TY - JOUR AU - Kahra, Marvin AU - Breuß, Michael AU - Kleefeld, Andreas AU - Welk, Martin TI - Matrix-Valued LogSumExp Approximation for Colour Morphology JO - Journal of mathematical imaging and vision VL - 67 IS - 5 SN - 0924-9907 CY - Dordrecht [u.a.] PB - Springer Science + Business Media B.V M1 - FZJ-2025-03812 SP - 52 PY - 2025 AB - Mathematical morphology is a part of image processing that employs a moving window to modify pixel values through the application of specific operations. The supremum and infimum are pivotal concepts, yet defining them in a general sense for high-dimensional data such as colour is a challenging endeavour. As a result, a number of different approaches have been taken to try to find a solution, with certain compromises being made along the way. In this paper, we present an analysis of a novel approach that replaces the supremum within a morphological operation with the LogExp approximation of the maximum for matrix-valued colours. This approach has the advantage of extending the associativity of dilation from the one-dimensional to the higher-dimensional case. Furthermore, the minimality property is investigated and a relaxation specified to ensure that the approach is continuously dependent on the input data. LB - PUB:(DE-HGF)16 UR - <Go to ISI:>//WOS:001574657700001 DO - DOI:10.1007/s10851-025-01267-5 UR - https://juser.fz-juelich.de/record/1046459 ER -