
001046456 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b6$$ufzj
001046456 909CO $$ooai:juser.fz-juelich.de:1046456$$pVDB
001046456 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201442$$aForschungszentrum Jülich$$b0$$kFZJ
001046456 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)201442$$aRWTH Aachen$$b0$$kRWTH
001046456 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180213$$aForschungszentrum Jülich$$b1$$kFZJ
001046456 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168465$$aForschungszentrum Jülich$$b2$$kFZJ
001046456 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156296$$aForschungszentrum Jülich$$b3$$kFZJ
001046456 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133944$$aForschungszentrum Jülich$$b4$$kFZJ
001046456 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b5$$kFZJ
001046456 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162401$$aRWTH Aachen$$b5$$kRWTH
001046456 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b6$$kFZJ
001046456 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b6$$kRWTH
001046456 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001046456 9141_ $$y2025
001046456 920__ $$lyes
001046456 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001046456 980__ $$aposter
001046456 980__ $$aVDB
001046456 980__ $$aI:(DE-Juel1)IET-1-20110218
001046456 980__ $$aUNRESTRICTED