001046457 001__ 1046457
001046457 005__ 20251006201534.0
001046457 037__ $$aFZJ-2025-03810
001046457 041__ $$aEnglish
001046457 1001_ $$0P:(DE-Juel1)201442$$aBarysch, Vera$$b0$$ufzj
001046457 1112_ $$aEC Days$$cEindhoven$$d2025-09-01 - 2025-09-02$$wNetherlands
001046457 245__ $$aAtomic layer deposition (ALD)$$f2025-09-01 - 
001046457 260__ $$c2025
001046457 3367_ $$033$$2EndNote$$aConference Paper
001046457 3367_ $$2DataCite$$aOther
001046457 3367_ $$2BibTeX$$aINPROCEEDINGS
001046457 3367_ $$2ORCID$$aLECTURE_SPEECH
001046457 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1759747468_21892$$xOther
001046457 3367_ $$2DINI$$aOther
001046457 502__ $$cRWTH Aachen
001046457 520__ $$aM III.1: Functional Layers - Atomic Layer Deposition(ALD)Vera Barysch (Supervisor: Shicheng Yu)IntroductionAtomic layer deposition (ALD) is a thin-film growth method in which a substrate is first exposedto a gaseous reactant that chemisorbs onto its surface. After purging excess reactant and byproducts,a second gaseous reactant is introduced, reacting with the first layer to form a solid film(Figure 1). By repeating this cycle, the film thickness can be increased with atomic-scale precision.This self-limiting growth mechanism enables precise control over layer thickness and conformality,even on complex 3D surfaces.[1]Figure 3: Schematic depiction of the ALD process. The cycle can be repeated until the desired layer thickness is achieved. [2]The main drawbacks of ALD are its low throughput and relatively high production costs, whichinitially limited its use in functional coatings. However, with the continuing miniaturization ofelectronic devices following Moore’s law, precise nanoscale control has become increasinglyimportant, paving the way for broader ALD adoption. In contrast to chemical vapor deposition(CVD) or sputtering, ALD offers better uniformity and conformality.[1]ApplicationsSince its introduction by Aleskovski in Russia and subsequent commercial development bySuntola et al. in Finland, ALD has been applied in the fabrication of optical devices,semiconductors, and other electronics, as well as in catalysis and anti-corrosion coatings. Inelectrochemical energy systems, notable applications include:- LTO-coated LLZTO solid electrolytes: Li6.45 Al0.05La3Zr1.6Ta0.4O12(LLZTO) was coatedwith nanoscale Li4Ti5O12 (LTO) via TiO2 ALD, reducing grain boundary resistance andimproving Li wettability.[3]- Single-atom Pt catalysts: ALD enables the preparation of Pt single-atom catalysts withhigh catalytic efficiency for the hydrogen evolution reaction.[4]- Gas separation membranes: ALD coatings of Al2O3, ZnO, or TiO2 on polymermembranes modify the microstructure, resulting in tunable CO2 permeation behavior.[5]ALD variantsThermal ALD relies on heat to drive the surface reactions. Plasma-enhanced ALD (PEALD) usesa plasma source to generate reactive species, enabling deposition at lower temperatures and oftenincreasing reaction rates. Radical-enhanced ALD (REALD) similarly introduces highly reactiveradicals, but without the ion bombardment associated with plasma, which can be advantageous forsensitive substrates. More recently, continuous flow ALD has been developed for industrialscalability: in this approach, substrates pass sequentially through dedicated chambers for precursorexposure and purging under constant flow conditions.[1]Questions1. What are the main advantages and limitations of ALD?2. How is ALD relevant to energy research?References[1] Kääriäinen, T., et al., John Wiley & Sons 2013.[2] Seo, J., et al., Nanoscale Adv. 4 2022 1060.[3] Chang, C.-Y., et al., J. Power Sources 652 2025 237593.[4] Cheng, N., et al., Nat. Commun. 7 2016 13638.[5] Niu, X., et al., J. Membr. Sci. 664 2022 121103.
001046457 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001046457 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
001046457 7001_ $$0P:(DE-Juel1)161141$$aYu, Shicheng$$b1$$ufzj
001046457 909CO $$ooai:juser.fz-juelich.de:1046457$$pVDB
001046457 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201442$$aForschungszentrum Jülich$$b0$$kFZJ
001046457 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)201442$$aRWTH Aachen$$b0$$kRWTH
001046457 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161141$$aForschungszentrum Jülich$$b1$$kFZJ
001046457 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001046457 9141_ $$y2025
001046457 920__ $$lyes
001046457 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001046457 980__ $$atalk
001046457 980__ $$aVDB
001046457 980__ $$aI:(DE-Juel1)IET-1-20110218
001046457 980__ $$aUNRESTRICTED