001     1046456
005     20250930202057.0
037 _ _ |a FZJ-2025-03809
041 _ _ |a English
100 1 _ |a Barysch, Vera
|0 P:(DE-Juel1)201442
|b 0
|u fzj
111 2 _ |a 46. Jahrestagung der Fachgruppe Magnetische Resonanz (FGMR) 2025
|g FGMR
|c Bonn
|d 2025-09-15 - 2025-09-18
|w Germany
245 _ _ |a DNP at 0.34 T for the Investigation of Batteries
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1759217793_22113
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a The performance and lifespan of rechargeable lithium batteries are largely determined by intricate interfacial phenomena occurring at the electrode-electrolyte interface. A key element in this process is the solid electrolyte interphase (SEI), a passivating layer that develops on the electrode surface during battery cycling. Despite its importance, the SEI structure and composition remain difficult to characterize.[1] To achieve higher energy densities, battery designs are increasingly exploring anode-free configurations, where lithium is deposited directly onto a current collector like copper, rather than relying on a conventional lithium-based anode. While this approach holds significant promise, it also presents new challenges — most notably, the formation of lithium dendrites. These needle-like structures can pierce the separator, potentially leading to short circuits or battery failure.[2] Despite extensive research on lithium plating and dendrite formation, the molecular formation processes are not yet fully understood.Dynamic nuclear polarization (DNP) provides a powerful means to gain deeper insight into this phenomenon. By transferring polarization from electron spins to nuclear spins, DNP significantly enhances the sensitivity of NMR, particularly under low magnetic field conditions. We present combined EPR and DNP-enhanced 7Li NMR measurements of lithium on copper, performed using a custom-built setup operating at 0.34 T.[3] The resulting enhanced 7Li NMR signal allows for the observation of electrochemically deposited lithium on copper, harvested from a Cu vs. Li cell, with an enhancement larger than 400. Additionally, upon saturation of the lithium electron resonance, the 1H signal from the nearby electrolyte exhibited approximately a twofold enhancement, suggesting the capability to probe the SEI. These measurements utilized a battery cell housing specifically designed for EPR,[4] highlighting its suitability for future in operando studies.Literature:[1] M. A. Hope et al., Nat. Commun. 2020, 11, 2224.[2] K.N. Wood et al., ACS Energy Lett. 2, 2017, 3, 664.[3] Barysch et al., Sci. Rep. 2025, 15, 18436.[4] A. Niemöller et al., J. Chem. Phys. 2018, 148, 014705.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
536 _ _ |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
|0 G:(DE-Juel1)HITEC-20170406
|c HITEC-20170406
|x 1
700 1 _ |a Wolff, Beatrice
|0 P:(DE-Juel1)180213
|b 1
|u fzj
700 1 _ |a Schleker, Peter Philipp Maria
|0 P:(DE-Juel1)168465
|b 2
|u fzj
700 1 _ |a Jakes, Peter
|0 P:(DE-Juel1)156296
|b 3
|u fzj
700 1 _ |a Streun, Matthias
|0 P:(DE-Juel1)133944
|b 4
|u fzj
700 1 _ |a Granwehr, Josef
|0 P:(DE-Juel1)162401
|b 5
|u fzj
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 6
|u fzj
909 C O |o oai:juser.fz-juelich.de:1046456
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)201442
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)201442
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180213
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)168465
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156296
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)133944
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)162401
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)162401
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21